
www.manaraa.com



www.manaraa.com

Lecture Notes in Computer Science 6582
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



www.manaraa.com

Martin Wirsing Matthias Hölzl (Eds.)

Rigorous Software
Engineering
for Service-Oriented
Systems

Results of the SENSORIA Project
on Software Engineering
for Service-Oriented Computing

13



www.manaraa.com

Volume Editors

Martin Wirsing
Ludwig-Maximilians-Universität München
Institut für Informatik
Oettingenstraße 67
80538 München, Germany
E-mail: wirsing@pst.ifi.lmu.de

Matthias Hölzl
Ludwig-Maximilians-Universität München
Institut für Informatik
Oettingenstraße 67
80538 München, Germany
E-mail: matthias.hoelzl@pst.ifi.lmu.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-20400-5 e-ISBN 978-3-642-20401-2
DOI 10.1007/978-3-642-20401-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011925495

CR Subject Classification (1998): D.2, D.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



www.manaraa.com

Preface

Service-oriented computing (SOC) is a paradigm for developing and providing
software that can address many IT challenges, ranging from integrating legacy
systems to building new, massively distributed, interoperable, evolvable systems
and applications. Government agencies and enterprises from many economic sec-
tors have already adopted service-oriented architectures (SOAs) as the basis of
their IT infrastructure. The widespread use of SOAs demonstrates the practical
benefits of this approach, but it also raises the bar for reliability, security and
performance for IT providers, system integrators and software developers.

The initial implementations of SOA in industry and practice were performed
without a clear understanding of the theoretical foundations of SOC. Many chal-
lenges, such as dynamic automated composition, compensation of long-running
transactions, performance prediction, and security guarantees were not taken
into account; little support was available for using formal methods to validate
or verify SOA-based systems.

The Sensoria project has addressed these problems from first-principles,
building novel theories, methods and tools to support the engineering of service-
oriented computing systems. Sensoria, an Integrated Project funded by the
European Commission in the period of 2005–2010, was one of three Integrated
Projects of the Global Computing Initiative of FET-IST, the Future and Emerg-
ing Technologies action of the European Commission.

The Sensoria Consortium consisted of 13 universities, one research insti-
tute and four companies (two SMEs) from seven countries1; the project was
coordinated by Ludwig-Maximilians-Universität München. The scientific out-
put as well as the practical impact of Sensoria are impressive: more than
650 scientific articles were published, three start-up companies were founded,
more than 25 students obtained their PhD thesis for research within the project;
Sensoria methods and techniques are taught in many university courses and
several summer schools were organized around the Sensoria topics.

This book presents the main results of the Sensoria project. It shows a novel
comprehensive approach to the design, formal analysis, automated deployment,
and reengineering of service-oriented applications. The Sensoria techniques

1 Ludwig-Maximilians-Universität München, Università di Trento, University of Le-
icester, Warsaw University, Technical University of Denmark at Lyngby, Università
di Pisa, Università di Firenze, Università di Bologna, Istituto di Scienza e Tecnologie
della Informazione “A. Faedo”, University of Lisbon, University of Edinburgh, ATX
Software SA, Telecom Italia S.p.A., FAST GmbH, Budapest University of Technol-
ogy and Economics, S&N AG, Imperial College London (London Software Systems),
University College London (London Software Systems), School of Management Po-
litecnico di Milano (MIP), ATX Technologies SA, Cirquent GmbH.



www.manaraa.com

VI Preface

enable service engineers to model their applications on a high level of abstraction
using service-oriented modeling languages; automated model transformations
convert between these notations and formal calculi. This enables the principle of
“hidden formal methods”: Tools based on formal methods developed as part of
the project, e.g., for checking the functional correctness of services, early perfor-
mance analysis, prediction of quantitative bottlenecks in collaborating services,
and verification of service level agreements, can be used by developers with-
out detailed knowledge of the underlying mathematical formalisms. Thereby
Sensoria integrates foundational theories, techniques and methods with prag-
matic software engineering for service-oriented architectures.

This book starts with short introductions to Sensoria and the Sensoria

case studies in the areas of e-finance, automotive engineering, telecommunica-
tions and e-university. The remainder of the book is divided into seven parts
corresponding to the research areas of Sensoria: modeling in service-oriented
architectures, calculi for service-oriented computing, service discovery, negoti-
ations and reconfiguration, qualitative analysis techniques for service-oriented
computing, quantitative techniques for quality of service and service level agree-
ments, model-driven development and reverse-engineering for service-oriented
systems, as well as case studies and patterns.

Many people contributed to the success of the Sensoria project. We offer
sincere thanks to all of them. We are particularly grateful to the EC project of-
ficer Wide Hogenhout for his continuing encouragement, patience and support.
We thank the project reviewers Jim Davis, Frantisek Plasil, Mathilde Romberg,
Wolfgang Schreiner and Carles Sierra for their always constructive and helpful
criticism and suggestions. We are also grateful to Springer for their helpful col-
laboration and assistance in producing this book. Our sincere thanks go to all
authors for the high quality of their scientific contributions and to the paper re-
viewers for careful reading and many suggestions for improvements. Finally, we
thank all Sensoria members for their excellent work, their inexhaustible effort
and never-ending enthusiasm for achieving the goals of the project.

November 2010 Martin Wirsing
Matthias Hölzl



www.manaraa.com

Table of Contents

I Intro

Sensoria – Software Engineering for Service-Oriented Overlay
Computers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Martin Wirsing, Matthias Hölzl, Nora Koch, and Philip Mayer

A Unifying Formal Basis for the Sensoria Approach: A White
Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Ugo Montanari

Introduction to the Sensoria Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . 26
Jannis Elgner, Stefania Gnesi, Nora Koch, and Philip Mayer

II Modelling in Service-Oriented Architectures

UML Extensions for Service-Oriented Systems . . . . . . . . . . . . . . . . . . . . . . . 35
Howard Foster, László Gönczy, Nora Koch, Philip Mayer,
Carlo Montangero, and Dániel Varró

The Sensoria Reference Modelling Language . . . . . . . . . . . . . . . . . . . . . . . 61
José Fiadeiro, Antónia Lopes, Laura Bocchi, and João Abreu

Model-Driven Development of Adaptable Service-Oriented Business
Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini

A Formal Support to Business and Architectural Design for
Service-Oriented Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Roberto Bruni, Howard Foster, Alberto Lluch Lafuente,
Ugo Montanari, and Emilio Tuosto

III Calculi for Service-Oriented Computing

Core Calculi for Service-Oriented Computing . . . . . . . . . . . . . . . . . . . . . . . . 153
Lúıs Caires, Rocco De Nicola, Rosario Pugliese,
Vasco T. Vasconcelos, and Gianluigi Zavattaro

Behavioral Theory for Session-Oriented Calculi . . . . . . . . . . . . . . . . . . . . . . 189
Ivan Lanese, Antonio Ravara, and Hugo Torres Vieira



www.manaraa.com

VIII Table of Contents

Static Analysis Techniques for Session-Oriented Calculi . . . . . . . . . . . . . . . 214
Lucia Acciai, Chiara Bodei, Michele Boreale, Roberto Bruni, and
Hugo Torres Vieira

Call-by-Contract for Service Discovery, Orchestration and Recovery . . . . 232
Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari, and
Roberto Zunino

IV Negotiations, Planning, and Reconfiguration

CC-Pi: A Constraint Language for Service Negotiation and
Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Maria Grazia Buscemi and Ugo Montanari

Advanced Mechanisms for Service Composition, Query and
Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Michele Boreale and Mario Bravetti

Advanced Mechanisms for Service Combination and Transactions . . . . . . 302
Carla Ferreira, Ivan Lanese, Antonio Ravara,
Hugo Torres Vieira, and Gianluigi Zavattaro

Model-Driven Development of Long Running Transactions . . . . . . . . . . . . 326
Vincenzo Ciancia, Gianluigi Ferrari, Roberto Guanciale,
Daniele Strollo, and Emilio Tuosto

Hierarchical Models for Service-Oriented Systems . . . . . . . . . . . . . . . . . . . . 349
Roberto Bruni, Andrea Corradini, Fabio Gadducci,
Alberto Lluch Lafuente, and Ugo Montanari

V Qualitative Analysis Techniques for Service-Oriented
Computing

Analysing Protocol Stacks for Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Han Gao, Flemming Nielson, and Hanne Riis Nielson

An Abstract, on the Fly Framework for the Verification of
Service-Oriented Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Stefania Gnesi and Franco Mazzanti

Tools and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Massimo Bartoletti, Lúıs Caires, Ivan Lanese, Franco Mazzanti,
Davide Sangiorgi, Hugo Torres Vieira, and Roberto Zunino



www.manaraa.com

Table of Contents IX

Specification and Analysis of Dynamically-Reconfigurable Service
Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Howard Foster, Arun Mukhija, David S. Rosenblum, and
Sebastian Uchitel

VI Quantitative Analysis Techniques for Service-Oriented
Computing

SoSL: A Service-Oriented Stochastic Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Rocco De Nicola, Diego Latella, Michele Loreti, and Mieke Massink

Evaluating Service Level Agreements Using Observational Probes . . . . . . 467
Allan Clark and Stephen Gilmore

Scaling Performance Analysis Using Fluid-Flow Approximation . . . . . . . . 486
Mirco Tribastone and Stephen Gilmore

Passage-End Analysis for Analysing Robot Movement . . . . . . . . . . . . . . . . 506
Allan Clark, Adam Duguid, and Stephen Gilmore

Quantitative Analysis of Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522
Igor Cappello, Allan Clark, Stephen Gilmore, Diego Latella,
Michele Loreti, Paola Quaglia, and Stefano Schivo

VII Model-Driven Development and Reverse-Engineering
for Service-Oriented Systems

Methodologies for Model-Driven Development and Deployment:
An Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

László Gönczy, Ábel Hegedüs, and Dániel Varró

Advances in Model Transformations by Graph Transformation:
Specification, Execution and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Gábor Bergmann, Artur Boronat, Reiko Heckel, Paolo Torrini,
István Ráth, and Dániel Varró

Runtime Support for Dynamic and Adaptive Service Composition . . . . . . 585
Arun Mukhija, David S. Rosenblum, Howard Foster, and
Sebastian Uchitel

Legacy Transformations for Extracting Service Components . . . . . . . . . . . 604
Carlos Matos and Reiko Heckel

The Sensoria Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
Philip Mayer and István Ráth



www.manaraa.com

X Table of Contents

VIII Case Studies and Patterns

Specification and Implementation of Demonstrators for the Case
Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

Jannis Elgner, Stefania Gnesi, Nora Koch, and Philip Mayer

Sensoria Results Applied to the Case Studies . . . . . . . . . . . . . . . . . . . . . . 655
Maurice H. ter Beek

Analysing Robot Movement Using the Sensoria Methods . . . . . . . . . . . . 678
Maurice H. ter Beek, Alessandro Lapadula, Michele Loreti, and
Claudio Palasciano

The Sensoria Approach Applied to the Finance Case Study . . . . . . . . . . 698
Stefania Gnesi, Rosario Pugliese, and Francesco Tiezzi

Sensoria Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719
Matthias Hölzl, Nora Koch, Philip Mayer, and Martin Wirsing

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737



www.manaraa.com

Sensoria – Software Engineering for
Service-Oriented Overlay Computers�

Martin Wirsing, Matthias Hölzl, Nora Koch, and Philip Mayer

Ludwig-Maximilians-Universität München, Germany
{wirsing,hoelzl,koch,mayer}@pst.ifi.lmu.de

Abstract. Service-Oriented Computing is a paradigm where services
are understood as autonomous, platform-independent computational en-
tities that can be described, published, categorized, discovered, and dy-
namically assembled for developing massively distributed, interoperable,
evolvable systems and applications. These characteristics have pushed
service-oriented computing towards nowadays widespread success,
demonstrated by the fact that many large companies invested a lot of ef-
forts and resources to promote service delivery on a variety of computing
platforms, mostly through the Internet in the form of Web services. In
the past, service-oriented computing and development has been done in a
pragmatic, mostly ad-hoc way. Theoretical foundations were missing that
are needed for trusted interoperability, predictable compositionality, and
quality issues like security, correctness, or resource usage. The IST-FET
integrated project Sensoria has addressed these issues by developing
a novel comprehensive approach to the engineering of service-oriented
software systems where foundational theories, techniques and methods
are fully integrated in a pragmatic software engineering approach, sup-
porting semi-automatic development and deployment of self-adaptable
(composite) services.

1 Introduction

Selling services rather than hardware or software has become the biggest growth
business in the computing industry. Business in this area has already evolved
from relatively simple (customer) services to global complex (business) solutions.
Computing is becoming a utility and software a service. This trend is changing
the economics of IT industry and influences the e-Society as a whole.

In the service-oriented computing (SOC) paradigm, services are understood
as autonomous, platform independent computational entities that can be de-
scribed, published, discovered, and dynamically assembled for developing mas-
sively distributed, interoperable, evolvable systems. Today, services are being
delivered on a variety of computing platforms, mostly through the Web, Per-
sonal Digital Assistants, and mobile phones. Tomorrow, they will be delivered
on all kinds of global computers and a plethora of new services will be required

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 1–14, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

2 M. Wirsing et al.

for e-government, e-health, and e-science, just to name a few of the areas that
are already taking shape within the Information Society. Thanks to their abil-
ity to be dynamically assembled, services can provide a much required layer of
integration between the different global computers that are being studied and
proposed by industry and academia for supporting the operation of the future
Information Society. As a result, service-oriented computing is bound to play
the role of an ideal overlay computer for Global Computing.

In the past, service-oriented computing and development has been done in
a mostly ad-hoc way. Theoretical foundations for trusted interoperability, pre-
dictable compositionality, and quality issues like security, correctness, or resource
usage were not well-established and service-oriented software development was
not integrated in a controllable process based on powerful analysis and verifica-
tion tools. Furthermore, it was not clear whether formal approaches to service-
oriented software development would scale up to the development of large, com-
plex systems.

In order to answer these questions, Sensoria has developed a novel com-
prehensive approach to the engineering of software systems for service-oriented
overlay computers where foundational theories, techniques and methods are
fully integrated in a pragmatic software engineering approach. This approach
is focused on global services that are context-adaptive, personalizable, and may
require hard and soft constraints on resources and performance; it takes into
account the fact that services have to be deployed on different, possibly interop-
erating global computers to provide novel and reusable service-oriented overlay
computers.

The results of Sensoria include a new generalized concept of service for
global overlay computers, new semantically well-defined modeling and program-
ming primitives for services, new powerful mathematical analysis and verification
techniques, tools for system behavior and quality of service properties, and novel
model-based transformation and development techniques. The innovative meth-
ods of Sensoria are demonstrated by application in the service-intensive areas
of e-business, automotive systems, and e-university.

This chapter is structured as follows: In section 2, we introduce the Sensoria

project with its aims and contributions to the field of service-oriented computing.
Sections 3 to 5 outline the three main research themes of Sensoria and provide
pointers to the remaining parts of the book. We conclude in section 6.

2 Sensoria – Well-Founded SOC Development

The core aim of the Sensoria EU project was the production of new knowl-
edge for systematic and scientifically well-founded methods of service-oriented
software development. Sensoria provides a comprehensive approach to design,
formal analysis, automated deployment, and reengineering of service-oriented
applications. The research themes of Sensoria therefore range across the whole
life-cycle of software development. Sensoria methods and tools rely on mathe-
matical theories and methods that allow rigorous verification of SOA artifacts.



www.manaraa.com

Sensoria – Software Engineering for Service-Oriented Overlay Computers 3

Realistic case studies for different important application areas including telecom-
munications, automotive, e-learning, and e-business are defined by the industrial
partners have been used to verify the applicability of Sensoria methods to
industrial domains.

In Sensoria a model-driven approach to service development was chosen, as
it enables developers to control the variety of specific distributed, global comput-
ing platforms, and to ensure a strict separation of concerns that can break the
complexity of service composition and evolution. In this approach, services are
first modeled in a platform-independent architectural design layer; these models
are then analyzed using formal methods and refined; afterwards, they can be
used for generating implementations over different global computing platforms
in a (semi-)automated way. This is shown in Fig. 1.

Fig. 1. Sensoria support for the model-driven development process

In more detail, the main technical ingredients that Sensoria provides to the
service engineer are:

Modeling. Service-oriented applications are designed using high-level visual for-
malisms such as the industry standard UML or domain-specific modeling lan-
guages to precisely capture domain-specific requirements.

Transformation and Feedback. Formal representations are generated by auto-
mated model transformations from engineering models.

Hidden Formal Methods. Back-end mathematical model analysis is used to reveal
performance bottlenecks, or interactions leading to errors or violation of service



www.manaraa.com

4 M. Wirsing et al.

contracts. For critical services, the developers can perform deep semantic analysis
for certification.

Feedback. Feedback from the formal analysis is presented to the developer in a
way that is easy to understand and used to improve the engineering models.

Code Generation. The high-level models are used to generate executable code,
e.g., in Java or BPEL, and configuration data for deploying the resulting services
to various standards-compliant service platforms.

Runtime. The generated code can utilize advanced run-time infrastructure that
was developed as part of the Sensoria project, e.g., dynamic service brokering,
as well as standard service platforms.

Reengineering of legacy services. Many existing systems are built as monolithic
non-extensible applications which cannot be easily adapted to new business pro-
cesses. Sensoria develops methods to transform these applications into layered
systems with well-defined service interfaces.

Sensoria Development Environment. The Sensoria Development Environ-
ment supports the above activities by providing an Eclipse-based, fully-
customizable tool chain for the entire model-driven workflow.

These individual development activities have been grouped into three major
themes that served as drivers for the scientific research of the Sensoria project;
they also provide the structure for the remainder of this book:

Linguistic Primitives for Modeling and Programming SOA systems. Language
primitives for services and their interactions have been developed on two different
abstraction levels, an architectural design level and a programming abstraction
level for service overlay computing. The scientific tools used are category theory
and process calculi, defining software architectures and programming languages
for mobile global computing systems. To make these formal approaches available
for practitioners, appropriate UML extensions have been devised which provide
a visual representation of the declarative modeling primitives. In addition, the
process algebraic programming primitives and their mathematical theory serve
for simulating and analyzing UML models.

Qualitative and Quantitative Analysis Methods for Services. Mathematical mod-
els for service computing formalize different aspects of overlay computers: at this
level, services are seen as abstract computational entities, modeled in a platform-
independent architectural layer. The mathematical models, hidden from the
developer, enable qualitative and quantitative analysis supporting the service
development process and providing the means for reasoning about functional
and non-functional properties of services and service aggregates. Sensoria re-
sults include powerful mathematical analysis techniques; in particular program



www.manaraa.com

Sensoria – Software Engineering for Service-Oriented Overlay Computers 5

analysis techniques, type systems, logics, and process calculi for investigating
the behavior and the quality of service of properties of global services. These
techniques are then tailored to several specific purposes: Firstly, they can be
used to reveal performance bottlenecks or interactions leading to errors or viola-
tion of service contracts. Secondly, they are used to deal with security issues like
confidentiality, integrity, non-interference, access control, and trust management.
Finally, for critical services, deep semantic analysis may be used for certification.

Model Driven Development, Tools, and Validation. Sensoria techniques may
be integrated into several software process models. Specific emphasis is placed
on Model-Driven Development (MDD). Sensoria introduces automated model
transformations to allow generation of formal representations from engineering
models, back-translation from formal results to user-level models, and genera-
tion of code. All techniques and methods developed within Sensoria are ac-
companied by tools, which are integrated into a common tooling platform (the
Sensoria Development Environment). To prove that the developed methods are
applicable in industrial contexts, Sensoria includes several case studies from
various application domains of software engineering, whose scenarios have been
rigorously tested.

Summarizing, the added value of Sensoria comes from the availability of
sound engineering techniques supported by mathematical foundations, languages
with formal semantics and associated analysis methods, and the ability to au-
tomate many of the development steps currently done by hand in the design
of service-oriented software. The next three sections describe the above three
points in more detail.

3 Part I: Linguistic Primitives for Modeling and
Programming SOA Systems

The first theme of Sensoria has been focused on the definition of adequate lin-
guistic primitives for modeling and programming service-oriented systems, en-
abling model-driven development for implementing services on different global
computers. The primitives introduced in Sensoria allow both high-level system
modeling as well as detailed, rigorous specifications of SOA systems using math-
ematical notations. Automated model transformations allow switching between
these two levels, and in addition enable generation of executable code.

Sensoria has first established foundations for service description, interac-
tion and composition, at the level of architectural specification. Based on this,
core calculi for service-oriented computing have been developed, accounting
for different interaction and composition architectures, like message-driven or
data-driven. Finally, the core calculi have been extended to establish a solid
mathematical basis for quality of service, service level agreements, workflow-like
transactions with compensation, and dynamic reconfiguration.



www.manaraa.com

6 M. Wirsing et al.

3.1 Modeling in Service-Oriented Architectures

Modeling of Service-Oriented Architectures has been investigated on different
abstraction levels and with different aims in Sensoria, which has led to four
main outcomes.

Firstly, SOA systems can be modeled on a high level of abstraction with
the help of the Unified Modeling Language (UML). The UML is accepted as
the lingua franca in the development of software systems. It is the most mature
language used for modeling. However, plain UML is not expressive enough for the
specification of structural and behavioral aspects of services. Sensoria therefore
provides individual UML extensions which form a Sensoria family of profiles
for SOA development, which are jointly used to model the different aspects of
service-oriented software. The Sensoria family of profiles comprise a profile
for service orchestration (UML4SOA), for non-functional properties of services,
business policies, for implementation modes of SOAs, and service deployment.
The UML extensions are further detailed in Chapter 1-1 (UML Extensions for
Service-Oriented Systems).

Secondly, one can also take a more formal approach to SOA system specifi-
cation with the help of the Sensoria Reference Modeling Language (SRML).
SRML is inspired by the Service Component Architecture (SCA). It makes avail-
able a general assembly model and binding mechanisms for service components
and clients that may have been programmed in possibly many different lan-
guages, e.g. Java, C++, BPEL, or PHP. However, where SCA supports bottom-
up low-level design, SRML instead addresses top-down high-level design. More
specifically, the aim was to develop models and mechanisms that support the
design of complex services, and analysis techniques through which designers can
verify or validate their properties. These composite services can then be put
together from (heterogeneous) service components using assembly and binding
techniques such as the ones provided by SCA. SRML will be discussed in detail
in Chapter 1-2 (The Sensoria Reference Modelling Language).

Business processes typically structure their activities with workflows, which
are often implemented in a rather static fashion in their IT systems. Nowadays,
system requirements change rapidly as business activities try to maintain their
competitive edge, and hence a predominant need arises for the IT systems to
present the same agility. This problem has been investigated in Sensoria and
has lead to a new approach, StPowla, which marries service-oriented architec-
ture, policies and workflows to provide businesses with this agility at execution
time of their workflows. In StPowla the business is modeled as a workflow and is
ultimately carried out by services. Indeed, policies provide the necessary adap-
tation to the varied expectations of the various business stakeholders. A key idea
is that the stakeholders can define policies to adapt the core work by modify-
ing the service to be invoked or the QoS levels. StPowla is further discussed in
Chapter 1-3 (Model-Driven Development of Adaptable Service-Oriented Busi-
ness Processes).

Finally, another important aspect of service-oriented computing systems lies
in their architecture, which must match the global structure required by the



www.manaraa.com

Sensoria – Software Engineering for Service-Oriented Overlay Computers 7

business processes they are intended to support. Sensoria provides a solution
for this problem with Architectural Design Rewriting (ADR), which can be used
as a formal model for architectural and business design and helps in formaliz-
ing crucial aspects of the UML4SOA and SRML modeling languages mentioned
above. The key features that make ADR a suitable and expressive framework
are the algebraic presentation of graph-based structures, which can improve the
automated support for specification, analysis and verification of service-oriented
architectures and applications. ADR is discussed in Chapter 1-4 (A Formal Sup-
port to Business and Architectural Design for Service-Oriented Systems).

3.2 Calculi for Service-Oriented Computing

Sensoria has investigated a foundational methodology for describing service
specifications and for developing a discipline for their composition. This method-
ology relies on services as the fundamental elements for developing applications,
thus conforming to the Service-Oriented Computing (SOC) paradigm. The fun-
damental vehicle used in this respect has been the theory of process calculi and
their operational modeling as labeled transition systems, intended as the col-
lections of linguistic constructs, tools, models, and prototype implementations
that have been developed for designing, analyzing, and experimenting with open
components interactions.

Core calculi have been adopted in the Sensoria project with three main aims.
First of all, they have been used to clarify and formally define the basic concepts
that characterize the Sensoria approach to the modeling of service-oriented
applications. In second place, they are formal models on which the Sensoria

analysis techniques have been developed. Finally, they have been used to drive
the implementation of the prototypes of the Sensoria languages for program-
ming actual service-based systems. The Sensoria core calculi are described in
Chapter 2-1 (Core Calculi for Service-Oriented Computing).

In a formal language, it is common to have several terms denoting the same
process. To understand when different terms refer to the same process, the lan-
guage needs to be equipped with a notion of equivalence. Sensoria has investi-
gated bisimilarity notions applied to some of the Sensoria core calculi. The aim
was to develop algebraic reasoning on processes by finding useful axioms (cor-
rect with respect to bisimilarity). Two different applications for this are program
transformations and spatial characterizations of systems. The former is used to
show how to transform object-oriented diagrams to session oriented ones, how
to break sessions into smaller pieces that can be implemented using current
technologies, and to show that an implementation of a service is compliant to a
more abstract specification. The latter proves that bisimilarity is a congruence
and shows behavioral identities that illuminate the spatial nature of processes
and pave the way for establishing a normal form result. This is further discussed
in Chapter 2-2 (Behavioral Theory for Session-Oriented Calculi).

An important tool for verifying system correctness are static analysis tech-
niques. Within Sensoria, such techniques have been developed for CaSPiS
(Calculus of Sessions and Pipes) and CC (Conversation Calculus), two session



www.manaraa.com

8 M. Wirsing et al.

oriented calculi developed within the project. Each technique aims at guaran-
teeing a specific property one would expect from service-oriented applications.
These models and techniques may be complementary used and combined in or-
der to provide as many guarantees as possible on the correctness of services’
behavior. Chapter 2-3 (Static Analysis Techniques for Session-Oriented Calculi)
contains more information on static analysis.

A key issue of the service approach is given by its compositional nature. For ex-
ample, existing services can be combined (a process which is called orchestration)
to create a more complex business process. This yields the problem of properly se-
lecting and configuring services to guarantee that their orchestration enjoys some
desirable properties. These properties may involve functional aspects, and also
non-functional aspects, like e.g. security, availability, performance, transactional-
ity, etc. Sensoria includes a framework for designing and composing services in a
“call-by-contract” fashion, i.e. according to their behavior. For a discussion on how
to plan compositions of services so that the resulting choreography satisfies the de-
sired functional and non-functional properties see Chapter 2-4 (Call-by-Contract
for Service Discovery, Orchestration and Recovery).

3.3 Negotiations, Planning, and Reconfiguration

The SOC paradigm has to face several challenges like service discovery, Service
Level Agreements (SLA) and Quality of Service (QoS), workflow-like transac-
tions and compensations, monitoring and dynamic reconfiguration. Sensoria

has addressed these aspects, namely SLA/QoS, transactions with compensa-
tions, and dynamic reconfiguration, to a) establish a solid mathematical basis
that can serve to formalize crucial aspects of SLAs, b) distill service aggregation
patterns, and c) provide a sound architectural basis for dynamic reconfigurations.

One of the ultimate goals of service-oriented computing (SOC) is to provide
support for the automatic on-demand discovery of basic functionalities that, once
combined, correctly compute a user defined task. To this aim, it is necessary
for services to come equipped with a computer-understandable interface that
exposes enough information in order to match the provided functionalities with
the user needs.

Services may expose both functional properties and non-functional properties.
Non-functional properties focus on the Quality of Service (QoS) and typically
include performance, availability, and cost. QoS parameters play an important
role in service composition and, specifically, in dynamic discovery and binding.
Indeed, a service requester may have minimal QoS requirements below which
a service is not considered useful. Moreover, multiple services that meet the
functional requirements of a requester can still be differentiated according to
their non-functional properties. In Sensoria, this challenge is addressed with
a simple calculus, called cc-pi calculus, for modeling processes able to spec-
ify QoS requirements and to conclude QoS contracts. See Chapter 3-1 (CC-
Pi: A Constraint Language for Service Negotiation and Composition) for more
information.



www.manaraa.com

Sensoria – Software Engineering for Service-Oriented Overlay Computers 9

Another prominent issue in the automated combination of services concerns
the compliance between the operations invoked by the client – the client pro-
tocol – and the receive operations executed by the service – the service pro-
tocol. Among other things, this requires a) actually extracting a manageable
description of the service interface (contract) from a reasonably detailed service
specification, and b) guaranteeing that the services retrieved from a repository
behave correctly according to the user and the other retrieved services needs.
Such techniques have been investigated in Sensoria and are detailed in Chapter
3-2 (Advanced Mechanisms for Service Composition, Query and Discovery).

In enterprise computing, services are used to model business processes, which
may potentially take a large amount of time. Such activities, known as long-
running transactions, are often supported by specialized language primitives
and constructs such as exception and compensation handling. Exception han-
dling is used to react to unexpected events, while compensation handling is
used to undo previously completed activities. The impact of adding exception-
and compensation handling to a language is detailed in Chapter 3-3 (Advanced
Mechanisms for Service Combination and Transactions). Furthermore, specifi-
cation and refactoring of long-running transactions is discussed in Chapter 3-4
(Model-Driven Development of Long-Running Transactions).

Finally, SOA systems should offer the ability to dynamically reconfigure SOA
architectures to adapt to changing requirements. The Sensoria Architectural
Design Rewriting approach introduced above can also be used as a foundational
model for reconfigurable service-oriented systems. This is detailed in Chapter
3-5 (A Formal Support to Reconfiguration of Service-Oriented Systems).

4 Part II: Formal Analysis of Service-Oriented Systems

The previous section has introduced language primitives and in particular core
calculi for the rigorous specification of service-oriented systems. These mathe-
matical models, hidden from the developer, enable qualitative and quantitative
analysis supporting the service development process and providing the means for
reasoning about functional and non-functional properties of services and service
aggregates.

In Sensoria, a full spectrum of qualitative analysis techniques has been de-
veloped, thus allowing service engineers to guarantee a high level of security and
trust for the location transparent delivery of services while allowing mobility
of resources. Furthermore, Sensoria has investigated means for coping with
the quantitative aspects of service-oriented systems. The focus lay on stochas-
tic methods for developing analysis techniques and tools to study and verify
quantitative properties such as resource usage and quality of service.

4.1 Qualitative Analysis Techniques for Service-Oriented
Computing

Quality of service is becoming a key parameter in determining the success or
failure of information systems offering their services using overlay computers;



www.manaraa.com

10 M. Wirsing et al.

techniques are needed for validating the performance of systems with respect to
their specifications (in particular as regards security and trust). Sensoria has
investigated analysis techniques for ensuring quality of service properties in SOC
systems.

In the service-oriented environment, the view of a system can be divided into
different levels; at the abstract level (as is usually the view found in academia),
the system is independent of the underlying communication protocols, and at
the concrete level (as is usually the view found in industry), the system must be
understood in connection with how it makes use of established communication
protocols. Motivated by this separation of concerns, Sensoria has devised a
specification approach called CaPiTo to facilitate modeling systems at both the
abstract and the concrete level. To bridge the gap between the two levels, an
intermediary level has been defined that connects them. Chapter 4-1 (Analysing
the Protocol Stack for Services) discusses CaPiTo.

Early validation of system requirements and early detection of design errors is
an important cornerstone of creating high-quality software systems. Sensoria

supports such validation by a common logical framework for verifying functional
properties of service-oriented systems, which has been instantiated in the CMC
and UMC model checkers. The design principles used in these tools are detailed
in Chapter 4-2 (An Abstract, On-The-Fly Framework for the Verification of
Service Oriented Systems).

Service architectures should be dynamic, where service bindings and con-
texts change with the environment. The task of designing and analyzing such
architectures becomes very complex. As a remedy, Sensoria has developed a
specification profile and analysis framework for so-called service modes. A service
mode provides an encapsulation of both specification and adaptation in different
service scenarios. The modes approach is described in Chapter 4-4 (Specification
and Analysis of Dynamically-Reconfigurable Service Architectures).

Finally, Sensoria also provides various tools which accompany the formal
methods laid out in the previous sections for analysis and verification of service-
oriented systems. Four of these tools (CMC, UMC, ChorSLMC, and LocUsT)
are described in Chapter 4-3 (Tools and Verification).

4.2 Quantitative Analysis Techniques for Service-Oriented
Computing

Service-oriented computing is made up of many activities that are quantity
driven (service level agreement, quality of service, negotiation, orchestration,
resource usage are only some of them). As a consequence, the issue of quanti-
tative description and analysis of such systems in the global computing setting
needs to be addressed in all the phases of SOA software development.

Service-oriented computing goes beyond the usual problems encountered in
network based systems by its focus on open-endedness. Addressing key functional
aspects of network aware programming such as distribution awareness, mobility
and security, and guaranteeing their integration with performance and depend-
ability guarantees is complemented in Sensoria by specific features intended



www.manaraa.com

Sensoria – Software Engineering for Service-Oriented Overlay Computers 11

for service-oriented architectures. Chapter 5-1 (SoSL: Service Oriented Stochas-
tic Logics) introduces the temporal logic SoSL and shows how SoSL formulae
can be model-checked against systems descriptions expressed with MarCaSPiS,
a process calculus designed for addressing quantitative aspects of SOC.

Service Level Agreements (SLAs) underpin the expectation of the performance
of a system as seen by a particular client of a service. Most often an SLA will
speak about the response-time of the system. In general, a qualitative analysis
of a service-oriented system requires abstracting the parts of the system which
are relevant to the analysis into an abstract model which is generally defined in
some modeling formalism. In Sensoria, the process algebra PEPA was used for
this purpose, along with eXtended Stochastic Probes (XSP) for the specification
of the passage of interest within the defined model. Both are detailed in Chapter
5-2 (Evaluating Service Level Agreements using Observational Probes).

The quantitative analysis of large-scale applications using discrete-state mod-
els is fundamentally hampered by the rapid growth of the state space as a func-
tion of the number of components in the system (state-space explosion). However,
service-oriented architectures often lie in the large-scale section of the application
landscape. Here, the fluid-flow interpretation of the stochastic process calculus
PEPA provides a very useful tool for the performance evaluation of large-scale
systems because the tractability of the numerical solution does not depend upon
the population levels of the system under study. Scaling performance analysis
using fluid-flow approximation is discussed in Chapter 5-3 (Scaling Performance
Analysis using Fluid-Flow Approximation); a related method called passage-end
calculations is discussed in Chapter 5-4 (Passage-End Analysis for Analysing
Robot Movement).

Finally, as in the previous section, Sensoria provides various tools perform-
ing quantitative analysis accompanying the methods and techniques laid out in
above. Chapter 5-5 (Quantitative Analysis of Services) shows instances of exact
model checking of MarCaSPiS against the both state-aware and action-aware
logic SoSL, exact and statistical model checking of sCOWS against the state-
aware logic CSL, and querying of PEPA models by terms of the XSP language
that expresses both state-aware and action-aware stochastic probes.

5 Part III: Model-Driven Development, Tools, and
Validation

The third theme of the Sensoria project deals with the engineering aspects
of service-oriented system construction. It builds on both previous themes and
introduces the glue with brings all Sensoria methods and tools together and
wraps them in a validation cocoon.

The theme includes new model-based development techniques for refining and
transforming service specifications, novel techniques for deploying service de-
scriptions on different global computers, and methods for reengineering legacy
systems into service-oriented ones. These results form the cornerstone for the



www.manaraa.com

12 M. Wirsing et al.

practical usability of the Sensoria approach, and are complemented by realistic
case studies from industrial partners.

5.1 Model-Driven Development and Reverse-Engineering for
Service-Oriented Systems

In order to allow developers to use the qualitative and quantitative analysis of
services discussed in previous sections, Sensoria has created model transforma-
tion tools and concrete transformations for a) strengthening and streamlining the
connections between formal languages and high-level systems models, b) orches-
trating the experimentation and analysis process, and c) deploying well-managed
analysis on systems of increasing scale and complexity. Due to their complexity,
SOA systems also require advanced and diverse mechanisms for deployment and
runtime management. Sensoria has investigated such mechanisms and provides
a suite of tools and techniques for transforming SOA artifacts, deploying service-
oriented systems on global computers and for reengineering legacy systems into
services.

Model transformation serves as a key technology for the model-driven service
engineering approach suggested by Sensoria. To be effective for a day-by-day
use in the engineering process, Sensoria had to solve some common problems
(traceability, back-annotation, intuitive requirement definition, etc.) with model
transformation techniques. These problems, and the solutions provided by Sen-

soria, are introduced in Chapter 6-1 (Methodologies for Model-Driven Develop-
ment and Deployment: an Overview), along with an end-to-end example for using
model-driven techniques for analyzing services, and the tool support provided by
the project. Going into more detail, Sensoria has employed model transforma-
tion techniques which make use of precise mathematical foundations provided
by the paradigm of graph transformation. The unique challenges and solutions
provided by the graph transformation paradigm are discussed in Chapter 6-2
(Advances in Model Transformations by Graph Transformation: Specification,
Analysis and Execution).

The ability to dynamically compose autonomous services for meeting the re-
quirements of different applications is one of the major advantages offered by
the service-oriented computing paradigm. A dynamic service composition implies
that services requesters can be dynamically bound to most appropriate service
providers that are currently available, in order to optimally satisfy the service
requirements. At the same time, the autonomy of services involved in a compo-
sition means that the resulting composition may need to be adapted in response
to changes in the service capabilities or requirements. Naturally, the infrastruc-
ture and technologies for providing runtime support for dynamic and adaptive
composition of services form the backbone of the above process. Within Sen-

soria, the Dino approach has been developed, which provides comprehensive
support for all stages of a service composition life-cycle, namely: service discov-
ery, selection, binding, delivery, monitoring and adaptation. More on Dino can
be found in Chapter 6-3 (Runtime Support for Dynamic and Adaptive Service
Composition).



www.manaraa.com

Sensoria – Software Engineering for Service-Oriented Overlay Computers 13

Many companies and organizations have already invested heavily in their IT
infrastructure in the past. The migration of such legacy systems towards service-
oriented architectures is therefore of particular importance. Sensoria has devel-
oped a general methodology for software reengineering. This method has been
instantiated to allow service components to be extracted from legacy applica-
tions. Chapter 6-4 (Legacy Transformations for Extracting Service Components)
describes a systematic way of addressing such reengineering projects with a
high degree of automation while being largely independent of the programming
language.

Developing service-oriented software involves dealing with multiple languages,
platforms, artifacts, and tools. The tasks carried out during development are
varied, ranging from modeling to implementation, from analysis to testing. For
many of these tasks, the Sensoria project has provided tools aiding develop-
ers in their work. To enable developers to find, use, and combine these tools,
Sensoria provides a tool integration platform, the Sensoria Development En-
vironment (SDE), which a) gives an overview of available tools and their area of
application, b) allows developers to use tools in a homogeneous way, re-arranging
tool functionality as required, and c) enables users to stay on a chosen level of
abstraction, hiding formal details as much as possible. The SDE is described in
detail in Chapter 6-5 (The Sensoria Development Environment).

5.2 Case Studies and Patterns

The research in the Sensoria project has been based on a series of realistic
case studies, which have been used for feeding and steering the research process,
discussing and communicating ideas among partners, and finally disseminating
research results to and getting feedback from the research community at large,
both in industry and academia.

The immediately following Chapter 0-3 (Introduction to the Sensoria Case
Studies) will introduce the case studies used within the project. Having in mind
the relevance that these areas have in society and the economy, three case studies
have been extensively used in Sensoria during the whole project. Two of the
case studies come from industrial applications in automotive, telecommunication
and finance domains, and one comes from an academic application for distributed
e-learning and course management. After the Sensoria notations have been
introduced, Chapter 7-1 (Specification and Implementation of Demonstrators
for the Case Studies) goes into more detail about the case studies.

Chapter 7-2 (Sensoria Results Applied to the Case Studies) provides a con-
cise overview of the exploitation of Sensoria results in all of our case studies.
In addition to this overview, Chapter 7-3 (Analysing Robot Movement Using the
Sensoria Methods) provides an in-depth review of Sensoria methods applied
to the robot case study, while Chapter 7-4 (The Sensoria Approach Applied to
the Finance Case Study) provides an in-depth view of the Sensoria approach
applied to the finance case study.



www.manaraa.com

14 M. Wirsing et al.

Finally, the Sensoria project contributes to existing software development
processes and methodologies by providing patterns for common tasks and prob-
lems encountered when developing service-oriented software systems. Chapter 7-5
(Sensoria Development Patterns) discusses a pattern language for augmenting
service engineering with formal analysis, transformation and dynamicity. The pat-
tern language is designed to help software developers choose appropriate tools and
techniques to develop service-oriented systems with support from formal methods;
the full pattern catalog spans the whole development process, from the modeling
stage to deployment activities. Chapter 7-6 (Organizational Patterns for Secu-
rity and Dependability: From Design to Application) specifically discusses secu-
rity and dependability (S&D) patterns, which are of great help to designers when
developing service-oriented software systems.

6 Conclusion

In today’s networked world, service-oriented computing and service-oriented ar-
chitectures are an accepted architectural style for creating massively distributed
network-based applications. The Sensoria project has contributed to this field
by addressing the foundations of modeling, transforming, analyzing, and deploy-
ing service-oriented artifacts as well as reengineering legacy systems. Sensoria

has thereby created a novel comprehensive approach to the engineering of service-
oriented software systems where foundational theories, techniques and methods
are fully integrated in a pragmatic software engineering approach.

Sensoria has brought mathematically well-founded modeling technology
within the reach of service-oriented software designers and developers. By using
these techniques and tools, IT-dependent organizations can move to a higher and
more mature level of SOA software development. In particular, using the Sen-

soria techniques can increase the quality of SOA applications, measured both
in qualitative and quantitative terms. As Sensoria methods are portable to ex-
isting platforms, application of these methods is possible while keeping existing
investments.



www.manaraa.com

A Unifying Formal Basis for the
Sensoria Approach: A White Paper�

Ugo Montanari

Dipartimento di Informatica, University of Pisa, Italy
ugo@di.unipi.it

1 Introduction

Sensoria is an IST project funded by the EU as Integrated Project (IP) in the
6th Framework Programme (FP6) as part of the Global Computing Initiative
(GC). It started on September 2005 and ended on February 2010.

Project Sensoria has developed a novel comprehensive approach to deal with
Service-Oriented Computing (SOC), where foundational theories, techniques and
methods are fully integrated in a pragmatic tool-supported software engineering
approach.

In the paper we focus on the foundations of the formal methods employed in
Sensoria. We try to give evidence that, while spanning over a variety of theo-
ries and employing diverse mathematical results, the formal methods of Senso-

ria are coherent and refer to a well understood kernel of theoretical computer
science.

2 The Sensoria Approach

The Sensoria development process is illustrated in Fig. 1. The Code Genera-
tion phase is preceded by a Modelling phase, where specific modeling languages
and tools, like suitable UML profiles, are employed to specify various aspects
of the design. The models are then transformed into formal models, typically
(but not necessarily) process calculi agents, which are analyzed for verification
and validation using Formal Methods. Analysis may involve animation and ex-
ecution, or model checking, or other ways of assessing relevant properties. A
Feedback phase takes into account the results of the formal analysis for improv-
ing the design. Finally, after the code generation phase, the runtime versions
are deployed, possibly combined with existing legacy code. The latter often goes
through a Reengineering phase, where innovative design steps are taken to make
reuse easier.

In Fig. 2 we see a more detailed description of the formal methods em-
ployed within Sensoria. Suitable process description languages are defined using

� Research supported by the EU, FET integrated project IST-2005-016004 Sensoria.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 15–25, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

16 U. Montanari

Fig. 1. The Sensoria development process

well-founded mathematical models. Their soundness is proved with standard as-
sessment techniques (e.g. compositionality of the semantics) and their usability
is shown via case study developments particularly relevant for Global Comput-
ing. Qualitative (typically functional) and quantitative (e.g. quality of service)
properties are then stated/proved for the agents using state-of-the-art methods
and tools.

Additional formal developments concern the ability of coordinating the ex-
ecution of several agents guaranteeing certain properties, like session progress,
transaction commit or compensation. In general three phases are distinguished
occurring in every cooperation: (i) negotiation, (ii) commit, and (iii) execution
(NCE approach). In (i) the prospective participants negotiate some guarantees
in order to define a sort of contract. In (ii) each participant can either accept
or reject the contract. If they accept, the contract will bind their behaviours in
(iii) to guarantee a globally correct execution.

Finally, modeling languages and software architectures themselves can be for-
mally defined, typically using graph transformation techniques. This develop-
ment is quite useful, since it builds a link between models and agents, which is
needed for assessing the correctness of the transformation from the former to
the latter formalism.

In conclusion, in Sensoria a large body of formal contributions involve: (i)
service oriented calculi, (ii) service oriented process coordination, (iii) qualita-
tive & quantitative analysis, and (iv) modeling languages and service oriented
architectures.



www.manaraa.com

A Unifying Formal Basis for the Sensoria Approach: A White Paper 17

UML for GC Services 
(Model-driven Development) 

Mathematical Models 
(Primitives and languages for 

 GC -services)

Automatic connections 

H
id

d
e
n
 f

ro
m

 t
h
e
 d

e
s
ig

n
e
r 

Quantitative and 

Qualitative Properties 
(Performance, reliability, fault-

tolerance, security, trust, mobility, …)

Integration

Simulation/verification

Designers

Interface

SSEENNSSOORRIIAA Development

integrates

practical SW Engineering 

with

math. foundations

Fig. 2. The Sensoria formal approach

3 The Formal Basis

3.1 Labelled Transition Systems and Their Properties

The starting point of almost every formal development in the area of interac-
tive communication systems are labelled transition systems (LTS), see Fig. 3.
Their abstract semantics is most often defined in terms of bisimilarity [27,31].
The simplest logic for expressing properties of LTSs is Hennessy-Milner modal
logic [16], which is adequate for bisimilarity, i.e. there is a property expressible
in Hennessy-Milner logic which distinguishes between two agents iff they are not
bisimilar. Bisimilarity and Hennessy-Milner logic can be conveniently expressed
and generalized using the theory of coalgebras [30], where every LTS can be
mapped to its minimal representative, which is the final object in a category
of coalgebras. A model checker for a temporal logic extending Hennessy-Milner
logic has been developed in Sensoria [32]. The work is described in Chapter
4-2 of this book.

LTS, coalgebras

bisimilarity, final obj. 

adequate modal logic 

Fig. 3. State-transition systems



www.manaraa.com

18 U. Montanari

3.2 Design Algebras

When dealing with large, distributed systems the key properties are composi-
tionality, reconfigurability and open endness. The simplest way to achieve them
is to define a design algebra where terms can be composed, rewritten, contextu-
alized and refined (see Fig. 4). A good example of a general formal system for
algebraic specification is Rewriting Logic and Membership Equational Logic [24],
which is supported by the popular tool Maude1, successfully employed for the
work described in Chapter 1-4 of this book. Particular formats of conditional
term rewriting rules (Structural Operational Semantics [28], SOS; De Simone
format; GSOS) have been used with extreme success for defining the operational
semantics of process calculi and programming languages.

algebraic specifications 

typing, refinement 

(conditional) rewr.
SOS, De Simone 

Fig. 4. Compositional systems

3.3 Process Description Calculi

Labelled transition systems defined in the SOS style are the definition method
used for most, if not all, process calculi.

LTS, coalgebras

bisimilarity, final object 

adequate modal logic 

algebraic specifications 

typing, refinement 

(conditional) rewriting 
SOS, De Simone 

process calculi 

bialgebras

bisimilar. as congru.
process algebras 

Fig. 5. Process calculi

1 See [12], http://maude.cs.uiuc.edu/download/



www.manaraa.com

A Unifying Formal Basis for the Sensoria Approach: A White Paper 19

The coexistence of the bisimilarity relation and of the algebraic operations
asks for a proof of congruence and gives the opportunity of defining bisimilarity
axiomatically (process algebras). In terms of categorical foundations, the coexis-
tence of the coalgebraic and the algebraic structure is possible in bialgebras [34].
The construction automatically guarantees that bisimilary is a congruence and
provides an algebraic structure for the minimal representative (see Fig. 5). Sev-
eral process calculi have been specifically designed to model continuous client
service interactions in Service Oriented Computing by resorting to a notion of
implicit or explicit session: here we mention CaSPiS [4] and COWS [23]. This
work is described in Chapter 2-1 of this book.

3.4 Process Combination

The next step (see Fig. 6) is coordinating the execution of several agents guar-
anteeing session progress, transaction commit or compensation and, in gen-
eral, a smooth NCE approach. A key concept along this line are behavioral
types [19,21,20], which express and prove/type check important behavioral prop-
erties of agents. Several results have been obtained in this line within Senso-

ria concerning secure, contract-based composition of services [2,5], client-server
sessions [22,8,1,36], multiparty sessions [10] and transactions [11]. This work is
described in Chapters 2-4, 3-2, 2-2, 2-3, 3-3 and 3-4 of this book respectively.

LTS, coalgebras

bisimilarity, final object 

adequate modal logic 

algebraic specifications 

typing, refinement 

(conditional) rewriting 
SOS, De Simone 

process calculi 

bialgebras

bisimilar. as congruence 
process algebras 

behavioral types 

sessions

transactions
Negotiate Commit Execute 

Fig. 6. Guaranteed process combination

3.5 Graphs and Diagrams

Graphs and diagrams are suggestive modeling media and are supported by well-
developed theories (e.g. Double Push Out rewriting, DPO; Synchronized Hyper-
edge Replacement, SHR).

Graphs themselves should be structured, and the interesting case is when the
terms are in one-to-one correspondence with the graphs, where the terms are
taken up to some intuitive structural axioms and the graphs are considered up
to isomorphism. In Sensoria (see Fig. 7), the specific case of hierarchical graphs



www.manaraa.com

20 U. Montanari

algebraic specifications 

typing, refinement 

(conditional) rewriting 
SOS, De Simone 

graph modeling 

isom. vs. struct.axioms

DPO, SHR 
SO hierarchical graphs 

Fig. 7. Graph-based modeling

for modeling service-oriented computing systems has been tackled [7], and it has
been applied to a service-oriented UML profile [6]. This work is described in
Chapters 1-4 and 3-5 of this book. In the Sensoria approach, a relevant role
have also graph and model transformations. They have been used in many ways,
e.g. for producing transformations from UML to process calculi, for extracting
service from legacy code, and for deploying service designs. This work is described
in Chapters 6-1, 6-2, and 6-4 of this book.

3.6 Graph-Based Calculi

When considering the labeled transition system generated by a graph transfor-
mation system, the concepts of process calculi apply (see Fig. 8).

LTS, coalgebras

bisimilarity, final object 

adequate modal logic 

algebraic specifications 

typing, refinement 

(conditional) rewriting 
SOS, De Simone 

process calculi 

bialgebras

bisimilar. as congruence 
process algebras 

graph modeling 

isom. vs. struct.axioms

DPO, SHR 
SO hierarchical graphs 

Fig. 8. Graph calculi



www.manaraa.com

A Unifying Formal Basis for the Sensoria Approach: A White Paper 21

The SHR approach [14] can then be compared successfully with SOS defini-
tions, with the advantage of allowing more general synchronization capabilities
and of yielding a concurrent semantics.

3.7 Calculi with Names

A key extension of process calculi took place with the introduction of π-calculus
names. Nominal calculi use names to represent channels, ports, sites, keys, ses-
sions, etc. Names are resources, which can be allocated, communicated and,
sometimes, deallocated [25]. States of labelled transition systems can be indexed
by their resources. Correspondingly, coalgebras can be defined on presheaves
categories rather than on Set [15]. Most of the core calculi of Sensoria (see
Fig. 9), like CaSPiS, COWS, etc. use names, typically to denote sessions. Also,
in Sensoria, states of π-like calculi have been equipped with soft constraints to
handle Quality of Service negotiations [9]. Here names subject to constraints can
be considered as general kinds of resources. This work is described in Chapter
3-1 of this book.

LTS, coalgebras

bisimilarity, final object 

adequate modal logic 

algebraic specifications 

typing, refinement 

(conditional) rewriting 
SOS, De Simone 

process calculi 

bialgebras

bisimilar. as congruence 
process algebras 

- like nominal calculi 

Indexed LTS 

coalgebras on presheaves
ext. resources, constraints 

Fig. 9. Nominal calculi

3.8 Probabilistic and Quantitative LTS

Transition labels of LTSs can carry quantitative information about the transi-
tion, which can refer to cost, access rights or probability distributions.

If the LTS is timed and the probability distribution is exponential, a rate can
be exposed which indicates the probability of occurrence of the transition in the
next time unit (stochastic LTS). In Sensoria (see Fig. 10) some of the existing
process calculi (CaSPiS [26], COWS [29]) have been extended with stochastic and
probabilistic features, in the style of CSP-based PEPA process algebra [17]. Tools
like the PEPA Eclipse Plug-in tool [33] and PRISM [18] have been employed for
the analysis of case studies. This work is described in the chapters in Part 4
of this book. From the foundational point of view, quantitative models make a
big change for LTS theory. For instance, idempotency does not hold any more,



www.manaraa.com

22 U. Montanari

namely process algebra axiom x = x + x is not valid, since two transitions with
the same behavior are heavier than one. In general, classical bisimilarity is not
expressive enough, since two transitions with a small difference in probability
would be distinguishable, while in practice one might not want it. Recent results
extend the colagebraic approach defining coalgebras on a category of metric
spaces rather than on Set [35], recovering in a systematic ways most of the
classical results.

LTS, coalgebras

bisimilarity, final object 

adequate modal logic 

quantitative LTS 

probabilistic/stochastic LTS 

Markov chains, processes 
non idempotency

coalgebras on metric spaces 

Fig. 10. Quantitative LTS

3.9 Probabilistic Calculi

Extending LTS theory to the probabilistic/stochastic case is relatively easy, re-
capturing well known notions like Markov chains and processes. Making such
models compositional, namely adding the algebraic aspects typical of process
calculi in a convincing way is more difficult (see Fig. 11). The extensions of
CaSPiS and COWS mentioned above are in this direction.

LTS, coalgebras

bisimilarity, final object 

adequate modal logic 

algebraic specifications 

typing, refinement 

(conditional) rewriting 
SOS, De Simone 

process calculi 

bialgebras

bisimilar. as congruence 
process algebras 

quantitative LTS 

probabilistic/stochastic LTS 

Markov chains, processes 
non idempotency

coalgebras on metric spaces 

Fig. 11. Quantitative calculi

3.10 Everything Together

In Fig. 12 we see the full picture. Notice however that it is convenient to under-
stand the various extensions as separate, since it is not realistic (and probably
uninteresting in most cases from the scientific point of view) to build large, very
complicated models. It is the role of specification language designers to extract
from the general picture those items which are needed for a particular applica-
tions and combine them.



www.manaraa.com

A Unifying Formal Basis for the Sensoria Approach: A White Paper 23

LTS, coalgebras

bisimilarity, final object 

adequate modal logic 

algebraic specifications 

typing, refinement 

(conditional) rewriting 
SOS, De Simone 

process calculi 

bialgebras

bisimilar. as congruence 
process algebras 

graph modeling 

isom. vs. struct.axioms

DPO, SHR 
SO hierarchical graphs 

nominal calculi 

coalgebras on presheaves

ext. to resources, constrains 

quantitative LTS 

probabilistic/stochastic LTS 

Markov chains, processes 
non idempotency

coalgebras on metric spaces 
behavioral types 

sessions

transactions
Negotiate Commit Execute 

Fig. 12. The full picture

Acknowledgements

I would like to thank Roberto Bruni, Rocco De Nicola and Martin Wirsing for
their comments and suggestions on earlier versions of the manuscript.

References

1. Acciai, L., Boreale, M.: A type system for client progress in a service-oriented
calculus. In: Degano, P., De Nicola, R., Bevilacqua, V. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 642–658. Springer, Heidelberg (2008)

2. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for
secure web services. IEEE Trans. Software Eng. 34(1), 33–49 (2008)

3. Bernardo, M., Padovani, L., Zavattaro, G. (eds.): SFM 2009. LNCS, vol. 5569.
Springer, Heidelberg (2009)

4. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

5. Bravetti, M., Zavattaro, G.: Contract-based discovery and composition of web ser-
vices. In: Bernardo, et al. [3], pp. 261–295

6. Bruni, R., Hölzl, M.M., Koch, N., Lluch-Lafuente, A., Mayer, P., Montanari, U.,
Schroeder, A., Wirsing, M.: A service-oriented UML profile with formal support. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 455–469. Springer, Heidelberg (2009)

7. Bruni, R., Lluch-Lafuente, A., Montanari, U.: Hierarchical design rewriting with
maude. Electr. Notes Theor. Comput. Sci. 238(3), 45–62 (2009)

8. Bruni, R., Mezzina, L.G.: Types and deadlock freedom in a calculus of services,
sessions and pipelines. In: Bevilacqua, V., Roşu, G. (eds.) AMAST 2008. LNCS,
vol. 5140, pp. 100–115. Springer, Heidelberg (2008)



www.manaraa.com

24 U. Montanari

9. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying
service level agreements. In: De Nicola (ed.) [13], pp. 18–32.

10. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

11. Ciancia, V., Ferrari, G.L., Guanciale, R., Strollo, D.: Checking correctness of trans-
actional behaviors. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.)
FORTE 2008. LNCS, vol. 5048, pp. 134–148. Springer, Heidelberg (2008)

12. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Bevilacqua, V., Tal-
cott, C.: All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

13. De Nicola, R. (ed.): ESOP 2007. LNCS, vol. 4421. Springer, Heidelberg (2007)
14. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hy-

peredge replacement as a model for service oriented computing. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 22–43. Springer, Heidelberg (2006)

15. Fiore, M.P., Staton, S.: Comparing operational models of name-passing process
calculi. Inf. Comput. 204(4), 524–560 (2006)

16. Hennessy, M., Milner, R.: On observing nondeterminism and concurrency. In: de
Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309.
Springer, Heidelberg (1980)

17. Hillston, J.: Process algebras for quantitative analysis. In: LICS, pp. 239–248. IEEE
Computer Society, Los Alamitos (2005)

18. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for au-
tomatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.)
TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

20. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Necula, G.C., Wadler, P. (eds.) POPL, pp. 273–284. ACM, New York (2008)

21. Igarashi, A., Kobayashi, N.: A generic type system for the π-calculus. Theor. Com-
put. Sci. 311(1-3), 121–163 (2004)

22. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: SEFM, pp. 305–314. IEEE
Computer Society, Los Alamitos (2007)

23. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In: De Nicola [13], pp. 33–47

24. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theor.
Comput. Sci. 285(2), 121–154 (2002)

25. Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for
the i-calculus. Theor. Comput. Sci. 340(3), 539–576 (2005)

26. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems
for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,
Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 435–446.
Springer, Heidelberg (2009)

27. Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P.
(ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)

28. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61, 17–139 (2004)



www.manaraa.com

A Unifying Formal Basis for the Sensoria Approach: A White Paper 25

29. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Hei-
delberg (2007)

30. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput.
Sci. 249(1), 3–80 (2000)

31. Sangiorgi, D.: On the origins of bisimulation and coinduction. ACM Trans. Pro-
gram. Lang. Syst. 31(4) (2009)

32. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC-UMC: a framework for the verifi-
cation of abstract service-oriented properties. In: Shin, S.Y., Ossowski, S. (eds.)
SAC, pp. 2111–2117. ACM, New York (2009)

33. Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams
into PEPA models. In: QEST, pp. 205–214. IEEE Computer Society, Los Alamitos
(2008)

34. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: LICS,
pp. 280–291 (1997)

35. van Breugel, F., Worrell, J.: Approximating and computing behavioural distances
in probabilistic transition systems. Theor. Comput. Sci. 360(1-3), 373–385 (2006)

36. Vasconcelos, V.T.: Fundamentals of session types. In: Bernardo, et al. [3], pp.
158–186



www.manaraa.com

Introduction to the Sensoria Case Studies�

Jannis Elgner1, Stefania Gnesi2, Nora Koch3,4, and Philip Mayer3

1 S & N AG, Germany
jelgner@s-und-n.de

2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
ISTI–CNR, Pisa, Italy
gnesi@isti.cnr.it

3 Ludwig-Maximilians-Universität München, Germany
{kochn,mayer}@pst.ifi.lmu.de

4 Cirquent GmbH, Germany

Abstract. The foundational research carried out in Sensoria has been
steered by a number of case studies for ensuring applicability of Senso-

ria methods and meeting expectations of society and the economy. In
this chapter, we introduce these case studies. Three of the case studies
came from industrial applications in automotive, finance and telecommu-
nication domains; one came from an academic application for distributed
e-learning and course management. Having in mind the relevance that
these areas have in society and the economy, the above case studies have
been extensively used in Sensoria during the whole project.

1 Introduction

One of the challenging characteristics of Sensoria has been the use of realis-
tic case studies in order to assess the applicability of the insights, methodologies
and tools developed within the project to service applications on top of Internet-
based Global Computing environments. Sensoria has used four case studies:
three from the industrial domains of automotive, finance and telecommunica-
tion; the fourth from the academic domain of distributed e-learning and course
management. These case studies have been extensively used during the whole
project for developing intuitions that could feed and challenge the research pro-
cess according to the expectations of society and its economy, discussing and
communicating ideas among partners, communicating research results to and
getting feedback from the research community at large, and for dissemination
and training activities.

The development activities related to the case studies have been carried out in
parallel with the foundational activities of technical Sensoria work packages.
In this way, the case studies have driven the results produced in those work
packages, giving feedback that has been considered in the refinement of the
methodologies and tools developed in the project.

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 26–34, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Introduction to the Sensoria Case Studies 27

In the following sections, we introduce the four case studies, presenting their
main characteristics that have been investigated during the project together with
some scenario descriptions for each of them. More detailed descriptions of some
of scenarios will be presented later (see Chapter 7-1).

2 Finance Case Study

The finance domain plays an important role in the worldwide economy and
wrong decisions have a great influence on nearly all aspects of our society, even
when they seem not to be directly connected. So, any wrong decisions and simple
individual mistakes can be a disaster for the economy, as the world wide financial
crisis has shown in the recent past. A bank has to handle critical information of
customers and has a deep impact of their progression, e.g. when they need to
borrow money from the bank. The finance case study is set in this context. In
particular, we investigated the process of credit approval [1] as an example of a
typical finance application.

Credit Request. This scenario, also known as Credit Portal, models a loan work-
flow including interaction with customers and employees. Normally, several em-
ployees with different authorisations facilities are involved in the communication
process with the customer. The credit approval process is error prone and time
consuming due its complexity in information collecting, customer and employee
interaction, and risk management. Thus, the aim of IT in this context is to create
a software system for simplifying and automating the credit request process in
order to minimize mistakes and speed up the approval process.

In our scenario, the credit request workflow is implemented using a SOA-
based system: Several specialized services are orchestrated to realize the process.
Sensoria tools and methods have been used to verify properties of this system.

A web-based system is employed to handle the tasks involved for approving a
credit request. This system is available to and used by both the customers of the
bank as well as employees, the latter of which additionally may have different
access rights.

The overall workflow in the credit request scenario works as follows:

– The customer logs in to the Credit Portal website. In order to start the
process, the customer enters the necessary data like the amount of money
and intended use. Furthermore, the customer has to enter his securities and
balances data.

– This information is used for the calculation of a rating which is automati-
cally started after the information is provided. The rating is based on the
uploaded information and may also use the information stored from older
credit requests. Depending on the rating, the approval can be given auto-
matically or must be delegated to a clerk or supervisor.
• In case an automated decision is possible, an answer is given immediately

to the user without involving any bank employees.



www.manaraa.com

28 J. Elgner et al.

• In case of the non-automatic decision either a clerk or supervisor gets a
notification and has to approve or decline the request. The choice of the
employee is made on the risk calculated during the rating phase.

– In case of an approval, an offer is created and the customer needs to decide
whether to accept or to decline the offer.

Automating the credit approval process in this way has huge benefits for the
bank as the process is mostly automated any only requires human interaction if
absolutely necessary. Of course, the process needs to be implemented correctly;
this will be the topic of some of the following chapters.

3 Automotive Case Study

Much of the research and development costs in the vehicle production is due to
the complexity of automotive software, which leads to an increased importance of
software engineering in the automotive domain. By nature, automotive software
is service-oriented as a modern vehicle consists of many individual parts which
need to be orchestrated to perform as a whole. Therefore, there is great potential
for service-oriented computing in the automotive world.

A vehicle that leaves the assembly line today is equipped with a multitude of
sensors and actuators that provide the driver with services that assist driving the
vehicle more safely, for example ABS systems or vehicle stabilisation systems.
Driver assistance systems kick in automatically when the vehicle context renders
it necessary, and more and more context is taken into account (road condition,
vehicle condition, driver condition, weather conditions, traffic conditions etc.).
Due to the advances in mobile technology it is possible to take connectivity to
the car: telephone and internet access in vehicles are possible today, giving rise
to a variety of new services for the automotive domain. The automotive case
study is set in this context.

In Sensoria, we assume a SOA-based software infrastructure such as the one
shown in Fig. 1 to be present in vehicles. In the figure, architectural modules of
the vehicle are represented as nodes in an UML deployment diagram. This type
of diagram has been selected to show the distribution of the components within
the different platforms and devices of the vehicle, and those belonging to the
vehicle environment.

The vehicle contains sensors and actuators and is able to determine its geo-
graphical position. Sensors are used to observe e.g. the vehicle’s status. Actuators
trigger fully-automatically the on-vehicle (low-level) driving assistance systems
like ABS, anti-slipping and stability assistance. Another element of the architec-
ture is the orchestrator of services that is in charge of achieving a goal by means
of a composition of services. The discovery selects services based on established
criteria. Services can be provided by local or remote service providers; they may
be discovered locally or by external discovery services. The driver interface en-
ables communication between driver and vehicle. The driver receives information
from the active services and can enter commands to trigger, stop or customize
them.



www.manaraa.com

Introduction to the Sensoria Case Studies 29

Fig. 1. Architecture of the vehicle in the automotive case study

Several scenarios can be imagined in the context of the architecture defined
above. We discuss the ones most used and referred to in the project below.

On Road Assistance. It is also called On Road Repair and Low Oil Level. In
this scenario [3,5] the in-vehicle diagnostic system of the vehicle is triggered
by a failure in the car engine, for example, a low oil level and performs an
analysis of the sensor values. The diagnostic system reports e.g. a problem with
the pressure in one cylinder head, indicating that the driver will not be able to
reach the planned destination.

The diagnostic system sends a message to the assistance system, which starts
to orchestrate a set of services. Based on availability and the driver’s preferences,
the service discovery system identifies and selects the appropriate services in the
area: repair shops (garage), towing truck and rental car stations. The selection
of services takes into account personalized policies and preferences of the driver
to find the best services. We assume that the owner of the car has to deposit a
security payment before being able to order services.

Accident Assistance. This scenario (also know as Airbag) is concerned with road
traffic accidents and dispatch of medical assistance to crash victims. Drivers in-
terested in such a service must have an in-car GPS location tracking device
with communication capabilities and have pre-registered their mobile phone



www.manaraa.com

30 J. Elgner et al.

information with the service. If a road traffic accident occurs, the deployment of
the car airbag causes the on-board safety system to report the current location
(obtained by GPS) to a pre-established accident report endpoint, which in turn
attempts to call the registered drivers’ mobile phone. If there is no answer to
the call then medical assistance is dispatched to the reported location of the car
(presuming that the driver has been incapacitated by injuries sustained in the
accident).

Route Planning. It is also called Emergency [3]. In this scenario a vehicles’ nav-
igation system reacts to external events such as a broken car which is blocking
the road. For example, two vehicles operating in a convoy mode may be forced
to continue in an autonomous way due to the road block; this requires a recon-
figuration of goals in both vehicles.

Road Sights. In this scenario, the driver has subscribed to a dynamic landmark
service offered by the car company. The vehicles’ GPS coordinates are auto-
matically sent to the dynamic sights server at regular intervals, so the vehicles’
location is known within a specified radius. Based on the drivers preferences,
the dynamic sights server searches a landmark database for appropriate places
of interest and displays them on the map of the vehicles’ navigation system.
The driver clicks on sights he would like to visit which results in more detailed
information being displayed about a specific sight (e.g., opening times, guidance
to parking etc.).

4 Telecommunication Case Study

The telecommunication case study has focused on the development of applica-
tions combining two global computing infrastructures, namely the Internet and
next generation telecommunication networks. In this context, telecommunication
services and capabilities including call and session control, messaging features,
and presence and location features are integrated with the SOA-based com-
puting infrastructure available in computing environments. In particular, issues
concerning semantic and dynamic composition as well as orchestration to de-
fine, create and execute telecommunication services are addressed. Furthermore,
secure and controlled interaction between application components deployed in
different domains (e.g., an enterprise domain and a network operator domain)
were considered in the case study.

The telecommunication case study mainly addressed issues concerning the
evolution of the service infrastructure, not specific telecommunication services.
However, some specific services were used in the description to exemplify the
infrastructural issues. This case study was carried out during the first two years
of the project and was hence used as test bed for the preliminary Sensoria

research results (see [4]).
Telecommunication services, i.e., the services that are provided by a telecom-

munication infrastructure managed by a public network operator, are evolving



www.manaraa.com

Introduction to the Sensoria Case Studies 31

by considering several aspects of convergence: convergence of media, convergence
of terminals, combination of service features, and convergence of telecommuni-
cations and Internet worlds. Moreover, the services should be user-centric, that
is, their behavior should be personalized according to the requirements of sin-
gle end-users. The possibility of personalisation should be uniform and cover all
the features of the service. In particular, the end-users should be seen as single
entities even across several different networks, terminals, communication media,
and applications.

Fig. 2. Horizontal Telco architecture

Most of the current services in the telecommunication area are realized as a
set of vertical platforms, each of them specialized to provide services involving
a specific telecommunication feature and a specific network. Usually, such plat-
forms integrate – in a single system – the service execution environments with
the telecommunication features and some supporting functions (e.g., payment,
authentication, profiles). Unfortunately, in general, such vertical systems are not
connected at all.

This organisation of services introduces several problems in dealing with the
realisation of converged services. In order to improve this situation, telecom-
munication services are evolving towards a horizontal approach based on the
integration of systems for service delivery (see Fig. 2).



www.manaraa.com

32 J. Elgner et al.

In Sensoria, we have investigated the possibility of evolving telecommunica-
tion services according to a horizontal approach with the help of service-oriented
architectures. Some of the areas where the SOA approach can be adopted for
the evolution of such services are:

– adoption of SOA-based principles and techniques to organize the internal
structure of the service layer, and to define the communication bus among
the different services and macro-functions;

– evolution of composition mechanisms to create and execute telecommunica-
tion services by adopting solutions based on orchestration or choreography
and by introducing the possibility to handle semantic and dynamic service
compositions;

– adoption of SOA technology to expose telecommunication capabilities to
third party applications on the Internet, and to assemble services provided
by third parties;

– adoption of SOA technology to introduce a uniform interaction model of
services delivered by the service layer and terminal applications.

An interesting setting for evaluating the benefits of SOAs in the telecommuni-
cation context is the Call-And-Pay Taxi scenario.

Call-and-Pay Taxi. This scenario concerns the retrieval and purchase of goods
or services via a mobile terminal. The Call-and-Pay Taxi service provides a
user with the possibility to call a taxi by sending an SMS to a specific SMS
service number and to pay the taxi service by sending another SMS. The service
automatically debits the charging amount for the taxi ride to the end-users credit
card and transfers the money to the taxi company. From the point of view of the
involved human actors (i.e., end-user, call center agent, taxi driver) the service
behaves in the following way:

– The end-user sends an SMS to the SMS service number which is associated
to the Call-and-Pay Taxi service; in this way the end-user asks to call the
taxi company of the town where he is currently located.

– The end-user receives an incoming call on his mobile phone in order to be
connected to the call center of the local taxi company.

– The end-user talks to the taxi company agent; the call center agent contacts
a taxi driver and confirms to the user the selected taxi number and the
expected waiting time.

– The end-user receives an SMS which includes the taxi number and a call-code
to identify the ride. The taxi driver receives a similar SMS.

– After the taxi ride, the user sends another SMS in order to authorize the
payment using the preferred means of payment (stored in the user profile).

– In case of a successful transaction, the taxi driver and the end-user receive
a confirmation of the payment with an SMS. In case of failure, an SMS
with such an indication is sent to them (and the end-user has to pay in the
traditional way).



www.manaraa.com

Introduction to the Sensoria Case Studies 33

5 The eUniversity Case Study

The administration of a university is a complicated task. Student applications,
enrolment, course management, theses, and examination management all pose
individual problems and, in general, a lot of paperwork. Nowadays, many of these
tasks can and are being automated using computer systems. As universities
are often large organisations with autonomous sub-organisations, a promising
approach for this is the use of SOA-based software, in which the individual parts
of a university as well as (external) students can work together with respective
back- and frontends of a web-based system.

To investigate the problem of developing SOA-based university management
systems, we have created a case study based on a set of university scenarios
that make use of the specific features of SOAs [2]. In particular, we consider
eUniversities, i.e., universities in which at least all of the paperwork, if not the
courses themselves, are handled online. Scenarios in such an environment include:

– Management of curricula, i.e., providing information on which courses are
offered, which requirements and how many credit points each course has,
where a course takes place during a certain semester, etc.

– Management of students, in particular, enrolment and progress during a
course of studies.

– Thesis management, i.e., the process of offering, accepting, working on, and
submitting bachelor, master, or diploma theses.

– E-Learning, i.e., a system which provide students with (additional) train-
ing material, and enables the integration (embedding) of courses into other
universities to enable students to participate in courses remotely.

During the course of the project, we have investigated the following three sce-
narios in more detail.

Thesis Management. In this scenario, we have considered the management of a
thesis – bachelor, master, or diploma – from the announcement of a thesis topic
by a tutor to the final assessment and student notification, including regular
updates of the student to the thesis as well as status messages to the tutor, but
also considering deadlines imposed by the examination office. This scenario is
typical for a service orchestration – a central coordinator service uses several
other services in combination to achieve a certain goal, and during this task,
needs to be aware of problems, undoing previous work.

Submitting Coursework. We consider services to provide e-learning courses which
can be shared between universities and services which enable several universities
to jointly provide e-learning courses. Sharing courses in this way enables stu-
dents to pick from a greatly increased number of courses; however, it also means
that the number of students taking part in a course might be rather large. The
scenario is that the students inscribed in a class all need to submit their course-
work via uploads by the deadline. The question to ask here is how the system
scales with respect to increasing student numbers and increasing file sizes.



www.manaraa.com

34 J. Elgner et al.

Student Enrolment. In this scenario, students may apply for a certain course of
studies online, providing the necessary documents and certificates via a website.
The functionality for handling the enrolment is provided by two service orches-
trations which interact with each other and other services to verify the appli-
cation. The consulted services include the student office, an admission checking
service, and a service for the upload of documents. Requirements for this sce-
nario (and for the verification) include that the client and the services should
communicate via a secure and reliable connection, that the services are proven
to perform as expected up to a certain workload, that messages sent between the
services are accountable for, and that no deadlocks occur in the communication.

6 Conclusion

This chapter has introduced the four case studies used in Sensoria for feeding
and steering the foundational research carried out in the project: Three case
studies from the industrial domains of finance, automotive, and telecommuni-
cations, and one from the academic domain of university management. All case
studies have been used extensively in Sensoria for validating the techniques,
methods and languages developed in the project against the requirements dis-
cussed in this chapter.

The specification and implementation of demonstrators for the finance, au-
tomotive and eUniversity case studies is further discussed in Chapter 7-1. In
Chapter 7-2, a detailed overview of the application of the results obtained in
Sensoria (i.e., techniques, methods and languages developed in the technical
work packages) to the case studies is be presented.

References

1. Alessandrini, M., Dost, D.: Finance Case Study: Requirements, Specification and
Modelling of Selected Scenarios (D8.3.a). Technical report, S&N AG (2007)

2. Hölzl, M.: Distributed E-University Management and E-Learning System: Require-
ments modelling and analysis of selected scenarios (D8.4.a). Technical report, LMU
München (2007)

3. Koch, N., Berndl, D.: Requirements Modelling and Analysis of Selected Scenarios:
Automotive Case Study (D8.2.a). Technical report, FAST GmbH (2007)

4. Moiso, C., Ferrari, L., Thuegaz, E., Buscemi, N., Monanari, U., Bertoli, P., Pistore,
M., Kazhamiakin, R., Bruni, R., Gnesi, S., ter Beek, M., Petrocchi, M., Mazzanti, F.,
Fiadeiro, J., Bocchi, L.: Telecommunication Case Study (D8.1.a). Technical report,
TILab (2007)

5. Xie, R., Koch, N.: Automotive CASE Study: Demonstrator. Technical report,
Cirquent GmbH (2009)



www.manaraa.com

UML Extensions for Service-Oriented Systems�

Howard Foster1, László Gönczy2, Nora Koch3,4, Philip Mayer3,
Carlo Montangero5, and Dániel Varró2

1 Imperial College London, UK
2 Budapest University of Technology and Economics, Hungary

3 Ludwig-Maximilians-Universität München, Germany
4 Cirquent GmbH, Germany

5 Universitá di Pisa, Italy
howard.foster@imperial.ac.uk, {nora.koch,philip.mayer}@pst.ifi.lmu.de,

monta@di.unipi.it, {varro,gonczy}@mit.bme.hu

Abstract. A trend in software engineering is towards model-driven de-
velopment. Models are used to document requirements, design results,
and analysis in early phases of the development process. However, the
aim of modeling is very often more ambitious as models are used for
automatic generation in so-called model-driven engineering approaches.
The relevance of models leads to the need of both, high-level domain spe-
cific modeling languages (DSML), and metamodels which are the basis
for the definition of model transformations and code generation.

For the service-oriented computing domain we developed within the
Sensoria project a DSML for building and transforming SOA models.
This DSML is defined as a family of UML profiles, which complement
the SoaML profile for the specification of SOAs structure. Our family of
profiles focus on orchestration of services, service-level agreements, non-
functional properties of services, implementation of service modes and
service deployment.

1 Introduction

A range of domain-specific languages and standards are available for engineering
service-oriented architectures (SOAs) such as Web Services Description Language
(WSDL), Web Services Business Process Execution Language (WS-BPEL), Web
Services Choreography Description Language (WS-CDL), WS-Policy and WS-
Security. These languages deal with the various aspects of SOA systems, such
as service descriptions, orchestrations, policies and non-functional properties of
services at a specification level. However, more systematic and model-driven ap-
proaches are needed for the development of service-oriented software. Models of
SOAs are required for providing a complete – whenever possible a graphical – pic-
ture of the systems represented at a high level of abstraction. Achieving the prop-
erties of service-oriented systems mentioned above requires then model elements
that ease the understanding of the individual artefacts of a system, and their
integration.
� This work has been partially sponsored by the project Sensoria, IST-2 005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 35–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

36 H. Foster et al.

Within the Sensoria project, we have created ways of modeling these dif-
ferent aspects with the help of the Unified Modeling Language (UML)[24]. The
UML is accepted as lingua franca in the development of software systems. It
is the most mature language used for modeling. However, plain UML is not
expressive enough for the specification of structural and behavioral aspects of
services. Service modeling introduces a new set of key distinguishing concepts,
for example partner services, message passing among requester and provider of
services, compensation of long-running transactions, modes, and policies asso-
ciated to services. Without specific support for those concepts in the modeling
language, diagrams quickly get overloaded with technical constructs, degrading
their readability.

Several attempts have been made to add service functionality to the UML.
Most notably, SoaML [25] is an upcoming standard UML profile of the OMG for
specification of service-oriented architectures, which does only cover structural
aspects. Our own contribution to the field of UML service modeling comple-
ments SoaML, and consists in introducing more service-specific model elements
mainly for the behavioral aspects of services-oriented software. In a first step,
metamodels are defined as a conservative extension of the UML metamodel, i.e.
they do not imply any adjustment in the UML metamodel. In a second step,
UML profiles are created for these metamodels using the UML extension mech-
anisms provided by mapping stereotypes to the metaclasses. The result is the
Sensoria family of UML profiles for the development of SOAs.

The use of the UML for modeling has many advantages when compared to
the use of proprietary modeling techniques. These advantages are (1) to be able
to use existing CASE tool support, which is provided by commercial and open
source tools; (2) to avoid the definition from scratch of a new modeling lan-
guage, which would require an own project to detail their syntax, semantics and
provide user-friendly tool support. These metamodels and the corresponding
UML profiles constitute the basis for model transformations and code genera-
tion defining a model-driven development process. In particular, the MDD4SOA
(Model-Driven Development for SOA) transformers – also developed within the
scope of the Sensoria project – are model transformations implemented as
Eclipse plug-ins. They automatically transform service orchestrations specified
with our UML4SOA profile to executable code, such as BPEL/WSDL, Java and
Jolie.

In the following sections, we will discuss the individual UML extensions which
form our Sensoria family of profiles for SOA development and the SoaML
profile (section 3), which are jointly used to model the different aspects of service-
oriented software. The Sensoria family of profiles comprise UML4SOA, a profile
for service orchestration (section 4), for non-functional properties of services
(section 5), business policies (section 6), for implementation modes of SOAs
(section 7), and service deployment (section 8). These UML profiles can be used
separately or in combination, depending on the software requirements and the
decisions of the service engineer. The running example belongs to the case study



www.manaraa.com

UML Extensions for Service-Oriented Systems 37

from the automotive domain, which is detailed in section 2. Finally, in section 9
we present some related work and conclude in section 10.

2 Case Study

The Sensoria family of profiles that are presented in the following sections are
illustrated by models of the On Road Assistance scenario of the automotive case
study [15,29]. In this scenario, the diagnostic system reports a failure in the car
engine, for example, the vehicle’s oil lamp reports a low oil level. This triggers
the in-vehicle diagnostic system to perform an analysis of the sensor values.
The diagnostic system reports e.g. a problem with the pressure in one cylinder
head, and therefore the driver will not be able to reach the planned destination.
The diagnostic system sends a message for starting the assistance system, which
orchestrates a set of services.

Based on availability and the driver’s preferences, the service discovery system
identifies and selects the appropriate services in the area: repair shops (garage)
and rental car stations. The selection of services takes into account personalized
policies and preferences of the driver to find these ”best services”. We assume
that the owner of the car has to deposit a security payment before being able
to order services. In order to keep the scenario simple, we limit the involved
services, but they could be easily extended e.g. to identify as well a towing
service, providing the GPS data of the stranded vehicle in case the vehicle is
no longer drivable. In such a case, the driver makes an appointment with the
towing service, and the vehicle will be towed to the shop.

The On Road Assistance scenario is complemented with the Emergency sce-
nario [15] that is needed when the damaged car blocks the route and a convoy
behaviour is required from other cars. It is used to illustrate the reconfiguration
issues of a service-oriented system. In case of an emergency, the vehicles that
are driven in a default mode are reconfigured to be driven in a convoy mode
guided by the Highway Emergency System. The master vehicle is then followed
by the other vehicles of the convoy. In the Emergency scenario the car navigation
system is able to react to events which cause the switching between the modes
specified in the different architecture configurations.

3 Modeling Structural Aspects of SOAs

The basic structure of a software system is the ground layer on which other
specifications are based – this holds true not only for traditional architectures,
but also for the SOA-based systems we have considered in Sensoria. Although
the UML does include mechanisms for modeling structural aspects of software,
the specific requirements of SOA systems – for example, the central concept
of a service and the separation of requested and provided services – cannot be
expressed in a concise way, as services and service providers are not first level
citizens of the UML.



www.manaraa.com

38 H. Foster et al.

We therefore need an extension of the UML to be able to express these ideas. In
Sensoria, we have chosen to use the existing profile SoaML, which is currently
in a beta 2 phase and on its way to becoming an OMG standard. We feel that
we can adequately express our ideas of structural aspects of services in SoaML,
and have therefore sought to integrate our own specific profiles presented in later
sections with SoaML.

In this section, we introduce some of the basic concepts specified in SoaML
which we need for modeling our case study and as a basis for defining our profiles.
For the complete description, please refer to the SoaML specification [25].

Structural service modeling employs the basic UML mechanisms for mod-
eling composite structures, enhanced with stereotypes from the SoaML pro-
file – �participant�, �servicePoint�, �requestPoint�, �serviceInterface� and
�messageType� (listed in Table 1). The basic unit for implementing service
functionality is a service participant, modeled as a class with the stereotype
�participant�. A participant may provide or request services through ports,
which are stereotyped with�requestPoint� or�servicePoint�, respectively. Each
port has a type, which is a �serviceInterface� implementing or using operations
as defined in a standard UML interface definition.

Table 1. SoaML metaclasses and stereotypes (excerpt)

Metaclass Stereotype UML
Metaclass

Description

Participant �participant� Class Represents some (possibly concrete) en-
tity or component that provides and/or
consumes services

ServicePoint �servicePoint� Port Is the offer of a service by one partici-
pant to others using well defined terms,
conditions and interfaces. It defines the
connection point through which a partic-
ipant provides a service to clients

RequestPoint �requestPoint� Port Models the use of a service by a partic-
ipant and defines the connection point
through which a participant makes re-
quests and uses or consumes services

ServiceInterface �serviceInterface� Class Is the type of a �servicePoint� or
�requestPoint� specifying provided

and required operations.

MessageType �messageType� DataType,
Class

Is the specification of information ex-
changed between service requesters and
providers

As an example for using these stereotypes, we present the structural dia-
gram for the scenario introduced in the previous section (see Fig. 1). As can
be seen from the figure, the central orchestration of the case study – i.e., the
component which coordinates the actions of all the services – is modeled as a
�participant�. The OnRoadAssistant participant has seven ports, six of which



www.manaraa.com

UML Extensions for Service-Oriented Systems 39

are�RequestPoint�s, indicating that a certain service is requested. The last port
is a �ServicePoint�, indicating that a certain service is provided.

As mentioned above, each�RequestPoint� and �ServicePoint� is typed with
a �ServiceInterface� which defines, though interface realizations and usage as-
socations, the operations required or provided at the given port. In our case,
the orchestration provides, through the �ServiceInterface� ClientInterface, the
operation startAssistant to clients. In the other direction, it requires e.g. the
operation selectBestGarage from another service, which is indicated through the
�ServiceInterface� SelectBestInterface which is the type of the �RequestPoint�
selectBestGarage.

With the basic structure of service-based systems and our case study specified
using SoaML, we can move on to define profiles for additional aspects of SOA
systems.

Fig. 1. SoaML structural diagram of the On Road Assistance scenario

4 Service Orchestrations

A key aspect of service-orientation is the ability to compose existing services, i.e.
creating a description of the interaction of several services, which has come to
be known as an orchestration. An orchestration is a behavioral specification of a
service component, or �Participant� in SoaML. As with structural aspects, the
UML does contain mechanisms for specifying behavior – for example, as activity



www.manaraa.com

40 H. Foster et al.

or sequence diagrams – but does not contain specific support for constructs used
in service orchestrations such as message passing, compensation, event handling,
and the combination of these.

To enable developers to model service orchestration behavior in an easy and
concise way, we have created UML4SOA, a profile for UML which defines a high-
level domain specific modeling language (DSML) for behavioral service specifica-
tions. UML4SOA was first introduced in [19] and described in more detail in [20].
It has been used as the central language for the specification of the Sensoria

case studies and enjoys the support of several formalisms and formal tools.

4.1 Metamodel

An excerpt of the UML4SOA metamodel is shown in Fig. 2, which includes
the main concepts of our DSML and the relationships among these concepts.
For example, we introduce elements such as ServiceSendAction for modeling
the asynchronous invocation of a service, i.e. without waiting for a reply from
the external partner. Another specific concept of the service-oriented domain
is the compensation of long-running transactions. Therefore we define model
elements such as CompensationAction and CompensationEdge. For each non-
abstract class of the metamodel we defined a stereotype with the objective of pro-
ducing semantically enriched and increased readable models of service-oriented
systems, e.g. a stereotype �sendAction� for the ServiceSendAction metaclass,
and a stereotype �compensate� for the CompensateAction metaclass. Table 2
provides an overview of the elements of the metamodel, the stereotypes that are
defined for these metamodel elements (they comprise the profile UML4SOA),
the UML metaclasses they extend, and a brief description. For further details
on UML4SOA, including the full metamodel, the reader is referred to [18].

UML4SOA proposes the use of UML activity diagrams for modeling ser-
vice behavior, in particular for modeling orchestrations which coordinate other
services. We assume that business modelers are most familiar with this kind
of notation to show dynamic behavior of business workflows. An UML4SOA
�ServiceActivity�, as noted above, can be directly attached as the behavior of a
�Participant�.

4.2 Example

As an example for modeling a service-oriented system in UML4SOA, we show
the implementation of the On Road Assistance scenario defined in Fig. 1.

The process On Road Assistance is modeled as a UML4SOA orchestration
(see Fig. 3) . It illustrates how the assistance process interacts with its client
and its partners through ports. It starts with a receipt (�receive�) of the call
startAssistant through the client port, receiving the request to start the assis-
tance. Note that the initial call to startAssistant starts the complete activity –
a convention we chose to make the workflow more explicit. Furthermore, note
that the port is given in the �lnk� pin, while the operation is denoted in the
main body of the action.



www.manaraa.com

UML Extensions for Service-Oriented Systems 41

Table 2. UML4SOA metaclasses and stereotypes

Metaclass Stereotype UML Meta-

class

Description

ServiceActivity Node �serviceActivity� Activity, Struc-
turedActivityN-

ode

Represents a special activity for
service behavior or a grouping

element for service-related ac-

tions

ServiceSendAction �send� CallOperation-
Action

Is an action that invokes an op-
eration of a target service asyn-

chronously, i.e. without waiting

for a reply. The argument val-
ues are data to be transmitted

as parameters of the operation

call. There is no return value

ServiceReceiveAction �receive� AcceptCall-
Action

Is an accept call action repre-
senting the receipt of an oper-

ation call from an external part-

ner. No answer is given to the
external partner

ServiceSend&Receive �send&receive� CallOperation-

Action

Is a shorthand for a sequential

order of send and receive actions

ServiceReplyAction �reply� ReplyAction Is an action that accepts a re-

turn value and a value contain-

ing return information produced
by a previous ServiceReceiveAc-

tion action

CompensationEdge �compensation� ActivityEdge Is an edge which connects an or-

chestration element to be com-
pensated with the one specify-

ing a compensation. It is used to

associate compensation handlers
to activities and scopes

EventEdge �event� ActivityEdge Is an edge connecting event han-

dlers with an orchestration el-

ement during which the event
may occur. The event handler

attached must contain a receive

or a timed event at the begin-
ning.

CompensateAction �compensate� Action Triggers the execution of the

compensation defined for a cer-

tain named service activity (can
only be inserted in compensa-

tion or exception handlers)

CompensateAllAction �compensateAll� Action Triggers compensation of all

nested service activities from the
service activity attached to the

current compensation or excep-

tion handler. The nested service
activities are compensated in re-

verse order of completion.

LinkPin �lnk� InputPin Holds a reference to the part-

ner service by indicating the cor-
responding service point or re-

quest point involved in the in-

teraction

SendPin �snd� InputPin Is used in send actions to denote
the data to be sent to an exter-

nal service

ReceivePin �rcv� OutputPin Is used in receive actions to de-

note the data to be received
from an external service



www.manaraa.com

42 H. Foster et al.

Fig. 2. Excerpt of the UML4SOA metamodel (includes some highlighted UML meta-
classes)

Once the initial request has been received, the process goes on to interact
with partner services. The process first charges the credit card of the user to
ensure that payment is available for later actions. This is done with the help of
a �send&receive� action, invoking the operation �chargeCredit� on the service
attached to the �RequestPoint� creditChargeService. The �send&receive� ac-
tion also uses a �snd� pin for denoting the information to be sent (the variable
userData, in this case) and the variable in which the return information will be
stored (creditChargeData, defined in the �receive� pin). A similar call is placed
to retrieve the position of car using the locationService port.

Once this initial setup phase has completed, the process enters the findAs-
sistance service activity. Here, it simultaneously interacts with two external ser-
vices available through the findGaragesService and findRentalCarStationsService



www.manaraa.com

UML Extensions for Service-Oriented Systems 43

<<serviceActivity>>
Main

<<serviceActivity>>
findAssistance

<<send&receive>>
selectBestRentCarStation

rentalCarList

rentalCarStationselectRentalCarService

<<send&receive>>
findGarages

carLocation

garageList

f indGaragesService <<send&receive>>
findRentalCarStations

carLocation

rentalCarListf indRentalCarStationsService

<<send&receive>>
selectBestGarage

garageList
garage

selectGarageService

<<raiseException>>
noAssistancecancel

<<serviceActivity>>
cancelation

<<send>>
cancelCreditCharge

creditChargeData

creditChargeService

<<serviceActivity>>

<<send&receive>>
chargeCredit

creditChargeData

userData creditChargeService

<<send&receive>>
getPosition

carLocation

userData

locationService

<<serviceActivity>>
 : NoAssistance

cancel

<<receive>>
startAssistant() client

 [else]

 [garageList.size == 0 or rentalCarList.size == 0]

<<compensation>>

Fig. 3. UML4SOA activity diagram showing the OnRoadAssistance participant



www.manaraa.com

44 H. Foster et al.

ports. If the process finds both a garage and a rental car station, it continues
to retrieve the nearest one. If it is not able to find at least one garage and one
rental car station, an exception is thrown.

Note that there is a standard UML exception handler attached to the service
activity. Inside the exception handler, the process invokes a �compensateAll�
action. The meaning of this action is to undo previously and successfully com-
pleted work. In this case, the process refers of course to the credit card charge.
To be able to undo this operation, a compensation handler is attached to that
action, which consists of an action canceling the charge with another service call
to the service identified by the CreditChargeInterface port.

As can be seen from Fig. 3, the behavioral specification of this process is
concise and very readable. The specification also directly uses elements defined
in the structural diagram in Fig. 1, thus exploiting the information defined there,
not repeating it unnecessarily.

4.3 Model-Driven Development Support

UML4SOA specifications can be used for more than just modeling to understand
the semantics of a system. With the MDD4SOA (Model-Driven Development
for SOA) transformers, UML4SOA orchestrations can be automatically trans-
formed to executable code in BPEL/WSDL, Java, and Jolie by using model
transformations.

Also, UML4SOA models enjoy formal methods support – the Sensoria

project includes tools and methods for checking qualitative and quantitative
properties of orchestrations, as well as checking protocol compliance of an or-
chestration. UML4SOA was used to model different scenarios of the Sensoria

case studies. We refer the interested reader to Chapter 7-1 of this book for more
information.

5 Non-functional Properties of Services

Non-functional extensions of UML4SOA aim to provide the modeling of arbi-
trary “quality of service” properties defined for a particular given client-server
pair. Since in real service configurations, service properties can vary for differ-
ent classes of clients, we follow a contract-based approach, where non-functional
properties of services are defined between two participant components, namely,
the service provider and the service requester. These contracts are modeled by
�nfContracts�. Different non-functional aspects (performance, security, etc.) are
modeled in corresponding �nfCharacteristics� which group different properties
in �nfDimensions� (where a �runTimeValue� is associated to each dimension).
The reason for creating separate classes for these instead of storing in properties
is to correlate real SLAs where most parameters are typically bound to a range
of allowed values. Moreover, concepts like average values, deviation, etc. need to
be modeled in a uniform way.

During a negotiation process, participants create an agreed contract of the
provider and requester. Finally, properties of services need to be monitored at



www.manaraa.com

UML Extensions for Service-Oriented Systems 45

runtime (modeled as �monitor�) either by the participating parties or by in-
volving a separate entity.

5.1 Metamodel

A metamodel of UML4SOA-NFP is shown in Fig. 4. The profile was motivated
by the UML 2.0 Profile for QoS & Fault Tolerance [23]. However, we followed
a more simple way of defining a general framework for QoS, which then can be
”instantiated” by defining concrete aspects such as performance, security, etc.
Table 3 shows the usage of the stereotypes.

Fig. 4. Metamodel of non-functional extensions (includes some highlighted SoaML
metaclasses

Table 3. UML4SOA-NFP metaclasses and stereotypes

Metaclass Stereotype UML Metaclass Description

NFContract �nfContract� Class Represents a non-functional con-
tract between a service provider
and a service requester

NFCharacteristic �nfCharacteristic� Class Represents a non-functional as-
pect such as performance, secu-
rity, reliable messaging, etc.

NFDimension �nfDimension� Class Groups non-functional properties
within a non-functional aspect
(characteristics)

RunTimeValue �runTimeValue� Attribute An actual non-functional property

Monitor �monitor� Class A run-time service to monitor a
contract (not used in the paper)



www.manaraa.com

46 H. Foster et al.

5.2 Examples

In the On Road Assistance scenario, several QoS requirements can be formed
on service connections. To illustrate the use of UML4SOA-NFP, we modeled
(part of) a contract between OnRoadAsssistant (the orchestrator component)
and CreditChargeProvider. First we show a brief textual specification of non-
functional requirements:

– All communications between these services must be secure, e.g. message
content must be encrypted and digitally signed.

– All messages from the orchestrator component to the credit card manager
must be acknowledged when received.

– As all succesful scenarios pass this step, the throughput of the service must
be high enough (1000 requests per hour) with a reasonable response time.

Fig. 5 shows an excerpt of a concrete contract. Note that the class diagram
corresponds to a template which is filled (instantiated as object diagram). This
will include concrete values for encrypting methods, response time, etc.

Fig. 5. Non-functional paramaters in (part of) the On Road Assistance scenario

5.3 Model-Driven Development Support

As this profile may describe arbitrary types of requirements (logging, security,
performance, etc.), the development support for different aspects obviously vary
for different development phases (early design/analysis/deplyoment/operation).

UML4SOA-NFP has support for middleware-level performability analysis as
described in [7] and [9]. This enables the early estimation of a trade-off between
reliability and performance. Evolving model transformations are developed to
support the automated code generation of middleware configuration with QoS



www.manaraa.com

UML Extensions for Service-Oriented Systems 47

constraints. Details of this technology are described in [6] (modeling), [8] (per-
formability analysis) and [9] (transformations for deployment). These transfor-
mations are based on the VIATRA framework, described in details in Chapter
6-2 of this book.

Also a transformation-based technique is currently under development, which
will help to create simple transformations on UML4SOA-NFP models extended
with additional information on their intended usage (e.g. security analysis) and/
or target platform (e.g. Apache stack). These models and transformations give
a flexible tool to support the quickly changing WS-* platforms in every phase
of service engineering. This transformation set will include validation steps to
check both modeling errors and domain specific requirements.

6 Business Policies Support

This part of the UML4SOA profile deals with the connection of services and
business policies, in the context of StPowla [10]. The goal of StPowla is to
define the business process so that the business stakeholder can easily adapt it to
the current state of affairs, by controlling the resources used by the basic tasks in
the workflows. To this purpose, the stakeholders issue policy definitions, which
constrain the resource usage as a function of the state of the workflow when a
task is needed.

Here we show how to define business workflows in terms of taskSpecifications,
that is, interfaces of ServicePoints as from SoaML, enriched with information on
the ranges of variability in the use of resources (service level dimensions).

We note that the profile we present here does not cover policies explicitly.
This is why it is called Business Policies Support profile. Indeed, policies are
better expressed as tables than as UML models. In another chapter of this book
(Chapter 1-3) it is shown how to integrate workflows and policies in a SOA, to
support flexible workflow enactment.

6.1 Metamodel

The metamodel for business policies support consists of a series of related ele-
ments, relationships, and a number of constraints. Not all the concepts are new,
since we exploit the NFDimension concept from the NF-UML4SOA profile, (cfr.
Section 5). We deal first with the elements devoted to the basic tasks in (Fig. 6):

– ServiceInterface specifies the interface of the service point a Task connects
to at enaction time. Constraint: just one operation specified.

– Requires is used to link a TaskSpecification to its ServiceInterface.
– TaskSpecification specifies a Task, identifying (via Requires) the ServiceIn-

terface. It also specifies (via Dim) the non-fuctional dimensions that charac-
terize the service to invoke.

– TaskSpecification owns an operation called main, with the same parameters
and return type of the required service. Indeed, main triggers the search and
invocation of a suitable service, and returns the computed result. The search
identifies a service implementation that satisfies the current policies.



www.manaraa.com

48 H. Foster et al.

Fig. 6. Metamodel for business policies support: Task specification (includes some
highlighted UML classes)

Fig. 7. Metamodel for business policies support: Workflow specification (includes some
highlighted UML classes)

– Dim allows specifying the relevant service level dimensions in a TaskSpec-
ification, by linking to �nfDimension� from NF-UML4SOA. It also defines
a default value, which is used to select the service provider, when no policy
with specific requirements for the target dimension is in place.

The next concepts are depicted in Fig. 7:

– WfSpecification defines a workflow, specifying its attributes and internal be-
havior. The formers can be used to express conditions in the policies. The
behavior is specified by the owned WfActivity.

– Workflow is an activity action that calls the specified behavior, i.e., a lower
level workflow.

– Task is an activity action that calls the specified main operation.
– WfActivity defines the behavior of a workflow. Constraint: an owned action

is either a Workflow or a Task.

All the concepts above are rendered as stereotypes in the UML profile shown
in Table 4. The defaultValues are rendered as tagged values of the �dim�
dependency: the tag is defaultValue, and the type is given by the target dimension.



www.manaraa.com

UML Extensions for Service-Oriented Systems 49

Table 4. Business policies support metaclasses and stereotypes

Metaclass Stereotype UML Metaclass Description

ServiceInterface �serviceInterface� Interface Specifies the interface of the ser-

vice point a Task connects to at
enaction time

Requires �Requires� Association Associates a TaskSpecification to

the signature of the services that

implement it

TaskSpecification �taskSpecification� Class Specifies a Task, functionally via
Requires, and non-functionally

via Dim. The latter identifies the

QoS dimensions that character-
ize the service to invoke. It owns

a main operation, with the same

parameters and return type of the
required service, whose behavior

is to trigger the search and invoca-

tion of a suitable service (i.e., one
whose QoS characteristics satisfy

the current policies), and to re-
turn the computed result

Dim �Dim� Dependency Allows specifying the relevant
service level dimensions in

a TaskSpecification, by link-

ing to �nfDimension� from
UML4SOA-NFP

WfSpecification �WfSpecification� Class Defines a workflow, specifying its

attributes and internal behavior.

The latter is specified by the
owned WfActivity

WfActivity �WfActivity� Activity Defines the behavior of a work-

flow. Constraint: an owned action

is either a Workflow or a Task

Workflow �Workflow� CallBehavior-
Action

Calls the specified behavior,
namely, a lower level Workflow

Task �Task� CallOperation-
Action

Calls the specified main operation

6.2 Examples

To show how StPowla supports flexibility in the On Road Assistance sce-
nario, we consider, within the general OnRoadAssistance workflow, a single task,
namely the one that selects the best garage, and a policy that allows the driver
to choose directly the repairing services which he knows and trusts, in his own
town:

If the car fault happens in the driver’s town, then let him select the services to
be used. Otherwise choose the services automatically.



www.manaraa.com

50 H. Foster et al.

Fig. 8. Fragments of the On Road Assistance model

Fig. 8 shows an excerpt from the model of the scenario just outlined, exemplifying
the use of the concepts both at the workflow and at the task level. To formalize
the policies, the modeler needs to define, for the workflow, the attributes that
specify the driver’s home town and the car crash location, as detected by the
embedded car GPS. Indeed, they are needed to express the conditions in the
policy. So, the �wfSpecification� RoadAssistance, at the top-centre of the figure,
lists the two attributes crashLocation and driverTown. The relevant part of the
related�wfActivity� is shown to the left: the actions appear as shown: here, the
task invokes the main operation of FindGarage, whose�taskSpecification� appears
to the right (bottom). The name of the node is of little importance, being useful
only to distinguish two nodes in the same workflow, when they use the same
�taskSpecification�.

Moreover, �taskSpecification� FindGarage requires the findGarage service (at
its left), and declares the main operation accordingly. The modeler here has to
introduce a suitable �nfDimension� to express the choice between the service
that searches for a garage nearby the crash location, and the service that interacts
with the driver to contact his own choice. This is AutomationLevel (top-right). The
default value is fixed as automatic, via the tagged value for �dim�.

7 Service Modes for Adaptive Service Brokering

In this section we describe a part of the Sensoria family of profiles that ad-
dresses service adaptation and reconfiguration based upon operational states of
the service system being described. The Service Modes profile complements the
UML4SOA profile for orchestration by providing an abstraction of service sys-
tem adaptation through architecture, behavior and constraints. Service Modes
are an extension of Software Architecture Modes.

Software Architecture Modes are an abstraction of a specific set of services
that must interact for the completion of a specific subsystem task, i.e., a mode
will determine the structural constraints that rule a (sub)system configuration
at runtime [13]. Therefore, passing from one mode to another and interactions
among different modes formalize the evolution constraints that a system must



www.manaraa.com

UML Extensions for Service-Oriented Systems 51

satisfy: the properties that reconfiguration must satisfy to obtain a valid transi-
tion between two modes which determine the structural constraints imposed to
the corresponding architectural instances. A Service Mode represents a Software
Architecture Mode scenario of a service system. It combines a service architec-
ture with behavior and policy specifications for service components within the
service system and is intended to be evolved as new requirements are desired
from the system. In this section we detail the specification of service modes by
way of a Service Modes profile in the UML notation.

7.1 Metamodel

A metamodel for service modes (illustrated in Fig. 9) extends and constrains a
number of UML core elements. As an overview, a ModeModel defines a package
which contains a number of service architecture scenarios (as Mode packages)
and components and also contains a ModeModelActivity to define how to switch
between different service scenarios. Each scenario is defined in a Mode pack-
age which is a container for a ModeCollaboration and describes the role that
each component plays within the scenario (e.g. a service requester and/or a
provider). Each ModeCollaboration holds a ModeActivity which describes the
process in which the mode orchestration is fulfilled. Each ModeCollaboration
also refines the components of the Mode for additional service adaptation re-
quirements (such as the constraints for service brokering). A ModeConstraint
specifies a constraint on adaptation of ModeCollaborations. These constraints
can also specify Quality-Of-Service (QoS) attributes for service components, and
we reuse the QoSRequired and QoSProvided stereotypes related to the QoS Pro-
file (as discussed in section 5.1). We now elaborate on service mode architecture,
behaviour and adaptation relationships through examples.

7.2 Examples

A Service Modes Architecture consists of specifying the service components,
their requirements and capabilities and interface specifications. A high-level ar-
chitecture configuration is given in UML to represent the component specifica-
tions and their relationships. Each component will offer services to its clients,
each such service is a component contract. A component specification defines
a contract between clients requiring services, and implementers providing ser-
vices. The contract is made up of two parts. The static part, or usage contract,
specifies what clients must know in order to use provided services. The usage
contract is defined by interfaces provided by a component, and required inter-
faces that specify what the component needs in order to function. The interfaces
contain the available operations, their input and output parameters, exceptions
they might raise, preconditions that must be met before a client can invoke the
operation, and post conditions that clients can expect after invocation. These
operations represent features and obligations that constitute a coherent offered
or required service. At this level, the components are defined and connected in a
static way, or in other words, the view of the component architecture represents



www.manaraa.com

52 H. Foster et al.

Fig. 9. Metamodel for service modes and service brokering specification (includes some
highlighted UML classes)

a complete description disregarding the necessary state of collaboration for a
given goal. Even if the designer wishes to restrict the component diagram to
only those components which do collaborate, the necessary behavior and con-
straints are not explicit to be able to determine how, in a given situation, the
components should interact. An example composite structure diagram for a ser-
vice modes architecture is illustrated in Fig. 10 for the Emergency scenario of the
Automotive Case Study (discussed in section 2). Note that the architecture rep-
resents both local services (via a localDiscovery component) and remote services
(remoteDiscovery via a Vehicle Services Gateway).

Service Mode Behavior specification is a local coordinated process of ser-
vice interactions and events for mode changes. The behavior is similar to that of
service orchestrations, for which orchestrations languages such as WS-BPEL are
widely adopted. Service mode behavior may be formed as described in section 4.
At design time however, the activities for mode orchestration consist of two
concepts. Firstly, orchestrating the default composition of services required and
provided in the specified mode architecture. Secondly, the orchestration should
also be able to react to events which cause mode changes, or in other words
cater for the switching between the modes specified in the different architec-
ture configurations. To specify mode changes, the engineer adds event handlers
(and follow on activities) to react to certain events which cause a mode change.
An example Service Mode Behavior is illustrated in Fig. 11. Note the events
that lead to mode changes, for example receiving notification of an accident
from an highway emergency service leads to a mode switch to a detour mode
configuration.

Service Dynamism and Adaptation focuses on constraining changes to
architecture and services, identifying both functional and non-functional variants



www.manaraa.com

UML Extensions for Service-Oriented Systems 53

Fig. 10. Emergency service brokering architecture with Modes profile

Fig. 11. Convoy service mode behavior specified in an activity diagram

on the specification. Using the Service Modes Profile we identify ModeCollabora-
tions (composite structure diagrams) with ModeConstraints (UML constraints)
which are categorised further by a constraint stereotype. Additionally, architec-
tural constraints may be specified in the Object Constraint Language (OCL) or
another constraint based language. The constraint language adopted becomes an
implementation-dependent aspect of analysing models in UML. The ModeCon-
straint is itself extended to support a specific kind of adaptation, that for service
brokering. A BrokerComponent defines a service component which is included
in service brokering specifications and can be used to identify the role of the
brokered component (either requested or provided), and holds a specification for
the service profile. Additionally, one or more (BrokerConstraints) can be associ-
ated with a BrokerComponent, to identify the QoS either requested or provided
by the service. An example constraint applied to a BrokerComponent is also
illustrated in Fig. 10, in this case for the requirement that a QoSResponseTime
should be offered less than 20ms by the other vehicle service.



www.manaraa.com

54 H. Foster et al.

As a summary of the semantics for the Service Modes profile, we list each pro-
file metaclass, stereotype and UML metaclass in Table 5. Service Mode models
built using the specification described in this section can be analysed for safety
and correctness using the approach described in [3] and used for generating
runtime service broker requirements and capability specifications as described
in [5].

Table 5. Service Modes metaclasses and stereotypes

Metaclass Stereotype UML Meta-
class

Description

ModeModel �ModeModel� Package A Model containing Mode
packages

ModeModelActivity �ModeModelActivity� Activity The process flow for a Mode-
Model (policy)

ModeCollaboration �ModeCollaboration� Collaboration Contains composite structure
and interactions

ModeActivity �ModeActivity� Activity The process flow for a Mode
(orchestration)

ModeConstraint �ModeConstraint� Constraint Constraints on mode service
or activity action

ModeInteraction �ModeInteraction� Interaction Interaction protocol between
Mode components

BrokerComponent �BrokerComponent� Component Service component to be bro-
kered within a Mode

BrokerConstraint �BrokerConstraint� ModeConstraint A constraint on a Broker-
Component

8 Service Deployment

In this section we describe a part of the Sensoria family of profiles that ad-
dresses describing service composition deployment and more specifically, how
service orchestrations are configured with appropriate infrastructure nodes and
resources. A Service Deployment profile complements the UML4SOA profile for
orchestration by providing an abstraction of service composition deployment
through infrastructure nodes such as web server and servlets.

Service compositions, implemented as web services using BPEL or other ex-
ecution languages, are executed by a specialist container, sometimes called a
service composition engine or run-time environment. These containers use var-
ious system resources depending on the activities specified in the composition.
BPEL engines will, for example upon receiving a SOAP message to start a BPEL
process, instantiate this process and execute it in a separate thread concurrently
with other ongoing BPEL processes. Again BPEL engines typically have config-
urable database connections and thread pools and they would delay the start of
a BPEL process until they can assign a thread from a pool. Both Web service
and BPEL containers typically map these threads efficiently to a set of operat-
ing system threads. The amount of operating system threads however, is finite



www.manaraa.com

UML Extensions for Service-Oriented Systems 55

due to the finite amount of memory required to handle the stack segment of
the thread. Administrators must therefore carefully configure the thread pools
to avoid exhaustion of the operating system resources. A Service Deployment
model of the architecture can describe the characteristics of the host server and
orchestration, and can be used to analyze such configurations for safety and
correctness.

8.1 Metamodel

The Service Deployment metamodel (illustrated in Fig. 12) focuses on model-
ing the deployment architecture nodes (Servlet, WebServer) and deployment ar-
tifacts (ServiceOrchestration and Resource). One or more service orchestrations
(of type ServiceOrchestration) are modeled as artifacts which are deployed on to
servlet nodes. A service orchestration can only be deployed to one servlet instance.
Servlets are hosted on web server nodes (a web server is a web container which
manages the creation and deletion of servlet instances). A servlet also has pre-
defined resource allocations, which are modeled as one or more objects of type
Resource artifact. Resource is a general object for any finite system allocation ob-
ject, however in this example we also illustrate a ThreadPool type of Resource.

Fig. 12. Metamodel for service composition deployment and resources (includes some
highlighted UML classes)

Table 6. Service Deployment metaclasses and stereotypes

Metaclass Stereotype UML Meta-
class

Description

ServiceOrchestration �ServiceOrchestration� Artifact A reference to a service or-
chestration process

Servlet �Servlet� Node An execution container for
orchestration processes

WebServer �WebServer� Node A host for servlet containers

Resource �Resource� Artifact A type of resource used by a
Servlet or Webserver

ThreadPool �ThreadPool� Resource A resource collection of
threads



www.manaraa.com

56 H. Foster et al.

Semantics. The metamodel for service deployment consists of a series of related
elements, relationships and a number of constraints. For each element we list
each profile metaclass, stereotype and UML metaclass in Table 6.

8.2 Examples

A deployment model using the Service Deployment profile is illustrated in Fig. 13.
Two service orchestrations (RoadAssitance and RoutePlanning) are deployed to
a single servlet artifact. The servlet artifact manages a collection of threads in
a ThreadPool. The servlet is also hosted by a WebServer. The example can be
used to model check that the collaborating service orchestrations, along with the
management of thread acquisition and release, is safe and correct.

For a more complete example of using the Service Deployment profile, along
with detailed analysis of the model, the reader is invited to refer to [4].

Fig. 13. Example: Deployment model for two service orchestrations and one servlet

9 Related Work

Several other attempts exist to define UML extensions for service-oriented
systems. Most, however, do not cover aspects such structural, behavioral and
non-functional aspects of SOAs. For example the UML2 profile for software ser-
vices [14,17] provides an extension for the specification of services addressing
only their structural aspects. The UML extension for service-oriented architec-
tures described by Baresi et al. [1] focuses mainly on modeling SOAs by refining
business-oriented architectures. The extension is also limited to stereotypes for
the structural specification of services. Other modeling approaches require very
detailed UML diagrams from designers trying to force service-oriented languages
(like BPEL) on top of UML in order to facilitate automated transformation from
UML to BPEL [11]. The approach lacks an appropriate UML profile preventing
building models at a high level of abstraction; thus producing overloaded dia-
grams. Some other extensions, conversely to UML4SOA, do not cover vital parts
of service orchestrations such as compensation handling, e.g. the UML profile
described in [2]. Our UML4SOA approach tries to fill this gap providing a UML
profile for service orchestrations.



www.manaraa.com

UML Extensions for Service-Oriented Systems 57

The OMG also started an effort to standardize a UML profile and metamodel
for services (SoaML) [25]. The current beta version focus on structural aspects
of services, such as service components, service specifications, service interfaces
and contracts for services. We see our family of UML profiles as a complementary
set to the profile SoaML.

With respect to business policies, we have already mentioned that several
of the stereotypes introduced here bear some relationships to SoaML ones.
For instance, a �wfSpecification� is a �capability�, which can �use� only
(the capabilities offered by) other �workflow�’s and �task�’s. Similarly, a
�taskSpecification� is also a �capability� , whose �contract�’s can only span
the space defined by the�NFDimension�’s indentified via the�dim� dependen-
cies. In either cases, the�serviceInterface� is a simple SoaML�serviceInterface�,
i.e. a plain UML interface. Finally, the �partecipant�’s that implement these
capabilities can be actually invoked only if they fulfill the current contract, as
idenfified by the policies in place. Therefore, from the business policies perspec-
tive, the Business Policies profile could be seen as a specialization of SoaML, to
address the concerns of a large share of the stakeholders, explicitely.

A few words are needed in relation to another widely known standard spec-
ification, namely Web Services Policy [28]. In fact, this is a machine-readable
language to represent the capabilities and requirements, the policies, of a Web
service. As such, the standard addresses low level issues, related to the automa-
tion of service selection, and will help in the implementation of StPowla .

As for non-functional properties, the UML Profile for QoS and Fault Tolerance
[23] and UML Profile for Schedulability and Time [12] were considered during
the development of UML4SOA-NFP. As our profile is general purpose (i.e., not
bound to any specific aspect like security or performance), it can be extended
to describe typical patterns for SLAs which is an ongoing work.

What is generally missing from the existing profile approaches is the ability to
identify the requirements and capabilities of services and then to elaborate on the
dynamic changes anticipated for adaptation or self-management. For the design
of service compositions the dynamic composition of services has largely focused
on planning techniques, such as in [26,21], generally with the specification of a
guiding policy with some goals of service state. Runtime service brokering also
plays an important role in being able to adapt component configurations [22]
between requesters and providers yet there is little detail on providing analysis
of requirements for brokering. Software Architecture Modes were perhaps first
introduced in [13], in which they identify a mode as an abstraction of a specific
set of services that must interact for the completion of a specific subsystem task.
Hirsch’s introduction to modes included architectural configuration but did not
elaborate on component behavioral change as part of mode adaptation. Conse-
quently, the concept of mode architectures has been extended with behavioral
adaptation in [16], focusing on modes as behavioral specifications relating to
architecture specification albeit indirectly. We provide a UML profile for service
modes.



www.manaraa.com

58 H. Foster et al.

10 Conclusions

As service-oriented computing continues to gain support in the area of enter-
prise software development, approaches for handling SOA artefacts and their
integration on a high level of abstraction while keeping a semantic link to their
implementation become imperative. In this paper, we have focused on a UML-
based domain specific modeling language for the specification of service-oriented
software. Such a modeling language is the basis for the definition and use of
model transformers to generate code in executable target SOA languages like
BPEL and WSDL, in a model-driven development process.

Our main contribution are a set of UML profiles for modeling of services that
comprise modeling of service orchestration, business policies and non-functional
properties of services, service modes for adaptive service brokering and service
deployment. Each profile provides a small set of model elements that allow the
service engineer to produce diagrams which visualize services and their function-
ality in a simple fashion.

These are profiles for separate purposes, which share some basic concepts (e.g.
service, participant, etc.). It is the service engineer who decides which profiles to
use as they cover different steps of the development lifecycle, e.g. QoS parameters
bound to an SLA could be transformed to the input of Modes while they can
be also used in St-Powla. The policy support profile depends on UML4SOA-
NFP, insofar as it imports NFDimension to characterize the QoS of the services
subjected to the policies.

Further details on the profiles and tools discussed in this paper are available
on the Sensoria project website [27].

References

1. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Style-Based Modeling and Refine-
ment of Service-Oriented Architectures. Journal of Software and Systems Modeling
(SOSYM) 5(2), 187–200 (2005)

2. Ermagan, V., Krüger, I.: A UML2 Profile for Service Modeling. In: Engels, G.,
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp.
360–374. Springer, Heidelberg (2007)

3. Foster, H.: Architecture and Behaviour Analysis for Engineering Service Modes.
In: Proceedings of the 2nd Workshop on Principles of Engineering Service Oriented
Systems (PESOS 2009), Vancouver, Canada (2009)

4. Foster, H., Emmerich, W., Kramer, J., Magee, J., Rosenblum, D., Uchitel, S.: Model
Checking Service Compositions under Resource Constraints. In: ESEC-FSE 2007:
Proceedings of the the 6th joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the foundations of Software
Engineering, pp. 225–234. ACM, New York (2007)

5. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Leveraging Modes and UML2 for
Service Brokering Specifications. In: Proceedings of the 4th Model-Driven Web
Engineering Workshop (MDWE 2008), Toulouse, France (2008)

6. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Varró, D.: Non-Functional Properties
in the Model-Driven Development of Service-Oriented Systems. Journal of Software
and Systems Modeling (2010) (accepted for publication)



www.manaraa.com

UML Extensions for Service-Oriented Systems 59

7. Gönczy, L., Déri, Z., Varró, D.: Model Driven Performability Analysis of Service
Configurations with Reliable Messaging. In: Proc. of Model Driven Web Engineer-
ing Workshop, MDWE 2008 (2008)

8. Gönczy, L., Déri, Z., Varró, D.: Model Transformations for Performability Analysis
of Service Configurations, pp. 153–166. Springer-Verlag, Heidelberg (2009)

9. Gönczy, L., Varró, D.: Developing Effective Service Oriented Architectures: Con-
cepts and Applications in Service Level Agreements, Quality of Service and Relia-
bility. In: Engineering Service Oriented Applications with Reliability and Security
Requirements. IGI Global (2010) (to be published)

10. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: StPowla: SOA, Policies
and Workflows. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907,
pp. 351–362. Springer, Heidelberg (2009)

11. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Style-Based Modeling and Refine-
ment of Service-Oriented Architectures. In: Eighth IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2004), pp. 47–57. IEEE, Los
Alamitos (2004)

12. O.M.Group. UML Profile for Schedulability, Performance and Time Specification
(2005) ,
http://www.omg.org/technology/documents/formal/schedulability.htm

13. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures.
In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126.
Springer, Heidelberg (2006)

14. Johnston, S.: UML 2.0 Profile for Software Services (2005),
http://www-128.ibm.com/developerworks/rational/library/05/419soa

request For Proposal - AD/02-01/07
15. Koch, N., Berndl, D.: Requirements Modelling and Analysis of Selected Scenarios:

Automotive CASE Study. Technical Report D8.2a, SENSORIA Deliverable (2007)
16. Kofroň, J., Plášil, F., Šerý, O.: Modes in Component Behavior Specification via

EBP and their application in Product Lines. Information and Software Technol-
ogy 51(1), 31–41 (2009)

17. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of
UML Models for Service-Oriented Software Architectures. In: Proceedings of the
12th IEEE International Conference and Workshops on Engineering of Computer-
Based Systems, Washington, DC, USA, pp. 173–182 (2005)

18. Mayer, P., Koch, N., Schroeder, A.: The UML4SOA Profile. Technical report,
Ludwig-Maximilians-Universität München (July 2009)

19. Mayer, P., Schroeder, A., Koch, N.: A Model-Driven Approach to Service Orches-
tration. In: Proceedings of the 2008 IEEE International Conference on Services
Computing (SCC 2008), vol. 2, pp. 533–536. IEEE Computer Society Press, Los
Alamitos (2008)

20. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-Driven Service Orchestra-
tion. In: The 12th IEEE International EDOC Conference (EDOC 2008), Munich,
Germany, pp. 203–212. IEEE Computer Society Press, Los Alamitos (2008)

21. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing Web Services on the
Semantic Web. VLDB Journal, 333–351 (2003)

22. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-Aware Service Composi-
tion in Dino. In: ECOWS 2007: Proceedings of the Fifth European Conference on
Web Services, Halle, Germany, pp. 3–12. IEEE Computer Society, Los Alamitos
(2007)

23. OMG. UML for Modeling Quality of Service and Fault Tolerance Characteristics
and Mechanisms, v1.1 (2008), http://www.omg.org/spec/QFTP/1.1/

http://www.omg.org/technology/documents/formal/schedulability.htm
http://www-128.ibm.com/developerworks/rational/library/05/419soa
http://www.omg.org/spec/QFTP/1.1/


www.manaraa.com

60 H. Foster et al.

24. OMG. Unified Modeling Language: Superstructure, version 2.2. Technical Report
formal/2009-02-02, Object Management Group (2009)

25. OMG. Service oriented architecture Modeling Language (SoaML) - Specification
for the UML Profile and Metamodel for Services (UPMS), revised submission.
Specification, Object Management Group (2010),
http://www.omg.org/spec/SoaML/1.0/Beta2/ (last visited: 22.07.2010)

26. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated Composition of Web
Services by Planning at the Knowledge Level. In: Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI (2005)

27. SENSORIA. Software Engineering for Service-Oriented Overlay Computers,
http://www.sensoria-ist.eu/ (last visited 15.03.2010)

28. W3C Working Group. Web Services Policy 1.5 - Primer,
http://www.w3.org/TR/ws-policy-primer (last visit 22.10.2009)

29. Xie, R., Koch, N.: Automotive CASE Study: Demonstrator (Tutorial). Techni-
cal report, Cirquent GmbH (2009), http://www.sensoria-ist.eu/ (last visited
15.03.2010)

http://www.omg.org/spec/SoaML/1.0/Beta2/
http://www.sensoria-ist.eu/
http://www.w3.org/TR/ws-policy-primer
http://www.sensoria-ist.eu/


www.manaraa.com

The Sensoria Reference Modelling Language�

José Fiadeiro1, Antónia Lopes2, Laura Bocchi1, and João Abreu3

1 Department of Computer Science, University of Leicester, UK
{jose,bocchi}@mcs.le.ac.uk

2 Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal
mal@di.fc.ul.pt

3 Altitude Software, Algés, Portugal
Joao.Abreu@altitude.com

Abstract. This chapter provides an overview of SRML — the Senso-

riaReference Modelling Language. Our focus will be on the language prim-
itives that SRML offers for modelling business services and activities, the
methodological approach that SRML supports, and the mathematical se-
mantics the underpins the modelling approach, including techniques for
qualitative and quantitative analysis.

1 Introduction

This chapter provides an overview of the modelling language — SRML — that
we developed in Sensoria. We present the language primitives that SRML offers
for modelling business services and activities, and discuss the methodological ap-
proach that SRML supports, which includes the use of the UMC model-checker
(developed at CNR-ISTI) for qualitative analysis and of the Markovian process
algebra PEPA (developed at the University of Edinburgh) for quantitative anal-
ysis of timing properties. Only some elements of the mathematical semantics
that we developed for the approach are provided in this chapter; full details can
be found in [4,6,29,32,30,33].

Our approach addresses Service-Oriented Computing (SOC) as a new com-
putational paradigm in which interactions are no longer based on fixed or pro-
grammed exchanges between specific parties — what is known as clientship in
object-oriented programming — but on the provisioning of services by external
providers that are procured on the fly subject to a negotiation of service level
agreements (SLAs). In SOC, the processes of discovery and selection of services
are not coded (at design time) as part of the applications that implement busi-
ness activities, but performed by the middleware according to functional and
non-functional requirements (SLAs). We set ourselves to address the challenge
raised on software engineering methodology by the need of declaring such re-
quirements as part of the models of service-oriented applications, reflecting the
business context in which services and activities are designed.
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 61–114, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

62 J. Fiadeiro et al.

A number of research initiatives have been proposing formal approaches that
address different aspects of SOC independently of the specific languages that
organisations such as OASIS (www.oasis-open.org) and W3C (www.w3.org) are
making available for Web Services. For example, as presented in Chapter 2-1,
several calculi have been developed in Sensoria that address operational foun-
dations of SOC (in the sense of how services compute) by providing a mathemat-
ical semantics for the mechanisms that support ‘choreography’ or ‘orchestration’
— sessions, message/event correlation, compensation, inter alia. Whereas such
calculi address the need for specialised language primitives for programming in
this new paradigm, they are not abstract enough to understand the engineering
foundations of SOC, i.e. those aspects (both technical and methodological) that
concern the way applications can be developed to provide business solutions,
independently of the languages in which services are programmed.

This is why, in defining SRML, we used as a source of inspiration the Service
Component Architecture (SCA) [2]. SCA makes available a general assembly
model and binding mechanisms for service components and clients that may
have been programmed in possibly many different languages, e.g. Java, C++,
BPEL, or PHP. However, where SCA supports bottom-up low-level design, our
aim for SRML was, instead, to address top-down high-level design. More specif-
ically, our aim was to develop models and mechanisms that support the design
of complex services from business requirements, and analysis techniques through
which designers can verify or validate properties of composite services that can
then be put together from (heterogeneous) service components using assembly
and binding techniques such as the ones provided by SCA. This shift of emphasis
from programming to (business) modelling, from component interoperability to
business integration, implies that we will be discussing SOC at a level of ab-
straction that is different from most other work on Web services (e.g. [10,43]) or
Grid computing (e.g. [34]).

Having this in mind, the chapter proceeds as follows. In Section 2, we provide
an overview of the engineering architecture and processes that we see support-
ing SOC in Global Computing. In Section 3, we provide a brief overview of how
we support the transition from business requirements to high-level design mod-
els using a (service-oriented) extension of use-case diagrams. In Section 4, we
put forward the coordination model on which SRML is based. In Section 5, we
present the modelling primitives of SRML. In Section 6, we discuss our model of
configuration management. In Section 7, we discuss the use of model-checking
techniques for analysing functional properties of complex services. Finally, in Sec-
tion 8, we discuss the use of the Markovian process algebra PEPA for analysing
timing properties. As a running example, we will use a mortgage-brokerage ser-
vice that is part of the financial case study developed in Sensoria (cf. Chapter
7-4). Although our approach is formal, in the sense that a mathematical se-
mantics is available for all the primitives of the language [4,29,30], the paper is
mostly mathematics-free with the exception of Sections 4.3, 6, 7.1 and 8.



www.manaraa.com

The Sensoria Reference Modelling Language 63

2 Engineering Software for Service-Overlay Computers

The term ‘service’ is being used in a wide variety of contexts, often with differ-
ent meanings. In Sensoria, we set ourselves to address the notion of ‘service-
overlay computer’, by which we mean the development of highly-distributed
loosely-coupled applications over ‘global computers’ (GC) — “computational
infrastructures available globally and able to provide uniform services with vari-
able guarantees for communication, cooperation and mobility, resource usage,
security policies and mechanisms” [1].

In this setting, there is a need to rethink the way we engineer software applica-
tions, moving from the typical ‘static’ scenario in which components are assem-
bled to build a (more or less complex) system that is delivered to a customer, to
a more ‘dynamic’ scenario in which (smaller) applications are developed to run
on such global computers and respond to business needs by interacting with ser-
vices and resources that are globally available. In this latter setting, there is much
more scope for flexibility in the way business is supported: business processes
can be viewed globally as emerging from a varying collection of loosely-coupled
applications that can take advantage of the availability of services procured on
the fly when they are needed.

In this context, the notion of ‘system’ itself, as it applies to software, also
needs to be revisited. If we take one of the accepted meanings of system — a
combination of related elements organised into a complex whole — we can see why
it is not directly applicable to SOC/GC: services get combined at run time and
redefine the way they are organised as they execute; no ‘whole’ is given a priori
and services do not compute within a fixed configuration of a ‘universe’. In a
sense, we are seeing reflected in software engineering the trend for ‘globalisation’
that is now driving the economy.

SOC brings to the front many aspects that have already been discussed about
component-based development (CBD), for instance in [23]. Given that different
people have different perceptions of what SOC and CBD are, we will simply
say that, in this paper, we will take CBD to be associated with what we called
the static engineering approach. For instance, starting from a universe of (soft-
ware) components as structural entities, Broy et al view a service as a way of
orchestrating interactions among a subset of components in order to obtain some
required functionality — “services coordinate the interplay of components to ac-
complish specific tasks” [16]. As an example, we can imagine that a bank will
have available a collection of software components that implement core function-
alities such as computing interests or charging commissions, which can be used
in different products such as savings or loans.

SOC differs from this view in that there is no such fixed system of components
that services are programmed to draw from but, rather, an evolving universe of
software applications that service providers publish so that they can be dis-
covered by (and bound to) business activities as they execute. For instance, if
documents need to be exchanged as part of a loan application, the bank may
rely on an external courier service instead of imposing a fixed one. In this case,
a courier service would be discovered for each loan application that is processed,



www.manaraa.com

64 J. Fiadeiro et al.

possibly taking into account the address to which the documents need to be sent,
speed of delivery, reliability, and so on. However, the added flexibility provided
through SOC comes at a price — dynamic interactions impose the overhead of
selecting the co-party at each invocation — which means that the choice be-
tween invoking a service and calling a component is a decision that needs to be
taken according to given business goals. This is why SRML makes provision for
both SOC and CBD types of interaction (through requires and uses interfaces
as discussed in Section 3).

To summarise, the impact that we see SOC to have on software engineering
methodology stems from the fact that applications are built without knowing
who will provide services that may be required, and that the discovery and
selection of such services is performed, on the fly, by dedicated middleware com-
ponents. This means that application developers cannot rely on the fact that
someone will interact with them to implement the services that may be required
so as to satisfy their requirements. Therefore, service-oriented ‘clientship’ needs
to be based on shared ontologies of data and service provision. Likewise, service
development is not the same as developing software applications to a costumer’s
set of requirements: it is a separate business that, again, has to rely on shared
ontologies of data and service provision so that providers can see their services
discovered and selected.

This view is summarised in Fig. 1, where we elaborate beyond the basic
Service-Oriented Architecture [8] to make explicit the different stakeholders and
the way they interact, which is important for understanding the formal model
that we are proposing. In this model, we distinguish between ‘business activities’
and ‘services’ as software applications that pertain to different stakeholders (see
[35] for a wider discussion on the stakeholders of service-oriented systems):

– Activities correspond to applications developed according to requirements
provided by a business organisation, e.g. the applications that, in a bank,
implement the financial products that are made available to the public. The
activity repository provides a means for a run-time engine to trigger such ap-
plications when the corresponding requests are published, say when a client
of the bank requests a loan at a counter or through on-line banking. Activi-
ties may be implemented over given components (for instance, a component
for computing and charging interests) in a traditional CBD way, but they
can also rely on services that will be procured on the fly using SOC (for
instance, an insurance for protecting the customer in case he/she is tem-
porarily prevented from re-paying the loan due to illness or job loss). In
SRML, activities are modelled through activity modules. As discussed in
Section 3, these identify the components that activities need to be bound to
when they are launched and the services (types) that they may require as
they execute. Activity modules also include a specification of the workflow
that orchestrates the interactions among all the parties involved in the activ-
ity and a number of SLA constraints used for negotiating service provision
from external parties.



www.manaraa.com

The Sensoria Reference Modelling Language 65

– Services differ from activities in that they are not developed to satisfy specific
business requirements of a given organisation but to be published (in service
repositories) in ways that allow them to be discovered when a request for
an external service is published in the run-time environment. As such, they
are classified according to generic service descriptions — what in Section 5.1
we call ‘business protocols’ — that are organised in a hierarchical ontology
to facilitate discovery. Services are typed by service modules, which, like ac-
tivity modules, identify the components and additional services that may
be required together with a specification of the workflow that orchestrates
the interactions among them so as to deliver the properties declared in the
service descriptions — their ‘provides-interfaces’. Service modules also spec-
ify service-level agreements that need to be negotiated during matchmaking
and selection.

– The configuration management unit (discussed in Section 6) is responsible
for the binding of the new components and connectors that derive from the
instantiation of new activities or services. A formal model can be found in
[30].

– The ontology unit is responsible for organising both data and service de-
scriptions. In this paper, we do not discuss the classification and retrieval
mechanisms per se. See, for instance, [38,44] for some of the aspects involved
when addressing such issues.

Current configuration
(software components and interaction protocols that 

interconnect them)

Triggers Reconfiguration

Discovery and selection
Invocation

Business

IT teams

Service

providers

PublicationApplication

development

Ontology
(data and service 

descriptions)

Configuration Management

Service repositoryActivity repository

Fig. 1. Overall ‘engineering’ architecture and processes



www.manaraa.com

66 J. Fiadeiro et al.

Notice that the ‘business IT teams’ and the ‘service providers’ can be totally
independent and unrelated: the former are interested in supporting the business
of their companies or organisations, whereas the latter run a business of their
own. They can also belong to the same organisation, as illustrated in our case
study. In both cases, they share the ontology component of the architecture so
that they can do business together.

3 From Use-Case Diagrams to SRML Modules

Before we introduce the modelling primitives that SRML offers for high-level
(business) design, it is important to show how traditional use-case diagrams
can be extended so as to support the engineering approach that we described in
Section 2. In order to illustrate our approach, we consider the (simplified) case of
a financial services organisation that wants to offer a mortgage-brokerage service
GetMortgage. This service involves the following steps:

– Proposing the best mortgage deal to the customer that invoked the service;
– Taking out the loan if the customer accepts the proposal;
– Opening a bank account associated with the loan if the lender does not

provide one;
– Getting insurance if required by either the customer or the lender.

In our example, the selection of a lender is restricted to firms that are consid-
ered to be reliable. For this reason, we consider an UpdateRegistry activity
supporting the management of a registry of reliable lenders. This activity relies
on an external certification authority that may vary according to the identity of
the lender.

3.1 Use-Case Diagrams for Service-Oriented Modelling

Traditionally, use-case diagrams are used for providing an overview of usage
requirements for a system that needs to be built. As discussed in Section 2, and
reporting to Fig. 1, our aim is to address a novel development process that does
not aim at the construction of a ‘system’ but, rather, of two kinds of software
applications — services and activities — that can be bound to other software
components either statically (in a component-based way) or dynamically (in a
service-oriented way). The methodological implications of this view are twofold.
On the one hand, services and activities have the particularity that each has a
single usage requirement. Hence, they can be perceived as use cases. On the other
hand, from a business point of view, the services and activities to be developed
by an organisation constitute logical units.

In our example, UpdateRegistry should be treated as an activity in the
sense that it is driven by the requirements of the financial services organisation
itself — it will be stored in an activity repository and will be invoked by internal
applications (e.g., a web interface). On the other hand, GetMortgage is meant



www.manaraa.com

The Sensoria Reference Modelling Language 67

to be placed in a service repository for being discovered and bound to activities
running ‘globally’, i.e. not necessarily in the financial services organisation.

Both UpdateRegistry and GetMortgage can be seen to operate as part
of a same business unit and, hence, it makes sense to group them in the same use-
case diagram — use-case diagrams are useful for structuring usage requirements
of units of business logic. In order to reflect the methodological implications of
our approach, we propose a number of extensions to the standard notation of use
cases. Fig. 2 uses the mortgage example to illustrate our proposal: the diagram
represents a business logical unit with the two use cases identified before. The
rectangle around the use cases, which in traditional use-case diagrams indicates
the boundary of the system at hand, is used to indicate the scope of the busi-
ness unit. Anything within the box represents functionality that is in scope and
anything outside the box is considered not to be in scope.

For the UpdateRegistry activity, the primary actor is Registry Manager; its
goal is to control the way a registry of trusted lenders is updated. The registry
itself is regarded as a supporting actor. The Certification Authority on which
UpdateRegistry relies is also considered a supporting actor in the use case
because it is an external service that needs to be discovered based on the nature
of the lender being considered.

In the GetMortgage service, the primary actor is a Customer that wants
to obtain a mortgage. The use case has four supporting actors: Lender, Bank,
Insurance and Registry. The Lender represents the organisation (e.g., a bank or
building society) that lends the money to the customer. Because only reliable
firms can be considered for the selection of the lender, the use case involves
communication with Registry. When the lender does not provide a bank account,
the use case involves an external Bank for opening a new account. Similarly, the
use case involves interaction with an Insurance provider for situations where the
lender requires insurance or the customer decides to get one.

As in traditional use cases, we view an actor as any entity that is external
to the business unit and interacts with at least one of its elements in order to
perform a task. As motivated above, we can distinguish between different kinds
of actors, which led us to customise the traditional icons as depicted in Fig. 2.
These allow us to discriminate between user/requester and resource/service ac-
tors. User-actors and requester-actors are similar to primary actors in traditional
use-case diagrams in the sense that they represent entities that initiate the use
case and whose goals are fulfilled through the successful completion of the use
case. The difference between them is that a user-actor is a role played by an
entity that interacts with the activity, while a requester-actor is a role played by
one or more software components operating as part of the activity that triggers
the discovery of the service.

For instance, the user-actor Registry Manager represents an interface for an
employee of the business organisation that is running Mortgage Finder whereas
the requester-actor Customer represents an interface for a service requester that
can come from any external organisation. A requester-actor can be regarded as
an interface to an abstract user of the functionality that is exposed as a service;



www.manaraa.com

68 J. Fiadeiro et al.

it represents the range of potential customers of the service and the requirements
typically derive from standard service descriptions stored in service repositories
such as the UDDI. In SRML, and reporting to Fig. 1, these descriptions are
given by business protocols (discussed in Section 5.1) and organised in a shared
ontology, which facilitates and makes the discovery of business partners more
effective. The identification of requester-actors may take advantage of existing
descriptions in the ontology or it may identify new business opportunities. In this
case, the ontology would be extended with new business protocols corresponding
to the new types of service.

Resource-actors and service-actors of a use case are similar to supporting
actors in traditional use-case diagrams in the sense that they represent entities
to rely on in order to achieve the underlying business goal. The difference is that
a service-actor represents an outsourced functionality to be procured on the fly
and, hence, will typically vary from one instance of the use case to another,
whereas a resource-actor is an entity that is statically bound and, hence, is the
same for all instances of the use case. Resource-actors are typically persistent

Mortgage Finder

Customer

Lender

Bank

Insurance

UpdateRegistry

Certification
Authority

Registry

GetMortgage

resource-actoruser-actor requester-actor

Registry
Manager

service-actor

Fig. 2. Service-oriented use-case diagram for Mortgage Finder



www.manaraa.com

The Sensoria Reference Modelling Language 69

sources/repositories of information. In general, they are components that are
already available to be shared within a business organisation.

The user- and resource-actors, which we represent at the top and bottom of
our specialised use-case diagrams, respectively, correspond in fact to the actors
that are presented on the left and right-hand side in traditional use-case dia-
grams, respectively. In contrast, the horizontal dimension of the new diagrams,
comprising requester-and service-actors, captures the types of interactions that
are specific to SOC.

We assume that every use case corresponds to a service-oriented artefact and
that the association between a primary actor and a use case represents an in-
stantiation/invocation. For this reason, in this context, we constrain every use
case to be associated with only one primary actor (either a requester or a user).

3.2 Deriving the Structure of SRML Modules

The proposed specialisations of use-case diagrams allow us to identify and derive
a number of aspects of the structure of SRML modules — the main modelling
primitives that we use for services and activities. Each use case, representing
either a service or an activity, gives rise to a SRML service module or activity
module, respectively. Fig. 3 presents the structure of the modules derived from
the use-case diagram in Fig. 2.

A SRML module provides a formal model of a service or activity in terms of
a configuration of ‘interfaces’ (formal specifications) to the parties involved. In
the case of activity modules:

– A serves-interface (at the top-end of the module) identifies the interactions
that should be maintained between the activity and the rest of the system
in which it will operate. This interface results from the user-actor of the
corresponding use case.

– Uses-interfaces (at the bottom-end of the module) are defined for those
(persistent) components of the underlying configuration that the activity
will need to interact with once instantiated. These interfaces result from the
resource-actors of the corresponding use case and provide formal descriptions
of the behaviour required of the actual interfaces that need to be set up for
the activity to interact with components that correspond to (persistent)
business entities.

– Requires-interfaces (on the right-hand boundary of the module) are defined
for services that the activity will have to procure from external providers
if and when needed. Typically, these reflect the structure of the business
domain itself in the sense that they reflect the existence of business services
provided outside the scope of the local context in which the activity will
operate. These interfaces result from the service-actors of the corresponding
use case.

– Component and wire-interfaces (inside the module) are defined for orches-
trating all these entities (actors) in ways that will deliver stated user re-
quirements through the serves-interface. These interfaces are not derived



www.manaraa.com

70 J. Fiadeiro et al.

from the use-case diagram but from the description of the corresponding
business requirements, i.e. they result from a design step. Typically, a de-
signer will choose pre-defined patterns of orchestration that reflect business
components that will be created in support of the activity or chosen from a
portfolio of components already available for reuse within the business organ-
isation. The choice of the internal architecture of the module (components
and wires) should also reflect the nature of the business communication and
distribution network over which the activity will run.

In the case of a service module, a similar diagrammatic notation is used except
that a provides-interface is used instead of a serves-interface:

– The provides-interface should be chosen from the hierarchy of standard busi-
ness protocols because the purpose here is to make the service available to
the wider market, not to a specific client. It derives from the requester-actor
of the corresponding use case.

GETMORTGAGE

SLA_GM

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CMCR:
     Customer

ME

ML

MB

MI

intMA

UPDATEREGISTRY

SLA_UR

RE:
Registry

MC:
Management
Coordinator

CA:
Certification

Autority

intCA

MR

MA

RM:
Registry
Manager

RM

intMC

Fig. 3. The SRML modules for the activity UpdateRegistry and the service Get-

Mortgage



www.manaraa.com

The Sensoria Reference Modelling Language 71

– Some of the component interfaces will correspond to standard components
that are part of the provider’s portfolio. For instance, these may be application-
domain dependent components that correspond to typical entities of the busi-
ness domain in which the service provider specialises.

– Uses-interfaces should be used for those components that the service provider
has for insuring persistence of certain effects of the services that it offers.

In addition, both activity and service modules include:

– An internal configuration policy (indicated by the symbol ), which iden-
tifies the triggers of the external service discovery process as well as the
initialisation and termination conditions of the components that instantiate
the component-interfaces.

– An external configuration policy (indicated by the symbol ), which
consists of the variables and constraints that determine the quality profile
of the activity to which the discovered services need to adhere.

The language primitives that are used in SRML for defining all these interfaces
as well as the configuration policies are detailed in Section 5. A summary of the
graphical notation can be found in Appendix A at the end of the paper.

4 The Coordination Model

The interfaces of a SRML module identified through a use-case diagram reflect
business dependencies of services or activities, not the interfaces that software
components offer to be interconnected: modules are not models of components
but of business processes. In this section, we detail the coordination model that
SRML adopts for component interconnection, i.e. we address the nature of the
interfaces that components offer and the way wires interconnect them. We also
outline a formalisation of this model, full details of which are available from [4,29].

4.1 Conversational Interactions

Typically, in CBD, one organises component interfaces (what they offer to and
expect from the rest of the system) in ports, which include the protocols that
regulate message exchange at those ports. In SRML, we have fixed the nature of
the interactions and protocols followed by components and wires. We distinguish
the following types of interactions:

r&s The interaction is initiated by the co-party, which expects a reply.
The co-party does not block while waiting for the reply.

s&r The interaction is initiated by the party and expects a reply from its
co-party. While waiting for the reply, the party does not block.

rcv The co-party initiates the interaction and does not expect a reply.
snd The party initiates the interaction and does not expect a reply.
ask The party synchronises with the co-party to obtain data.
rpl The party synchronises with the co-party to transmit data.
tll The party requests the co-party to perform an operation and blocks.
prf The party performs an operation and frees the co-party that requested it.



www.manaraa.com

72 J. Fiadeiro et al.

Interactions involve two parties and are described from the point of view of
the party in which they are declared, i.e. ‘receive’ means invocations received
by the party and sent by the co-party, and ‘send’ means invocations made by
the party. Interactions can be synchronous, implying that the party waits for
the co-party to reply or complete, or asynchronous, in which case the party does
not block. Typically, synchronous (blocking) interactions (i.e., ask, rpl, tll and
prf) occur with persistent components, reflecting interconnections based on the
exchange of products (clientship as in OO). The interactions among the compo-
nents responsible for the orchestration and those involving external services are
typically asynchronous (non-blocking, i.e., r&s, s&r, snd and rcv) so that the
parties can engage in multiple, concurrent conversations. Interactions of type
r&s and s&r are conversational (what we call 2-way), i.e. they involve a number
of events exchanged between the two parties:

interaction The event of initiating interaction.
interaction The reply-event of interaction.
interaction� The commit-event of interaction.
interaction✘ The cancel-event of interaction.
interaction✞ The revoke-event of interaction.

The initiation-event is the only event that can be associated with 1-way asyn-
chronous interaction types (snd,rcv). The reply-event is sent by the co-party,
offering a deal or declining to offer one; in the first case, the party that initi-
ated the conversation may either commit to the deal or cancel the interaction;
after committing, the party can still revoke the deal, triggering a compensa-
tion mechanism. See Fig. 4 for some of the possible scenarios (explained further
below).

All interactions can have parameters for transmitting data when they are
initiated — declared as . Conversational interactions can also have parameters
for carrying a reply — declared as — or for carrying data if there is a commit,
a cancel or a revoke — declared as �, ✘ and ✞, respectively. In particular, every
reply-event interaction has two distinguished parameters:

– Reply is a Boolean parameter that indicates whether the reply is positive,
meaning that the co-party is ready to proceed. The value of interaction.Reply

a a a

a a a

a a

a
a.useBy

S R S R S R

Fig. 4. The protocol of 2-way interactions when the reply is positive



www.manaraa.com

The Sensoria Reference Modelling Language 73

is False if, for some reason related with the business logic, the request
interaction cannot be fulfilled.

– UseBy is a parameter that, in the case of a positive reply, indicates the dead-
line for receiving the commit and cancel events. The value of this parameter
is an expiration time (including the value +∞) obtained by adding the value
of the configuration variable (non-functional attribute) interaction to the
instant at which interaction is sent. As discussed in Section 5.2, configu-
ration variables can be subject to negotiation during the discovery/selection
process.

Interactions can be seen as ports in the traditional CBD sense, the associated
events representing the interface of the components. The sequence diagrams
in Fig. 4 illustrate the protocol that is associated with every interaction for
which the reply is positive. In the case on the left, the initiator commits to the
deal; a revoke may occur later on, compensating the effects of the commit-event
interaction�(this can however be constrained by the business logic, for instance,
by defining a deadline for compensation). In the middle, there is a cancellation;
in this situation, a revoke is not available. In the case on the right, the expiration
time occurs without a commit or cancel having occurred; this implies that no
further events for that interaction will occur. In Section 5, we give examples of
the intended usage of these primitives.

Events occur during state transitions in both parties involved in the inter-
action: we use event! in order to refer to the publication of event in the life of
the initiating party, and event? (resp. event¿) for its execution (resp. being dis-
carded) by the party that receives it. The occurrences of event! and event? (or
event¿) may not coincide in time: we consider that there may exist a delay be-
tween publishing and delivering an event. The value of this delay is given by the
configuration variable Delay associated with the wire through which the events
are transmitted (see Fig. 5). In Section 8, we explore timing aspects of service
provision in more detail, including the use of PEPA [36] for stochastic analysis.

a

a

S R

} w.Delay

} w.Delay

Fig. 5. The intuitive semantics of delays

4.2 Deriving Interactions from Message Sequence Diagrams

One of the ways that we have found useful for identifying the interactions that
are relevant for defining a given activity or service module is to draw message
sequence diagrams that characterise the interconnections required between the



www.manaraa.com

74 J. Fiadeiro et al.

different parties. For instance, the message sequence diagram in Fig. 6 depicts
the workflow that is initiated by the initial request received by GetMortgage

from the customer CR.

alt

par

MACR

BA

IN

getProposal
askProposal

askProposalgetProposal

getProposal

getProposal

askProposal

askProposal

openAccount

openAccount

getInsurance

signOutLoan

signOutLoan
confirmation

getInsurance

[now>getProposal.UseBy] askProposal

[needAccount]

[needInsurance]

LE

Fig. 6. Identifying interactions within GetMortgage

4.3 A Formal Model

The overall coordination model of SRML can be summarised as follows (see
[4,29] for details). We work over configurations of global computers defined by
a set COMP of components (applications deployed over execution platforms)
linked through wires (e.g. interconnections between components over a given
communication network), the set of which we denote by WIRE.

A state consists of:

– The set PND of the events that are pending in the wires, i.e. the events that
have been published but not yet delivered by the wires to the corresponding
co-parties;

– The set INV of the events that have been invoked, i.e. those that were de-
livered by the wires and are stored locally by the components that received
them, waiting to be processed;

– The time at that state;
– A record of all events that have been published (!), delivered (¡), executed

(?) or discarded (¿);
– The values of all event parameters and configuration attributes.



www.manaraa.com

The Sensoria Reference Modelling Language 75

In this model, state transitions are characterised by what we call a computation
step, consisting of:

– An ordered pair of states SRC (source) and TRG (target);
– A subset DLV of PNDSRC consisting of the events that are pending in the

source state and selected for delivery during that step;
– A set PRC that selects from INV SRC one event for every component that

has events waiting to be processed;
– A subset EXC of PRC consisting of the events that are actually executed

(the others are discarded);
– A set PUB of the events that are published during that step together with

a function that assigns a value to the parameters of each such event.

These elements are subject to the following constraints:

– The set INV TRG of the events in the target state that have been invoked
consists of the events in DLV (i.e. those that are delivered during the step)
together with those already in INV SRC that have not been selected by PRC
to be processed;

– The set PNDTRG of the events that are pending at the target state consists
of the events in PUB (i.e. those that are published during the step) together
with the events in PNDSRC that have not been selected by DLV to be
delivered.

PARTY A PARTY B

INVA INVBPNDw

WIRE
We

e'

TRG

PARTY A PARTY B

INVA INVBPNDw

WIRE
W

SRC

PUBA PUBB

PRC(B)
DLVBDLVA

PRC(A)

Fig. 7. Graphical representation of event flow from the point of view of a wire w
between parties A and B



www.manaraa.com

76 J. Fiadeiro et al.

That is, the set of events that are pending in wires is updated during each
computation step by removing the events that the wire delivers during that step
— DLV — and adding the events that each component publishes — PUB. We
assume that all the events that are selected by DLV are actually delivered to
the receiving component, i.e. each wire is reliable — see [4,29] for a model that
considers unreliable wires.

At each step, components may select one of the events waiting to be processed;
this is captured by the function PRC. The fact each component can only process
one event at a time is justified by the assumption that the internal state of the
components is not necessarily distributed and therefore no concurrent changes
can be made to their states.

The set of events that are waiting to be processed by every component is
updated in each step by removing the event that is processed and adding the
events that are actually delivered to that component. Fig. 7 is a graphical repre-
sentation of the flow of events that takes place during a computation step from
the point of view of components A and B connected by a wire w.

5 The Modelling Primitives of SRML

5.1 Behaviour Specification Languages

The entities involved in service and activity modules — component interfaces,
requires-interfaces, provides-interfaces, uses-interfaces, serves-interfaces and
wire-interfaces — can be defined in SRML independently of one another as
design-time reusable resources. For that purpose, we have defined a number of
different but related languages, which we present and illustrate in this section
using fragments of our running example.

Signatures. All the languages that we use have in common the declaration of
the interactions (in the sense of Section 4.1) in which the corresponding entity
can be involved — what we call a signature. These declarations are strictly local
to the entity, i.e. we cannot rely on global names to establish interconnections
between entities — that is the role of the wires. As an example, consider the
component-interface MA, which we declared to be of type MortgageAgent. The
corresponding signature is presented in Fig. 8.

Interactions are classified according to the types defined in Section 4.1. For
instance, getProposal is declared to be of type r&s, i.e. as being an asynchronous
conversational interaction that is invoked by the co-party. This interaction has
three parameters that carry data produced by the co-party at invocation time —
the user profile, income and preferences for the mortgage. Such parameters are
declared under the symbol . Parameters that are used by the mortgage agent
for sending the reply are declared under the symbol — in the case at hand,
the details of mortgage proposal and the cost of the mortgage-brokerage service
for taking out the loan if the customer accepts the proposal.

The co-party of the mortgage agent in this interaction is not named (the
same applies to all other interactions, as discussed in Section 4.1). This makes



www.manaraa.com

The Sensoria Reference Modelling Language 77

it possible to specify the behaviour that can be assumed of the mortgage agent
at the interface, independently of the way it is instantiated within any given
system.

The signature of MortgageAgent includes six additional interactions, all of
which are self-initiated. While askProposal, getInsurance, openAccount and sig-
noutLoan are conversational and asynchronous (i.e. of type s&r or snd), the
interactions getLenders and regContract are synchronous. In the case of getLen-
ders, the mortgage agent has to synchronise with the co-party to obtain data
(the identification of the lenders that meet the user preferences for the mortgage)
while, in the case of regContract, the party requests the co-party to perform an
operation (register a loan contract) and blocks until the operation is completed.

Business roles. In SRML, interfaces of service components are typed by busi-
ness roles. A business role is specified by defining the way in which the inter-
actions declared in the signature are orchestrated. For that purpose, we offer
a textual declarative language based on states and transitions that is general
enough to support languages and notations that are typically used for orches-
trating workflows such as BPEL and UML statecharts.

In a typical business role, a set of variables provides an abstract view of the
state of the component and a set of transitions models the activities performed

INTERACTIONS

r&s getProposal

idData:usrdata,

income:moneyvalue,

preferences:prefdata,

proposal:mortgageproposal

cost:moneyvalue

s&r askProposal

idData:usrdata,

income:moneyvalue,

 proposal:mortgageproposal

loanData:loandata,

accountIncluded:bool,

insuranceRequired:bool

s&r getInsurance

idData:usrdata,

loanData:loandata,

insuranceData:insurancedata

s&r openAccount

idData:usrdata,

loanData:loandata,

accountData:accountdata

s&r signOutLoan

insuranceData:insurancedata,

accountData:accountdata,

contract:loancontract

snd confirmation

contract:loancontract

ask getLenders(prefdata):setids

tll regContract(loandata,loancontract)

Fig. 8. The signature of MortgageAgent



www.manaraa.com

78 J. Fiadeiro et al.

by the component, including the way it interacts with its co-parties. For instance,
the local state of a mortgage agent is defined as presented in Fig. 9.

Typically, we use a variable (s in our example) to model control flow, including
the way the component reacts to triggers. The other state variables are used for
storing data that is needed at different stages of the orchestration.

Each transition has an optional name and a number of possible features. See
Fig. 10 for an example.

– A trigger is either the processing of an event, like in the example above, or a
state condition. The former means that the transition is triggered when the
component processes the event, and the latter when the condition changes
from false to true.

– A guard is a condition that identifies the states in which the transition can
take place — in GetClientRequest, the state INITIAL. If the trigger is an
event and the guard is false, the event is processed but not executed (it is
discarded).

– A sentence specifies the effects of the transition in the local state. Given a
state variable var, we use var’ to denote the value that var takes after the
transition. In the case illustrated in Fig. 10, we change the value of s and store
the identification of the lenders that match the users-preferences. This data
is obtained from a co-party through the synchronous interaction getLenders.
As already mentioned, this co-party is not identified in the business role: we
will see that, because of the way components are wired, the co-party in this
interaction within the module GetMortgage is RE of type Registry — the
interface of a persistent component.

Another sentence specifies the events that are published during the transition, in-
cluding the values taken by their parameters. In this sentence, we use variables and

local s:[INITIAL, WAIT_PROPOSAL, WAIT_DECISION,
PROPOSAL_ACCEPTED, SIGNING, FINAL], 

lenders:setids,
needAccount, needInsurance:bool,
insuranceData:insurancedata, accountData:accountdata

Fig. 9. Local state of the MortgageAgent

transition GetClientRequest
triggeredBy getProposal
guardedBy s=INITIAL
effects s’=WAIT_PROPOSAL

∧ lenders’= getLenders(prefdata)
∧ ¬empty(lenders’) ⊃ s’=WAIT_PROPOSAL
∧ empty(lender’) ⊃ s’=FINAL

sends ¬empty(lenders’) ⊃ askProposal
∧ askProposal.idData=getProposal.idData
∧ askProposal.income=getProposal.income

∧ empty(lenders’) ⊃ getProposal
∧ getProposal.Reply=false

Fig. 10. Transition GetClientRequest



www.manaraa.com

The Sensoria Reference Modelling Language 79

primed variables as in the ‘effects’-section. In the example, if there is at least one
lender that matches the user-preferences, the interaction askProposal is initiated
in order to get a mortgage proposal from a lender. Once again, the corresponding
co-party is not named: we will see that, within the module GetMortgage, this
is an external service provided by a bank or building society that needs to be dis-
covered and bound to the mortgage agent. If no lenders are found that match the
user-preferences, a negative reply to getProposal is published.

Another example of a transition is GetLenderProposal presented in Fig. 11.
In this case, the transition is triggered by the processing of the reply to askPro-
posal and the effect is to send a reply to getProposal (the parameter Reply of
askProposal and the proposal received in proposal are both transmitted by the
reply-event). The transition also defines the cost of the mortgage-brokerage ser-
vice for taking out the loan if the customer accepts the proposal.

Specifications may also declare configuration variables, which are discussed
in Section 5.2. These variables are instantiated at run time, when a new session
of the service starts, possibly as a result of the negotiation process involved
in the discovery of the service. In the case of MortgageAgent, we declare the
configuration variable Charge that determines an additional charge over the
base price of the mortgage-brokerage service. In Section 5.2 we will see that, in
the module GetMortgage, this extra-charge relates to the period of validity
of the loan proposal offered by the service, which is also subject to negotiation.

Notice that, through business roles, SRML offers a very flexible way for
modelling control flow because transitions are decoupled from interactions and
changes to state variables, which offers a declarative style of defining orchestra-
tions. For instance, the transition TimeoutProposal defined below is triggered
once the reply to getProposal expires; in this situation, the component informs
the lender that the proposal was not accepted and moves to the final state.

transition GetLenderProposal
triggeredBy askProposal
guardedBy s=WAIT_PROPOSAL
effects needAccount’=askProposal.accountIncluded

∧ needInsurance’=askProposal.insuranceRequired
∧ askProposal.Reply ⊃ s’=WAIT_DECISION
∧ ¬askProposal.Reply ⊃ s’=FINAL

sends getProposal
∧ getProposal.Reply=askProposal.Reply
∧ getProposal.proposal=askProposal.proposal
∧ getProposal.cost=(CHARGE/100+1)*750

Fig. 11. Transition GetLenderProposal

transition TimeoutProposal
triggeredBy now>getProposal.UseBy
guardedBy s=WAIT_DECISION
effects s’=FINAL
sends askProposal

Fig. 12. Transition TimeOutProposal



www.manaraa.com

80 J. Fiadeiro et al.

Other aspects of this declarative style include the possibility of leaving certain
aspects under-specified that can be refined at later stages of the development
process. This is why the various aspects of a transition are specified as sentences
using a logical notation.

More traditional (control-oriented) notations can be used instead for defin-
ing orchestrations. In Fig. 13 we show how part of the orchestration of Mort-
gageAgent can be defined using a UML statechart. Because statecharts focus only
on control flow, we would need to provide a separate specification for the data
flow. In [14], we have also shown how BPEL can be encoded in our language.

<< StateNode>>
PROPOSAL_ACCEPTED

start

/ askProposal

<<StateNode>>
INITIAL

<< StateNode>>
WAIT_PROPOSAL

<< StateNode>>
WAIT_DECISION

askProposal  /

<<StateNode>>
FINAL

/ askProposal 

<<StateNode>>
SIGNING

/ signOutLoan

end

[askProposal.needInsurance] / 
getInsurance

[askProposal.needAccount] / 
openAccount

getInsurance / openAccount /

[¬ askProposal.needAccount] 

[askProposal.Reply] / getProposal

now>getProposal.UseBy /

[¬ askProposal.needInsurance]

<<TransitionNode>>
GetClientRequest

getProposal /

<<TransitionNode>>
GetProposal

[¬askProposal.Reply] / getProposal

<<TransitionNode>>
TimeoutProposal

/ askProposal 

<<TransitionNode>>
ProposalNotAccepted

<<TransitionNode>>
ProposalAccepted

getProposal  [now<askProposal.UseBy]/ 

[needAccount  needInsurance]/ 

[¬ needAccount  ¬ needInsurance] / signOutLoan

<<TransitionNode>>
Conclude

signOutLoan  / 

 / confirmationgetProposal  /

R1

P1

GetInsurance

R2

P2

GetAccount

Fig. 13. Using UML statecharts for defining orchestrations in business roles

Business protocols. In SRML, a module may declare a number of requires-
interfaces, each of which provides an abstraction (type) for a service that will
have to be procured from external providers, if and when needed — what, in
SCA, corresponds to an “External Service”. In the case of a service module, a
provides-interface is also declared for describing the service that is offered by the
module, corresponding to what in SCA is called an “Entry Point”.



www.manaraa.com

The Sensoria Reference Modelling Language 81

Both types of external interfaces are typed with what we call business proto-
cols, or just protocols if it is clear from the context what kind of protocols we
are addressing. Like business roles, protocols include a signature. The difference
is that, instead of an orchestration, we provide a set of properties. In the case
of a requires-interface, these are the properties required of the external service
that needs to be procured. In the case of a provides-interface, we specify the
properties offered by the service orchestrated by the module.

In the case of business protocols used for specifying the required services, we
declare the interactions in which the external entity (to be procured) must be
able to be involved as a (co-)party and we specify the protocol that it has to
adhere to. For instance, the service GetMortgage expects the behaviour from
a lender described in Fig. 14.

BUSINESS PROTOCOL Lender is

INTERACTIONS

r&s requestMortgage

idData:usrdata,

income:moneyvalue,

 proposal:mortgageproposal

loanData:loandata,

accountIncluded:bool,

insuranceRequired:bool

r&s requestSignOut

insuranceData:insurancedata,

accountData:accountdata,

contract:loancontract

BEHAVIOUR

initiallyEnabled requestMortgage ?
requestMortgage ? enables requestSignOut ?

Fig. 14. The specification of business protocol Lender

Notice that the interactions are again named from the point of view of the
party concerned — the lender in the case at hand. The specified properties
require the following:

– In the initial state, the lender is ready to engage in requestMortgage.
– After receiving the commitment to the mortgage proposal, the lender be-

comes ready to engage in requestSignOut.

The language in which these properties are expressed uses a set of patterns
that capture commonly occurring requirements in the context of service-oriented
interactions. In Section 7.1, we present their semantics in terms of formulas of
the temporal logic UCTL [50]. Intuitively, they correspond to traces of the form
depicted in Fig. 15.



www.manaraa.com

82 J. Fiadeiro et al.

¬ e?

a

¬ e¿

¬ e?  ¬a

a enables e

¬ e!

a e!
¬ e!  ¬a

a ensures e

s after a

s

a

¬ e?

a

¬ e¿

b

¬ e?

a enables e until b

¬ e?

a

¬ e¿  ¬b

¬ e?  ¬a

Fig. 15. The traces that correspond to the patterns

The intuitive semantics of these patterns is as follows:

– initiallyEnabled e: The event e is enabled (cannot be discarded) in the
initial state and remains so until it is executed.

– s after a: the state condition s holds forever after the action condition a
becomes true.

– a enables e until b: The event e cannot be executed before a holds and
remains enabled after a becomes true until it is either executed or b becomes
true (if ever).

– a enables e: The event e cannot be executed before a holds and remains
enabled after a becomes true until it is executed. It is easy to see that this
pattern is equivalent to a enables e until false.

– a ensures e: The event e cannot be published before a holds, and is published
sometime after a becomes true.

Business protocols are also used for modelling the behaviour that users can ex-
pect from a service. This subsumes what, in [8], are called external specifications:

In particular, a trend that is gathering momentum is that of including, as
part of the service description, not only the service interface, but also the
business protocol supported by the service, i.e. the specification of which
message exchange sequences are supported by the service, for example
expressed in terms of constraints on the order in which service operations
should be invoked.



www.manaraa.com

The Sensoria Reference Modelling Language 83

For instance, the provides-interface of GetMortgage is typed by the business
protocol presented in Fig. 16.

This business protocol specifies that the service offered by GetMortgage

relies on two asynchronous interactions — getProposal and confirmation. The
properties offered by the service are:

– A request for getProposal is enabled when the service is activated.
– The service brokerage has a base price that can be subject to an extra charge,

subject to negotiation.
– A confirmation carrying the loan contract will be issued upon receipt of the

commit to getProposal.

Layer protocols. A module in SRML may also declare one or more uses-
interfaces. These provide abstractions of components corresponding to resource
actors as discussed in Section 3.1 — the components with which the service
needs to interact in order to ensure persistent effects.

Uses-interfaces are specified through what we call layer protocols. Like busi-
ness protocols, layer protocols are defined by a signature and a set of properties.
However, where the interactions used in business protocols are asynchronous,
those declared in a layer protocol can be synchronous and blocking.

As an example, consider the specification of the layer protocol fulfilled by a
registry as shown in Fig. 17. It defines that a registry can be queried — through
the interaction getLenders — about the registered lenders that meet given users
preferences, and is able to register a new contract through the operation regis-
terContract.

The properties of synchronous interactions are typically in the style of pre/
post-condition specifications of methods.

BUSINESS PROTOCOL Customer is

INTERACTIONS

r&s getProposal

idData:usrdata,

income:moneyvalue,

preferences:prefdata,

proposal:mortgageproposal

cost:moneyvalue

snd confirmation
contract:loancontract

SLA VARIABLES

CHARGE:[0..100]

BEHAVIOUR

initiallyEnabled getProposal ?
getProposal.cost≤750*(CHARGE/100+1) after

(getProposal ! ∧ getProposal.Reply)
getProposal ? ensures confirmation !

Fig. 16. The specification of business protocol Customer



www.manaraa.com

84 J. Fiadeiro et al.

Interaction protocols. A module consists of a number of interfaces connected
through wires. Wires are labelled by connectors that coordinate the interactions
in which the parties are jointly involved. In SRML, we model the interaction
protocols involved in these connectors as separate, reusable entities.

Just like business roles and protocols, an interaction protocol is specified in
terms of a number of interactions. Because interaction protocols establish a re-
lationshipbetween two parties, the interactions in which they are involved are
divided in two subsets called roles — A and B. The semantics of the protocol
is provided through a collection of sentences — what we call interaction glue —
that establish how the interactions are coordinated.

As an example, consider the protocol depicted in Fig. 18, which is used in the
wire that connects MortgageAgent and Insurance. This is a ‘straight’ protocol
that connects directly two entities over two conversational interactions that have
two -parameters and one -parameter. The property S1 ≡ R1 establishes that
the events associated with each interaction are the same, e.g. that S1 is the same
as R1.

The names used in interaction protocols are generic to facilitate reuse. In fact,
the specification itself is parameterised by the data sorts involved in the interac-
tions. Parameterisation (which is also available for business roles and protocols)
provides the means for defining families of specifications. The parameters are
instantiated at design time when the specifications are used in the definition of
a module. This can be seen at the end of this Section.

Two other families of straight protocols are presented below. These families
define the connection of two synchronous interactions with two parameters; in

LAYER PROTOCOL Registry is

INTERACTIONS

rpl getLenders(prefdata):setids
prf registerContract(loandata,loancontract)

BEHAVIOUR

Fig. 17. The specification of layer protocol Registry

INTERACTION PROTOCOL Straight.I(d1,d2)O(d3) is

ROLE A
s&r S1

i1:d1, i2:d2
 o1:d3

ROLE B
r&s R1

i1:d1, i2:d2
o1:d3

COORDINATION

S1  R1
S1.i1=R1.i1
S1.i2=R1.i2
S1.o1=R1.o1

Fig. 18. The specification of an interaction protocol



www.manaraa.com

The Sensoria Reference Modelling Language 85

the first protocol, the interaction involves a return value. The first interaction
protocol establishes that the values returned by the synchronous interaction are
the same, while the second protocol synchronises the two operations without any
conversion of data.

Interaction protocols are first-class objects that can be (re)used to assign prop-
erties to wires, which reflect constraints on the underlying run-time environment.
These may concern data transmission, synchronous/asynchronous connectivity,
distribution, and other non-functional properties such as security. In such cases,
the specifications are not as simple as those of straight protocols.

Connectors. After having chosen the protocols that coordinate the interac-
tions between two parties, we use them as the ‘glue’ (in the sense of [47]) of the
connectors that label the wires that link the corresponding parties. In a con-
nector, the interaction protocol is bound to the parties via ‘attachments’: these
are mappings from the roles to the signatures of the parties identifying which
interactions of the parties perform which roles in the protocol. The use of at-
tachments allows us to separate the definition of the interaction protocols from
their use in the wires, which promotes reuse: typically, one defines a connector
by choosing from a repository of (types of) protocols that have proved to be
useful in other situations.

Summarising, connectors are triples 〈μA, P, μB〉 where:

– P is an interaction protocol. We use roleAP and roleBP to designate its
roles and glueP for the role.

– μA and μB are attachments that connect the roles of the protocol to the sig-
natures of the entities (business roles, business protocols or layer protocols)
being interconnected.

INTERACTION PROTOCOL Straight.A(d1,d2)R(d3) is

ROLE A
ask S1(d1,d2):d3

ROLE B
rpl R1(d1,d2):d3

COORDINATION

S1(d1,d2)=R1(d1,d2)

INTERACTION PROTOCOL Straight.T(d1,d2) is

ROLE A
tll S1(d1,d2)

ROLE B
prf R1(d1,d2)

COORDINATION

S1(d1,d2) R1(d1,d2)

Fig. 19. Another two specifications of interaction protocols



www.manaraa.com

86 J. Fiadeiro et al.

For instance, both Straight.A(prefdata)R(setids) and Straight.T(loandata, loan-
contract) are used in the wire ME to connect different interactions between
MortgageAgent and Registry as depicted in Fig. 20.

Each row describes one connector. The first two columns define the attach-
ment between roleA of the interaction protocol (specified in the middle column)
and the signature of MortgageAgent. In the same way, the last two columns de-
fine the attachment between roleB of the interaction protocol and the signature
of Registry.

We use the same notation for specifying the wires that connect module com-
ponents to requires-interfaces. However, the specification of these wires is subject
to an additional correctness condition that restricts the signature of the requires-
interfaces to the interaction used in the corresponding wires. This is to ensure
that all the interactions of the services that are bound to the module through
the requires-interface have a corresponding co-party.

For instance, the only wire that connects LE in GetMortgage is ML (with
MA). Its specification is presented in Fig. 21. The correctness condition is satis-
fied because the signature of Lender is isomorphic to the sum of the interactions
of the roles connected to it, i.e. all the interactions of Lender are mapped to a
port.

The specification of the wires that connect module components to the provides-
interface of the module uses a slightly different syntax. This is because what we
need to declare is the set of interactions that the components make available to
the customer of the service, and the protocols through which the corresponding
events are transmitted. In this sense, we do not model the customer proper,

MA
MortgageAgent

c4 ME d4
RE
Registry

ask getLenders S1 Straight.
A(prefdata)R(setids)

R1 rpl getLenders

tll regContract S1 Straight.
T(loandata,loancontract)

R1 prf registerContract

Fig. 20. The specification of the connectors involved in wire ME

MA
MortgageAgent

c1 ML d1
LE
Lender

s&r askProposal
idData
income
proposal
loanData
accountIncluded
insuranceRequired

S1

i1

i2

o1

o2

o3

o4

Straight.
I(usrdata,
moneyvalue)

O(mortgageproposal,
loandata,
bool,bool)

R1

i1

i2

o1

o2

o3

o4

r&s requestMortgage
idData
income
proposal
loanData
accountIncluded
insuranceRequired

r&s signOutLoan
insuranceData
accountData
contract

S1

i1

i2

o1

Straight
I(insurancedata,

accountdata)
O(loancontract)

R1

i1

i2

o1

s&r requestSignOut
insuranceData
accountData
contract

Fig. 21. The specification of the connectors involved in wire ML



www.manaraa.com

The Sensoria Reference Modelling Language 87

which in SRML is reflected by omitting the corresponding column of the table
that defines the wire.

For instance, the wire CM that interconnects Customer and MortgageAgent
in GetMortgage is specified as presented in Fig. 22. In this case, each row
also describes one connector whose interaction protocol is specified in the second
column. The difference is that the entities that will be connected to the roleA of
their interaction protocols are unknown (these will belong to the services that will
bind to GetMortgage). As before, the last two columns define the attachment
between roleB of the interaction protocol and the signature of MortgageAgent.

5.2 Configuration Policies

Whereas business roles, business protocols, layer protocols and interaction pro-
tocols deal with functional aspects of the behaviour of a (complex) service or
activity, configuration policies address aspects that relate to processes of dis-
covery, selection and instantiation of services. In SRML, we distinguish between
internal and external configuration policies. The former concern aspects related
with service instantiation such as the initialization of service components and
the triggering of the discovery of required services. The latter address aspects
related with the selection of partner services and negotiation of contracts.

Internal configuration policy. The internal configuration policy of a service
module concerns the triggering of the discovery and selection process associated
with its requires-interfaces, and the instantiation of its component and wire
interfaces.

A trigger is usually associated with the occurrence of one or more events and
additional conditions on the state of the components in which the events occur.
For instance, GetMortgage defines that the lender has to be discovered as
soon as getProposal is executed (by the workflow). There is a default trigger
condition: the publication of the initiation event of the first interaction con-
nected to the requires-interface. In our example, this is the case of the bank and
insurance external services.

c1 CM d1
MA
MortgageAgent

S1

i1

i2

i3

o1

o2

Straight.
I(usrdata,

moneyvalue,prefdata)
O(mortageproposal,

moneyvalue)

R1

i1

i2

i3

o1

o2

r&s getProposal
idData
income
preferences
proposal
cost

R1

i1

Straight
O(loancontract)

S1

i1

snd confirmation
contract

Fig. 22. The specification of the connectors involved in wire CM



www.manaraa.com

88 J. Fiadeiro et al.

In a module, each service component has an associated initialisation condition,
which is guaranteed to hold when the component is instantiated, and a termi-
nation condition, which determines when the component stops executing and
interacting with the rest of the components (in which case it can be removed
from the state configuration to which it belongs). Typically, both conditions
relate to the state variables of the component, but they can also include the
publication of given events. For instance, in the case of MortgageAgent, these
conditions are defined only in terms of the local variable s (see Fig. 24).

Notice that these conditions can be underspecified, leaving room for further
refinement. For instance, we may force the termination of the component after
a certain date without specifying exactly when.

External policies. The external policy concerns the way the module relates to
external parties: it declares the set of variables that can be used for negotiation
and establishing a service level agreement (SLA), and a set of constraints that
have to be taken into account during discovery and selection.

SLA variables include all the configuration variables declared in the spec-
ifications (except in the provides-interface). For instance, in GetMortgage,
MortgageAgent declares the configuration variable Charge. These variables are
local to the interfaces to which they are attached and instantiated when the cor-
responding component is created. Because constraints apply to the module as a
whole, we refer to these variables by preceding them with the name of the entity
to which they belong. Hence, in GetMortgage, we refer to MA.Charge.

SRML also provides a set of standard configuration variables — availability,
response time, message reliability, service identification, inter alia. Some of them,
e.g. response time, are associated with requires or provides-interfaces, and other,
e.g. message reliability, apply to the wires.

The standard configuration variables used in GetMortgage are:

– interaction , for every interaction of type r&s; its value is the length of time
the reply is valid after interaction is issued.

– wire.Delay, for every wire; it defines the maximum delivery delay for events
sent over that wire.

LE: Lender
intLE trigger: getproposal ?

BA: Bank
intBA trigger: default

IN: Insurance
intIN trigger: default

Fig. 23. Trigger conditions in GetMortgage

MA: MortgageAgent
intMA init: s=INITIAL 
intMA term: s=FINAL

Fig. 24. Initialization and termination conditions in GetMortgage



www.manaraa.com

The Sensoria Reference Modelling Language 89

– ServiceId, for every external-interface; it represents the identification of the
service that is bound to that interface (for instance, a URI).

Notice that although these variables are standard they need to be declared in a
module if the designer wants them to be involved in the service discovery nego-
tiation process. For instance, their declaration in GetMortgage is presented
in Fig. 25.

The approach that we adopt in SRML for SLA negotiation (see also Chapter
3-1) is based on the constraint satisfaction and optimization framework pre-
sented in [11] in which constraint systems are defined in terms of c-semirings.
As explained therein, this framework is quite general and allows us to work with
constraints of different kinds — both hard and ‘soft’, the latter in many grades
(fuzzy, weighted, and so on). The c-semiring approach also supports selection
based on a characterisation of ‘best solution’ supported by multi-dimensional
criteria, e.g. minimizing the cost of a resource while maximizing the work it
supports.

In this framework:

– A c-semiring is a semiring 〈A, +,×, 0, 1〉 in which A represents a space of
degrees of satisfaction, e.g. the set {0, 1} for yes/no or the interval [0, 1] for
intermediate degrees of satisfaction. The operations × and + are used for
composition and choice, respectively. Composition is commutative, choice
is idempotent and 1 is an absorbing element (i.e. there is no better choice
than 1). That is, a c-semiring is an algebra of degrees of satisfaction. Notice
that every c-semiring S induces a partial order≤S (of satisfaction) over A as
follows: a ≤S b iff a+ b = b. That is, b is better than a iff the choice between
a and b is b.

– A constraint system is a triple 〈S, D, V 〉 where S is a c-semiring, V is a
totally ordered set (of configuration variables), and D is a finite set (domain
of possible elements taken by the variables).

– A constraint consists of a selected subset con of variables and a mapping
def : D|con| → S that assigns a degree of satisfaction to each tuple of values
taken by the variables involved in the constraint.

The external configuration policy of a module involves a constraint system based
on a fixed c-semiring and a set of constraints over this constraint system. Because
we want to handle constraints that involve different degrees of satisfaction, it
makes sense that we work with the c-semiring 〈[0..1], max, min, 0, 1〉 of soft fuzzy
constraints [11]. In this c-semiring, the preference level is between 0 (worst) and
1 (best).

SLA VARIABLES

CHARGE:[0..100]

Fig. 25. Declaration of SLA variables in GetMortgage



www.manaraa.com

90 J. Fiadeiro et al.

For instance, the external configuration policy of GetMortgage includes
the following constraints:

C1 : {MA.Charge, MA.getProposal },

def(c, t) =
{

1 if t ≤ 10 · c
1 + 2 · c− 0.2 · t if 10 · c < t ≤ 5 + 10 · c

That is, the more Charge is applied to the base price of the brokerage service
the longer is the interval during which the proposal is valid.

C2 : {LE.ServiceId}, def(s) =
{

1 if s ∈MA.lenders
0 otherwise

That is, the choice of the lender is constrained by the service identifier, which
must belong to the set MA.lenders (recall that, according to the orchestration
of MortgageAgent, this set contains the identification of the services provided by
trusted lenders that were found to be appropriate for the request at hand).

C3 : {MA.getProposal , LE.requestMortgage },

def(t1, t2) =
{

1 if t2 > t1 + CM.Delay + ML.Delay
0 otherwise

That is, the choice of the lender is also constrained by the period of validity
associated with its loan proposals. This period must be greater than the sum of
the validity period offered by the brokerage service to its clients and the possible
delays that may affect the transmission through the wires involved (notice that
CM.Delay and ML.Delay are not declared as SLA variables and, hence, they are
used like constants).

C4 : {LE.COST, LE.requestMortgage }, def(c, t) =
{ 1

c + t
100 if c < 500

0 otherwise

That is, the cost to be paid by the brokerage service to the lender must be less
than 500, and the preference between lenders charging the same value will take
into account the validity period of the loan proposals.

The value of SLA variables is negotiated during service discovery/binding. De-
tails on negotiation of constraints and SLAs are further discussed in Section 6.3.

5.3 Module Declaration

SRML makes available a textual language for defining modules, which involves
the specification of the module external interfaces, service components, wires
and policies, as discussed in the previous sections.

In the case of a service module, we also have to map the interactions and SLA
variables of the provides-interface to corresponding interactions and variables of
the entities that provide the service. This is because the business protocol that



www.manaraa.com

The Sensoria Reference Modelling Language 91

labels the provides-interface represents the service that is offered by the module
(behavioural properties and negotiable SLA variables), not the activity to which
the service will be bound. In the case of GetMortgage, only MA is connected
to CR, so the mapping is actually an identity. This is specified as presented in
Fig. 26.

PROVIDES

CR: Customer
CR
Customer

MA
MortgageAgent

r&s getProposal
idData
income
preferences
proposal
cost

r&s getProposal
idData
income
preferences
proposal
cost

snd confirmation
contract

snd confirmation
contract

SLA VARIABLES
CHARGE

SLA VARIABLES
CHARGE

Fig. 26. Specification of the mapping between CR and MA in GetMortgage

6 The Configuration-Management Model

6.1 Layered State Configurations of Global Computers

As already mentioned, we take SOC to be about applications that can bind to
other applications discovered at run time in a universe of resources that is not
fixed a priori. As a result, there is no structure or ‘architecture’ that one can fix
at design-time for an application; rather, there is an underlying notion of config-
uration of a global computer that keeps being redefined as applications execute
and get bound to other applications that offer required services. As is often the
case (e.g. [47]), by ‘configuration’ we mean a graph of components (applications
deployed over a given execution platform)linked through wires (e.g. interconnec-
tions between components over a given communication network) in a given state
of execution. Typically, wires deal with the heterogeneity of partners involved
in the provision of the service, performing data (or, more, generally, semantic)
integration. See Fig. 27 for an example, over which we will later recognise three
business activities (instances).

Summarising, a state configuration F consists of:

– A simple graph G, i.e. a set nodes( F) and a set edges(F); each edge e is asso-
ciated with a (unordered) pair n ↔ m of nodes. We take nodes(F) ⊆COMP
(i.e. nodes are components) and edges(F) ⊆WIRE (i.e. edges are wires).

– A (configuration) state S as defined in Section 4.3.



www.manaraa.com

92 J. Fiadeiro et al.

Every state configuration 〈G,S〉 can change because either the state S or the
graph G changes. Changes to the state result from computations executed by
components and the coordination activities performed by the wires that connect
them as defined in 4.3. However, the essence of SOC as we see it it is not
captured at the level of state changes (which is basically a distributed view
of computation), but at the level of the changes that operate on configuration
graphs: in SOC, changes to the underlying graph of components and wires occur
at run time when a component performs an action that triggers the discovery
and binding of a service.

An important aspect of our model is the fact that we view SOC as providing
an architectural layer that interacts with two other layers (see Fig. 28). This
can be noticed in Fig. 27 where shadows are used for indicating that certain
components reside in different layers: AliceRegUI, BobEstateUI and CarolEsta-
teUI (three user interfaces) in the top layer, and MyRegistry (a database) in the
bottom layer. Layers are architectural abstractions that reflect different levels
of organisation and change, i.e. one looks at a configuration as a (flat) graph as
indicated above but, in order to understand how such configurations evolve, it
is useful to distinguish different layers.

In our model, the bottom layer consists of components that are persistent as
far as the service layer is concerned, i.e. those that in Section 3 we identified
as resource-actors. More precisely, when a new session of a service starts (e.g.
a mortgage broker starts putting together a proposal on behalf of a client),
the components of the bottom layer are assumed to be available so that, as
the service executes, they can be used as (shared) ‘servers’ — for instance the
registry, which shared by all sessions of the mortgage broker, or a currency
converter. In particular, the bottom layer can be used for making persistent the
effects of services as they execute.

The components that execute in the service layer are created when the ses-
sion of the corresponding service starts, i.e. as fresh instances that last only for
the duration of the session — for instance, the workflow that orchestrates the

CarolEstAgMyRegistry

AliceManag

RockLoans

BobMortAg

BCL

CarolMortAg

Law4All

CEL

BobEstateUI

AliceRegUI
ARM

BCR

AMR

CarolEstateUICEA

CCR CEM

BobEstAg

BEA

BAM

Fig. 27. The graph of a state configuration with 11 components and 10 wires



www.manaraa.com

The Sensoria Reference Modelling Language 93

mortgage-brokerage service for a particular client. In component-based devel-
opment (CBD) one often says that the bottom layer provides ‘services’ to the
layer above. As we see it in this paper, an important difference between CBD
and SOC is precisely in the way such services are procured, which in the case
of SOC involves identifying (possibly new) providers and negotiating terms and
conditions for each new instance of the activity, e.g. for each new user of a travel
agent. SOA middleware supports this service layer by providing the infrastruc-
ture for the discovery and negotiation processes to be executed without having
to be explicitly programmed as (part of) components.

The top layer is the one responsible for launching business activities in the
service layer. The user of a given activity — identified through a user-actor as
discussed in Section 3 — resides in the top layer; it can be an interface for
human-computer interaction, a software component, or an external system (e.g.
a control device equipped with sensors). When the user launches an activity, a
component is created in the service layer that starts executing a workflow that
may involve the orchestration of services that will be discovered and bound to
the workflow at run time.

6.2 Business Activities and Configurations

In our model, state configurations change as a result of the execution of busi-
ness processes. More precisely, changes to the configuration graph result from
the fact that the discovery of a service is triggered and, as a consequence, new
components are added and bound to existing ones (and, possibly, other compo-
nents and wires disappear because they finished executing their computations).
The information about the triggers and the constraints that apply to service
discovery and binding are not coded in the components themselves: they are
properties of the ‘business activities’ that are active and determine how the
configuration evolves. Thus, in order to capture the dynamic aspects of SOC,
we need to look beyond the information available in a state. In our approach,
we achieve this by making configurations ‘business reflective’, i.e. by labelling
the sub-configurations that correspond to instances of business activities by the
corresponding activity module.

For instance, we should be able to recognise an activity in Fig. 27 whose sub-
configuration is as depicted in Fig. 29. Intuitively, it corresponds to an instance

SERVICE
layer

BOTTOM
layer

TOP layer

Fig. 28. A 3-layered architecture for configurations



www.manaraa.com

94 J. Fiadeiro et al.

of UpdateRegistry. In order to formalise this notion of typed subconfigura-
tion, we start by providing a formal definition of activity modules. We denote
by BROL the set of business roles (see 5.1.2), by BUSP the set of business
protocols (see 5.1.3), by LAYP the set of layer protocols (see 5.1.4), and by
CNCT the set of connectors (see 5.1).

An activity module M consist of:

– A graph graph(M).
– A distinguished subset of nodes requires(M)⊆nodes(M).
– A distinguished subset of nodes uses(M)⊆nodes(M).
– A node serves(M)∈ nodes(M) distinct from requires(M) and uses(M).
– A labelling function labelM such that

• labelM(n) ∈BROL if n ∈components(M), where by components(M) we
denote the set of nodes(M) that are not serves(M) nor in requires(M) or
uses(M).

• labelM(n) ∈BUSP if n ∈requires(M)
• labelM(n) ∈LAYP if n ∈serves(M)∪uses(M)
• labelM(e : n ↔ m) ∈CNCT.

– An internal configuration policy.
– An external configuration policy.

We denote by body(M) the (full) sub-graph of graph(M) that forgets the nodes
in requires(M) and the edges that connect them to the rest of the graph. We can
now formalise the typing of state configurations with activity modules that we
discussed around Fig. 29, which accounts for the coarser business dimension that
is overlaid by services on global computers. That is, we define what corresponds
to a state configuration of a service overlay computer, which we call a business
configuration. We consider a space A of business activities to be given, which
can be seen to consist of reference numbers (or some other kind of identifier)
such as the ones that organisations automatically assign when a service request
arrives.

A business configuration consists of:

– A state configuration F .

MyRegistry

AliceManag

AliceRegUI
ARM

AMR

Fig. 29. The sub-configuration corresponding to an instance of UpdateRegistry



www.manaraa.com

The Sensoria Reference Modelling Language 95

– A partial mapping B that assigns an activity module B(a) to each activity
a ∈ A — the workflow being executed by a in F . We say that the activities
in the domain of this mapping are those that are active in that state.

– A mapping C that assigns an homomorphism C(a) of graphs body(B(a))→ F
to every activity a ∈ F that is active in F . We denote by F(a) the image of
C(a) — the sub-configuration of F that corresponds to the activity a.

A homomorphism of graphs is just a mapping of nodes to nodes and edges to
edges that preserves the end-points of the edges. Therefore, the homomorphism
C of a business configuration 〈F ,B, C〉 types the nodes (components) of F(a)
with business roles or layer protocols — i.e. C(a)(n) : labelB(a)(n) for every node
n — and the edges (wires) with connectors — i.e. C(a)(e) : labelB(a)(e) for every
edge e of the body of the activity. In other words, the homomorphism binds
the components and wires of the state configuration to the business elements
(interfaces labelled with business roles, layer protocols and connectors) that they
fulfil in the activity.

In the example discussed above, we have an activity — that we call Alice
— such that B(Alice) is UpdateRegistry (as in Fig. 3), F(Alice) is the sub-
configuration in Fig. 29, and C maps RM to AliceRegUI, MC to AliceManag, RE
to MyRegistry, MR to AMR, and RM to ARM.

The fact that the homomorphism is defined over the body of the activity
module means that business protocols are not used for typing components of
the state configuration. Indeed, as discussed above, the purpose of the requires-
interfaces is for identifying dependencies that the activity has, in that state,
on external services. In particular, this makes requires-interfaces different from
uses-interfaces as the latter are indeed mapped through the homomorphism to
a component of the state configuration.

In a sense, the homomorphism makes state configurations reflective in the
sense of [25] as it adds meta (business) information to the state configuration.
This information is used for deciding how the configuration will evolve (namely,
how it will react to events that trigger the discovery process). Indeed, reflection
has been advocated as a means of making systems adaptable through reconfig-
uration, which is similar to the mechanisms through which activities evolve in
our model.

6.3 Run-Time Discovery and Binding

In order to illustrate how a business configuration evolves through service dis-
covery and binding, we are going to consider another business activity type
that supports the purchase of a house. The corresponding module is depicted in
Fig. 30.

That is, the orchestration of the purchase of a house is performed by a com-
ponent EA of type (business role) EstateAgent, which may need to discover and
bind to a mortgage dealer MO and a lawyer LA.

Consider the configuration depicted in Fig. 31, and the business configuration
that consists of Alice (as defined in Section 6.2) and of the activity Bob typed



www.manaraa.com

96 J. Fiadeiro et al.

by HouseBuying, which is mapped to the configuration by the homomorphism
that associates GH with BobEstateUI, EA with BobEstateAG and HE with BEA.
Assume that, in the current state, intMO trigger holds, i.e. that the execution
of the workflow associated with EA requires the discovery of a mortgage dealer.
Let us consider what is necessary for GetMortgage to be selected and bound
to HouseBuying as a result of the trigger (see Fig. 32). In our setting, this
process involves three steps, outlined as follows:

– Discovery. For GetMortgage to be discovered, it is necessary that the
properties of its provides-interface Customer entail the properties of the
requires-interface Mortgage, and that the properties of the interaction pro-
tocol of CC entail those of EM.

– Ranking. If it is discovered, GetMortgage is ranked among all ser-
vices that are discovered by calculating the most favourable service-level

HOUSEBUYING
SLA_GH

EA:
Estate
Agent

MO:
Mortgage

intMO

EM

GH:
House

Application

HE

intEA

LA:
Lawyer

intLA

EL

Fig. 30. The HouseBuying activity module

MyRegistry

AliceManag

BobEstateUI

AliceRegUI
ARM

AMR

BobEstAg

Fig. 31. A configuration



www.manaraa.com

The Sensoria Reference Modelling Language 97

agreement that can be achieved — the contract that will be established be-
tween the two parties if GetMortgage is selected. This calculation uses a
notion of satisfaction that takes into account the preferences of the activity
HouseBuying and the service GetMortgage.

– Selection. Finally, GetMortgage can be selected if it is one of the services
that maximises the level of satisfaction offered by the corresponding contract.

These steps are formalised in [30]. If GetMortgage is selected then it is unified
with HouseBuying, giving rise to another activity module. As depicted in Fig.
33, the resulting activity module is obtained by replacing the requires-interface
and corresponding wire of HouseBuying by those that connect the provides-
interface of GetMortgage to its body.

At the level of the configuration, we add the new instances of the compo-
nents of GetMortgage and corresponding wires, making sure that instances
of the uses-interfaces are components of the bottom layer (already present in
the configuration). This can be witnessed in Fig. 34 where the instance of RE

HOUSEBUYING
SLA_GH

EA:
Estate
Agent

MO:
Mortgage

intMO

EM

GH:
House

Application

HE

intEA

LA:
Lawyer

intLA

EL

GETMORTGAGE

SLA_GM

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

CMCR:
     Customer

ME

ML

MB

MI

intMA

Compatibility
Consistency

Fig. 32. The elements involved in unification

HOUSEBUYINGMORTGAGE

LA:
Lawyer

SLA_HBM

EA:
EstateAgent

intLA

EL

GH:
House

Application

HE

intEA

RE:
Registry

MA:
MortgageAgent

LE:
Lender

intLE

BA:
Bank

intBA

IN:
Insurance

intIN

ME

ML

MB

MI

intMA

CM

Fig. 33. The result of unification



www.manaraa.com

98 J. Fiadeiro et al.

is the component MyRegistry, which is shared with other activities. Notice that
the type of the activity Bob is now the activity module in Fig. 34, and that
the homomorphism now maps MA to BobMortBR, RE to MyRegistry, EM to
BAM and BE to BCR. It is in this sense that the activity is reconfigured as new
services are discovered and bound to its requires-interfaces. See [30] for a full
formalisation of this process of reconfiguration.

MyRegistry

AliceManag

BobMortAg

BobEstateUI

AliceRegUI
ARM

BCR

AMR

BobEstAg BAM

Fig. 34. The result of the binding

7 Checking the Correctness of Service Modules

Service modules are considered to be ‘correct’ when the properties offered in
their provides-interface are ensured by the orchestration of their components
and the properties specified in their requires-interfaces. Therefore, in order to
prove the correctness of GetMortgage, we would need to check that the prop-
erties offered through the business protocol Customer — e.g., committing to the
proposal made by MA ensures that a confirmation message will be sent conveying
the loan contract — are effectively established by the orchestration performed
by MA on the assumption that the properties required of LE, BA and IN are
satisfied.

In this section, we discuss a model-checking approach that we have developed
for analysing the properties that can emerge from the orchestration of service
behaviour in general, and the correctness of service modules in particular. This
approach is based on the model-checker UMC [39] developed at CNR-ISTI (see
also Chapter 4-2). UMC works over UML state machines and UCTL [9], a
temporal logic that is interpreted over transition systems in which both states
and transitions are labelled, thus making it easier to express properties of stateful
interactions as required by SRML.



www.manaraa.com

The Sensoria Reference Modelling Language 99

7.1 The UCTL Semantics of Business Protocols

UCTL is a temporal logic that includes both the branching-time action-based
logic ACTL [20] and the branching-time state-based logic CTL [24]. The models
of UCTL are doubly labelled transition systems (L2TS for short) which are
transition systems whose states are labelled by atomic propositions and whose
transitions are labelled by sets of actions [21]. The syntax of UCTL formulas is
defined as follows:

φ ::= true | p | φ ∧ φ′ | ¬φ | Eπ | Aπ

π ::=Xχφ | φ χW φ′ | φ χUχ′ φ′ | φ χW φ′ | φ χWχ′ φ′

where p ranges over state predicates , χ over actions , φ over state formulae, and
π over path formulae. E and A are “exists” and “for all” path quantifiers respec-
tively. The next operator X says that in the next state of the path, reached by
an action satisfying χ, the formula φ holds. The intuitive meaning of the doubly-
indexed until operator U on a path is that φ′ holds at some future state of the
path reached by a last action satisfying χ′, while φ has to hold from the current
state until that state is reached and all the actions executed in the meanwhile
along the path either satisfy χ or τ . Finally, the weak-until operator W holds on
a path either if the corresponding strong-until operator holds or if for all states
of the path the formula φ holds and all the actions of the path either satisfy χ
or τ . It is straightforward to derive the well-known temporal logical operators
EF (“possibly”), AF (“eventually”) and AG (“always”) and the diamond and
box modalities <> (“possibly”) and [] (“necessarily”). In particular, < χ > φ
stands for EXχ φ, meaning that there is transition that satisfies χ which leads
to a state that satisfies φ; and [χ]φ stands for ¬ < χ > ¬φ, meaning that every
transition that satisfies χ leads to a state that satisfies φ.

To provide the semantics of business protocols in terms of UCTL formulas, we
have to consider the declared set of typed interactions and the set of constraints
that correlate the events of those interactions. Recall that the types that are
associated with each interaction define not only the set of events the external
service can engage in as part of that interaction, but also the conversational
protocol that the service follows to engage in those events. We will first address
the encoding of the patterns that are used to specify behaviour constraints and
then we will address the encoding of the conversational protocol that is associated
with the interaction types.

The semantics of the behavioural patterns used in business protocols (pre-
sented in Section 5.1) is defined in terms of UCTL formulas as follows:

initiallyEnabled e A
⎧⎩true¬e¿We?true

⎫⎭
s after a AG[a]s

a enables e
⎧⎩AG[a]¬EF < e¿ > true

⎫⎭ ∧
⎧⎩A[true¬e?Watrue

⎫⎭
a ensures e

⎧⎩AG[a]AF [e!]true
⎫⎭ ∧

⎧⎩A[true¬e!Watrue]
⎫⎭



www.manaraa.com

100 J. Fiadeiro et al.

This encoding is justified by the fact that SRML models correspond to L2TSs
in which the actions that label the transitions consist of the several stages of event
propagation (publish, deliver, execute or discard), and the state predicates are
either pledges (i.e. properties that are ensured by positive replies) or capture the
history of events (this is because UCTL does not have past operators).

As already explained, two-way interactions are typed as s&r (send and re-
ceive) or r&s (receive and send) to define that the service being specified engages
in the interaction as the requester or as the supplier, respectively. Each of these
two roles, requester and supplier, has a set of properties associated with it. The
following table presents the UCTL encoding of some of these properties.

s&r — Requester
The reply-event becomes enabled by the
publication of the initiation-event and not before. i ! enables i ?
r&s — Supplier
The reply will be published after and only
after the initiation-event was executed i ? ensures i !
The revoke-event cannot be executed before the
execution of the commit-event. A[true¬i✞?Wi�?true]

7.2 From SRML Modules to UML State Machines

In order to be able to model-check properties of service behaviour in the context
of SRML in general, and the correctness of service modules in particular, we
restrict ourselves to those modules in which state machines are used for modelling
the internal components, the persistent components, the protocols performed by
the wires, and the required behaviour of external services. This is because UMC

takes as input a set of communicating state machines with which it associates a
L2TS that represents the possible computations of that system. Model-checking
is then performed over this L2TS.

As discussed in Section 5, using UML state machines for defining workflows
is quite standard. However, the cases of wires and requires-interfaces are not
as simple. In the case of wires, we need to ensure that event propagation and
related phenomena occur according to the rules of the computational model. In
the case of requires-interfaces, we need to discuss how the patterns defined in
Subsection 5.1 can be represented with state machines.

Encoding requires interfaces. In SRML, requires-interfaces are specified
through business protocols with the patterns of temporal logic that we dis-
cussed in Subsection 5.1. The proposed encoding associates a state machine with
each requires-interface that corresponds to a canonical model of the required be-
haviour. The strategy of the encoding entails creating a concurrent region for
each of the interactions that the external service is required to be involved in
— the interaction-regions — and a concurrent region for each of the behaviour
constraints – the constraint-regions — except for the constraints defined with



www.manaraa.com

The Sensoria Reference Modelling Language 101

the pattern initiallyEnabled e: as discussed further ahead, these are modelled
by the instantiation of a state attribute.

The role of each of the interaction regions is to guarantee that the conversa-
tional protocol that is associated with the type of the interaction is respected
as discussed before. Events of a given interaction are published, executed and
discarded exclusively by the interaction-region that models it. The role of the
constraint-regions is to flag, through the use of special state attributes, when
events become enabled and when events should be published — the evolution of
the interaction-regions, and thus the actual execution, discard and publication
of events, is guarded by the value of those flags. Constraint-regions cooperate
with interaction-regions to guarantee the correlation of events expressed by the
behaviour constraints.

We illustrate this methodology by presenting the encoding of the requires-
interface Lender in Fig. 35. Lender is involved in the two interactions request-
Mortgage and requestSignOut, which are encoded by interaction-regions A and
B, respectively; these two interactions are correlated by two behaviour con-
straints, the second of which originates the constraint-region X . The constraint
initiallyEnabled requestMortgage ? does not originate a region in the state
machine; instead it determines that the flag requestMortgage enabled is initially
set to true and therefore when the event requestMortgage is processed it will be
executed (and not discarded) by interaction-region A. When requestMortgage
is executed, interaction-region A evolves from state a1 to state a2 by publish-
ing a positive reply or alternatively from a1 to the final state by publishing a
negative reply. If the commit-event of requestMortgage is processed in state a2,
it will be executed and therefore the requestMortgage� executed will be set to
true. It is at this point that the constraint region X comes into play — this
region reacts to the change of value of requestMortgage� executed by setting
requestSignOut enabled to true. After this happens, region B will be ready to
execute the request-event of requestSignOut and therefore this two-way interac-
tion can be initiated.

Following our methodology, each interaction declaration and each behaviour
constraint encodes part of the final state machine in a compositional way. Asso-
ciated with each interaction type, there is a particular statechart structure that
encodes it. Each of the patterns of behaviour constraints is also associated with
a particular statechart structure. A complete mapping from interactions types
and behaviour patterns to their associated statechart structure can be found in
[4]. Naturally, the encoding we propose for specifications of requires-interfaces
is defined in such a way that the transition system that is generated for a ser-
vice module satisfies the UCTL formulas that are associated with each of the
requires-interfaces of that module.

Encoding wires. In SRML wires are responsible for the coordination of the
interactions declared locally for each party of the module. For each wire, there
is a connector that defines an interaction protocol with two roles and binds the
interactions declared in the roles with those of the parties at the two ends of the
wire [5]. With our methodology for encoding wires with UML state machines,



www.manaraa.com

102 J. Fiadeiro et al.

[requestMortgage _executed] /
requestSignOut _enabled := true

X

b1

b2

requestSignOut  /
requestSignOut _executed := true

b3

requestSignOut  /
requestSignOut _executed := true

B requestSignOut
[requestSignOut _enabled] /
ML2.requestSignOut (false)
requestSignOut_Reply := false
requestSignOut _sent := true

requestSignOut
[requestSignOut _enabled] / 
ML2.requestSignOut (true)
requestSignOut_Reply := true
requestSignOut _sent := true

requestSignOut
[requestSignOut _enabled] /
requestSignOut _executed := true

a1

a2

requestMortgage  /
requestMortgage _executed := true

a3

requestMortgage  /
requestMortgage _executed := true

A requestMortgage
[requestMortgage _enabled] /
ML1.requestMortgage (false)
requestMortgage _Reply := false
requestMortgage _sent := true

requestMortgage
[requestMortgage _enabled] / 
ML1.requestMortgage (true)
requestMortgage _Reply := true
requestMortgage _sent := true

requestMortgage
[requestMortgage _enabled] /
requestMortgage _executed := true

Fig. 35. The UML statechart encoding of the requires-interface Lender. A and B are
the interaction-regions and X is the constraint-regions.

every connector defines a state machine for each interaction. This state machine
is responsible for transmitting the events of that interaction from the sending
party to the receiving co-party. Parties publish events by signaling them in the
state machine that corresponds to the appropriate connector; this state machine
in turn guarantees that these events are delivered by signaling them in the state
machine that is associated with the co-party. The relation between parameter
values that is specified by the interaction protocol of the connector is ensured
operationally by the state machine that encodes that connector – data can be
transformed before being forwarded. The statechart contains a single state and
as many loops as the number of events that the connector has to forward.



www.manaraa.com

The Sensoria Reference Modelling Language 103

In GetMortgage, two-way interactions are coordinated by straight interac-
tion protocols that bind the names and parameters of s&r and r&s interaction
declarations directly (i.e. events and parameter values are the same from the
point of view of the two parties connected). Fig. 36 shows the state machine
that encodes this connector for the single interaction that takes place between
MA and LE — there is only one persistent state in which the machine waits to
receive events and forward them with the same parameter values.

askProposal (a,b) / 
LE.requestMortgagel (a,b)

askProposal  / 
LE.requestMortgage

askProposal  / 
LE.requestMortgage

askProposal  / 
LE.requestMortgage

requestMortgage (a,b,c,d) / 
MA.askProposal (a,b,c,d)

Fig. 36. The UML encoding of the connector that coordinates the single, two-way,
interaction between MA and LE which is named askProposal and requestMortgage
from the point of view of each party respectively

7.3 Model-Checking Service Modules at Work

As mentioned before, our approach to check the correctness of service modules
is based on the model-checker UMC [39]. UMC is an on-the-fly model-checker
developed for efficient verification of UCTL formulae over a set of communi-
cating UML state machines [42]. A UMC model description consists of a set
of UML class definitions and a static set of object instantiations – the actual
state machines that form the system under analysis. A UMC model must rep-
resent an input-closed system, i.e. the input sources must be modelled as active
objects interacting with the rest of the system. Each state machine has a pool
that buffers the set of signals that have been received from other machines until
they are processed by that machine. According to its class definition, each state
machine has at any given time a value for each of its attributes and a set of
currently active sub states as specified by the statechart diagram of the class.

In order to illustrate our model-checking approach we will discuss how to
model-check the module GetMortgage. First, we have encoded each of its
external-required interfaces and each of its connectors using the methodology
described in the previous section. Adding the two components that orchestrate
the system, we ended up with a set of fourteen communicating UML state
machines. Because every input source of a UMC model must also be modelled
via an active object, we had to define a machine that initiates the interactions
advertised in the provides-interface Customer, thus modelling a generic client
of the service. Using this system as input to the UMC model-checker, we were



www.manaraa.com

104 J. Fiadeiro et al.

able to verify that the doubly labelled transition system that is generated does
satisfy the properties associated with the provides-interface Customer, shown
in Fig. 16. As discussed before, these consists of the properties associated with
the types of the declared interactions and those that derive from the patterns of
behaviour.

8 Analysing Timing Properties of Complex Services

In this Section, we show how SRML can be extended in order to model the
delays involved in the business process through which a service is provided and
how time-related properties of service-oriented models can be analysed over such
models. For instance, we have in mind the ability to certify that the mortgage-
brokerage service satisfies properties of the form “In at least 80% of the cases, a
reply to a request for a mortgage proposal will be sent within 7 seconds”. Prop-
erties of this kind are extremely important in a number of application domains
and are usually part of the service level agreements (SLAs) that are negotiated
between clients and providers. This approach draws from the work reported
in [53].

8.1 Timing Issues in SRML Models

Given two events e1 and e2, we denote by Delay(e1, e2) the time that sepa-
rates their occurrences, e.g. Delay(getProposal , getProposal ) in the exam-
ple above. Because we wish to adopt the PEPA analysis tools [51,19], we assume
that such delays follow an exponential distribution of the form FDelay(e1,e2)(t) =
1−e−rt. In practical applications, it is rarely the case that it is possible to obtain
a complete response-time distribution of all services in the problem under study.
It is far more likely that one will only know the average response time. In this
setting, it is indeed correct to capture the inherent stochasticity in the system
through a exponential distribution. The exponential distribution requires only a
single parameter, the average response time. Other distributions would require
knowledge of higher moments and other parameters which we do not have. We
take care not to require too many parameters because finding each one accu-
rately may require careful measurement or estimation. We apply our modelling
only in settings where the average response time is a meaningful quantity to
use. For example, we do not model systems that have a substantial component
requiring a response from a single human participant because the great variance
in human response time makes knowledge of the average response time alone
insignificant for analysis purposes. This setting connects us to the rich theory
of stochastic process including continuous-time Markov chains (CTMC), and a
wealth of efficient numerical procedures for their analysis.

In our setting, the rate r is associated with the entity that processes and pub-
lishes the events, and used as a modelling primitive in the proposed extension of
SRML. Event-based selection of continuations in SRML becomes probabilistic
choice in PEPA. We estimate the probability of the relative outcomes and use



www.manaraa.com

The Sensoria Reference Modelling Language 105

the resulting probabilities to weight the rates in the PEPA model to ensure the
correct distribution across the continuations. In this way all number distribu-
tions remain exponential and thus we can achieve probabilistic branching while
remaining in the continuous-time Markovian realm.

We report below a number of delays that, according to the computation and
coordination model discussed in Section 4.3, can affect service execution. The
rates can be negotiated as SLAs with service providers in the constraint systems
mentioned in Section 5.2.

Delays in components. Because they may be busy, components store the
events they receive in a buffer where they wait until they are processed, at which
point they are either executed or discarded. Two kinds of rates are involved in
this process:

processingRate. This rate represents the time taken by the component to
remove an event from the buffer. Different components may have different
processing rates but all events are treated equally by the same component.

executionRate. This represents the time taken by the component to perform
the transition triggered by the event, i.e. making changes to the state and
publishing events. We assume that discarding an event does not take time.
Each transition declared in a business role has its own execution rate, which
should be chosen taking into account the specific effects of that transition.

Delays of requires-interfaces. As already mentioned, requires-interfaces rep-
resent parties that have to be discovered at run time when the corresponding
trigger becomes true. Two kinds of rates are involved in this process:

compositionRate. This rate applies to the run-time discovery, selection and
binding processes as performed by the middleware, i.e. (1) the time to con-
nect to a broker, (2) the time for matchmaking, ranking and selection, and
(3) the time to bind the selected service. We chose to let different requires-
interfaces have different composition rates in order to reflect the fact that
different brokers may be involved, depending on the nature of the required
external services.

responseRate. These are rates that apply to the responses that the business
protocol requires of the external service through statements of the form
e1 ∗ ensures e2!. More specifically, we consider a rate responseRate(e1, e2)
for each such pair of events, which include responseRate(a , a ) for every
interaction a of type r&s declared in the business protocol.

Delays in wires. Each wire of a module has an associated transfer rate. As
mentioned in Section 2, we are considering only interaction protocols that affect
a linear transmission from one party to its co-party, and do not involve complex
data transformation.

Delays in synchronous communication and resource contention. The
interface of a resource consists of a number of synchronous interactions. We
define a synchronisation rate for each such interactions and associate it with the



www.manaraa.com

106 J. Fiadeiro et al.

CMCR MA ML LE

getProposal

getProposal

askProposal

askProposal

askProposal

askProposal

getProposal

getProposal

3

4

5

4

6

Delay(getProposal ,getProposal )

transferRate(CM)

processingRate(MA)
executionRate(MA)(getClientRequest)

processingRate(MA)
executionRate(MA)(GetProposal)

transferRate(ML)

compositionRate(LE)
responseRate(LE)(askProposal ,askProposal )

1

2

2

1

2

3

4

5

6

Fig. 37. Cascade of delays in a fragment of GetMortgage

events that resolve synchronisation requests by replying to a query or executing
an operation.

In summary, we extend every module M with a time policy P that consists
of several collections of rates. Each rate is a term of type R

+ ∪ {�}, where � is
the passive rate (i.e., the event with a passive rate occurs only in collaboration
with another event, when this second event is ready):

– For every requires-interface n ∈ requires(M)
• compositionRate(n)
• responseRate(n)(e1, e2) for every statement (e1 ∗ ensures e2!)

– For every w ∈ edges(M), transferRate(w).
– For every n ∈ components(M)

• processingRate(n)
• executionRate(n, P ) for every transition P ∈ trans(labelM(n))

– For every n ∈ components(M) ∪ serves(M) ∪ uses(M) and interaction i of
type rpl and prf, synchronisationRate(n)(i).

The sequence diagram in Fig. 37 illustrates how the response time associated
with getProposal depends on the delays associated with the rates discussed
in this section. The value of the rates that apply to components and wires to
other components or uses-interfaces are fixed when the module is instantiated,
i.e. when the interfaces are bound to components or network connections. The
rates that involve requires-interfaces are fixed at run time, subject to SLAs.

8.2 Quantitative Analysis of Timing Properties

In this section we discuss the quantitative analysis that we are able to perform
on a SRML module by using the PEPA Eclipse Plug-in [51] and IPC [19], com-
ponents of the Sensoria Development Environment (see Chapter 6-5).



www.manaraa.com

The Sensoria Reference Modelling Language 107

A SRML module can be coded as a stochastic process so that the timing
properties that derive from the timing policy of the module can be analysed
using PEPA. This encoding involves several steps. First, the structure of the
SRML module is decomposed into a PEPA configuration consisting of a num-
ber of PEPA terms. Each PEPA term corresponds to either a node or a wire
of the original SRML model. In this way we can easily map the results of the
quantitative analysis back to the original SRML specification. Second, the be-
havioural interface of each entity of the SRML model is encoded into a PEPA
term, enabling to analyze the delays due to each single component. See [12] for
a detailed account on how to encode a SRML module into PEPA.

Once the SRML module has been encoded into PEPA, we use the PEPA
Eclipse Plug-in tool to generate the statespace of the obtained PEPA configu-
ration. We used the static analyser and qualitative analysis capabilites of this
tool to determine that the configuration is deadlock free and has no unreachable
local states in any component (no “dead code” in the model).

The analysis of a PEPA term encoding a SRML module is inexpensive because
the statespace of the model is relatively small, meaning that the number of states
of a module grows linearly with respect to the number of nodes. The reason is
that the nodes of a SRML module do not execute independently but they wait
for one another (i.e., typically not more than one at a time is active).

We performed the passage time analysis of the example illustrated in Fig. 37
encoded into PEPA using the method described in [12]. Our aim was to in-
vestigate the probability of each possible delay between CRgetProposal and
CRgetProposal . We conducted a series of experiments on our PEPA model
to determine the answers to the following questions:

1. Is the advertised SLA ”80% of requests receive a response within 7 seconds”
satisfied by the system at present?

2. What is the bottleneck activity in the system at present (i.e. where is it best
to invest effort in making one of the activities more efficient?)

The first question is answered by computing the cumulative distribution func-
tion (CDF) for the passage from request to response and determining the value
at time t = 10. The second question is answered by performing a sensitivity
analysis. That is, we vary each of the rates used in the model (both up from
the true value, and down from it) and evaluate the CDF repeatedly over this
range of values. The resulting graphs are shown in Fig. 38 (the plus denotes the
coordinate for 7 seconds and 80%).

Each of the graphs is a CDF which plots the probability of having completed
the passage of interest by a given time bound. To determine whether the stated
SLA is satisfied we need only inspect the value of this probability at the time
bound. For the given values of the rates we find that it is the case that this SLA
is not satisfied (Fig. 38(a)).

In performing sensitivity analysis we vary each rate through a fixed num-
ber of possible values to see if we can identify an improvement which satisfies



www.manaraa.com

108 J. Fiadeiro et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

P
ro

ba
bi

lit
y 

of
 c

om
pl

et
io

n

Time

Rates of the initial model

+

 CDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

P
ro

ba
bi

lit
y 

of
 c

om
pl

et
io

n

Time

Varying transferRate(CM)

+

transferRate(CM)=0.25
transferRate(CM)=0.5

transferRate(CM)=0.75
transferRate(CM)=1.0

transferRate(CM)=1.25
transferRate(CM)=1.5

transferRate(CM)=1.75

(a) (b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

P
ro

ba
bi

lit
y 

of
 c

om
pl

et
io

n

Time

Varying responseRate(LE)

+

responseRate(LE)=1.25
responseRate(LE)=1.5

responseRate(LE)=1.75
responseRate(LE)=2.0

responseRate(LE)=2.25
responseRate(LE)=2.5

responseRate(LE)=2.75

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8  9  10

P
ro

ba
bi

lit
y 

of
 c

om
pl

et
io

n

Time

Varying executionRate(MA)(P1)

+

executionRate(MA)(P1)=1.25
executionRate(MA)(P1)=1.5

executionRate(MA)(P1)=1.75
executionRate(MA)(P1)=2.0

executionRate(MA)(P1)=2.25
executionRate(MA)(P1)=2.5

executionRate(MA)(P1)=2.75

(c) (d)

Fig. 38. Sensitivity analysis of response time distributions (from [12])

the SLA. We have begun by considering seven possible values here. Three of
these are above the true value (i.e. the activity is being performed faster) and
three are below (i.e. the activity is being performed slower). From the sensi-
tivity analysis we determine (from Fig. 38(b)) that variations in rate parameter
transferRate(CM) have the greatest impact on the passage of interest. Due to the
structure of the model this rate controls the entry into the passage from request
to response so delays here have a greater impact further through the passage.
In contrast variations in rate parameter responseRate(LE) (seen in Fig. 38(c))
and executionRate(MA)(P1) (seen in Fig. 38(d)) have the least impact overall.
Thus if seeking to improve the performance of the system we should invest in im-
proving coTransferRate before trying to improve responseTime(LE). Fig. 38(b)
illustrates, for example, how the advertised SLA is satisfied by improving the
value of transferRate(CM) to 1.25. It is entirely possible that the sensitivity
analysis will identify several ways in which the SLA can be satisfied. In this case
the service stakeholders can evaluate these in terms of implementation cost or
time and identify the most cost-effective way to improve the service in order to
meet the SLA.



www.manaraa.com

The Sensoria Reference Modelling Language 109

9 Related Approaches

One of the main aspects that distinguishes the approach that we proposed from
other work on Web Services (e.g. [8]) and SOC in general (e.g. [2]) is that we
address not the middleware architectural layers (or low-level design issues in
general), but what we call the ‘business level’. For instance, the main concern of
the Service Component Architecture (SCA) [2], from which we have borrowed
concepts and notations, is to provide an open specification “allowing multiple
vendors to implement support for SCA in their development tools and runtime”.
This is why SCA offers a middleware-independent layer for service composition
and specific support for a variety of component implementation and interface
types (e.g. BPEL processes with WSDL interfaces, or Java classes with corre-
sponding interfaces). Our work explores a complementary direction: our research
aims for a modelling framework supported by a mathematical semantics in which
business activities and services can be defined in a way that is independent of the
languages and technologies used for programming and deploying the components
that will execute them. The fact that the modelling framework is equipped with
a formal semantics makes it possible to support the analysis of services, service
compositions and activities, a direction that we are pursuing through the use of
model-checking [7].

Another architectural approach to SOC has been designed [52] that follows
SCA very closely. However, its purpose is to offer a meta-model that covers
service-oriented modelling aspects such as interfaces, wires, processes and data.
Therefore, as in SCA, interfaces are syntactic and bindings are established at
design time, whereas our interfaces are behavioural and binding occurs at run
time. Other approaches to service modelling have considered richer interfaces
that encompass business protocols, e.g. [10,26,22,45,46], but not the dynamic
aspects — discovery and binding — offered by SRML as illustrated in this pa-
per. Indeed, a characteristic that distinguishes our approach from other formal
models of services such as [16] is the fact that we address the dynamic aspects of
SOC, namely run-time discovery and binding. Formalisms for modelling (web)
services tend not to address these. For example, in BPEL, service compositions
are created statically and are governed by a centralised engine. This also holds
for approaches that focus on choreography (e.g. [18,45]), where it is possible to
calculate which are the partners that can properly interact with a service but
the actual discovery and binding processes are not considered. Exceptions can
be found among some of the process calculi that have been developed for captur-
ing semantic foundations of SOC (e.g. [28,17,37]). However, such process calculi
tend not to address dynamic reconfiguration separately from computation, i.e.
the process of discovery and binding is handled as part of the computation per-
formed by a service. As far as we know, SRML is the first service-modelling
language to separate these two concerns.

Indeed, in our opinion, what makes SOC different from other paradigms is
the fact that it concerns run-time, not design-time complexity. This is also the
view exposed in [23] — a very clear account of what distinguishes SOC from
CBD (Component Based Development). Whereas in CBD component selection



www.manaraa.com

110 J. Fiadeiro et al.

is either performed at design time or programmed over a fixed universe of com-
ponents, SOC provides a means of obtaining functionalities by orchestrating in-
teractions among components that are procured at run time according to given
(functional) types and service level constraints.

Another area related to the work that we have presented concerns the non-
functional aspects of services, namely the policies and constraints for service
level agreement that have to be taken into account in the composition of ser-
vices. Most of the research developed in this area has been devoted to languages
for modelling specific kinds of policies (over specific non-functional features) and
of selection algorithms, e.g. SCA Policy [2] among several others [40,41,49,48,27].
These languages have been primarily designed to be part of the technology avail-
able for implementing and executing services. As such, they are tailored to the
technological infrastructure that is currently enabling web services and are not
best placed for being used at high-levels of business modelling.

10 Concluding Remarks

In this chapter, we presented an overview of the formal approach for mod-
elling service-oriented application that we developed within Sensoriatowards a
methodological and mathematical characterisation of the service-oriented com-
puting paradigm [3]. The approach is built around a prototype language called
SRML — the Sensoria Modelling Reference Language — and offers an en-
gineering environment that includes abstraction mappings from workflow lan-
guages (such as BPEL [14]) and policy languages (such as StPowla [13]), model-
checking techniques that support qualitative analysis, and stochastic analysis
techniques for timing properties. SRML is supported by an Eclipse-based editor
(available from www.cs.le.ac.uk/srml) that is part of the Sensoria Development
Environment (SDE). A mathematical semantics is available for all aspects of the
approach as partially illustrated in the paper (see [4,6,29,32,30,33] for a more
comprehensive account).

This methodology has been tested in a number of other domains, including
telco [7], travel [6], automotive [15] and procurement [31] scenarios. Tutorials
have been given at CONCUR’08, SEFM’08, SFM’09 and DISCOTEC’09. More
extended tutorials were given at the Technical University of Valencia (Spain) and
the Summer School on Web Engineering held in 2007 in La Plata, Argentina.
SRML is also being taught at the University of Leicester to postgraduate stu-
dents in Computer Science.

Acknowledgments

We would like to thank our colleagues in the Sensoria project for many useful
discussions on the topics covered in this paper. Stefania Gnesi and Franco Maz-
zanti (CNR-ISTI) contributed directly to the work presented in Section 7, and
Stephen Gilmore (Edinburgh), Monika Solanki (Leicester) and Vishnu Vankay-
ala (Leicester) to Section 8. Artur Boronat and Yi Hong (Leicester) contributed



www.manaraa.com

The Sensoria Reference Modelling Language 111

directly to the development of the SRML Editor. We are also indebted to Colin
Gilmore from Box Tree Mortgage Solutions (Leicester) for taking us through the
mortgage-brockerage case study.

References

1. Global computing initiative, http://cordis.europa.eu/ist/fet/gc.htm
2. The open service oriented architecture collaboration, Whitepapers and specifica-

tions available from http://www.osoa.org (see also oasis-opencsa.org/sca)
3. Sensoria consortium (2007), White paper available from

http://www.sensoria-ist.eu/files/whitePaper.pdf

4. Abreu, J.: Modelling Business Conversations in Service Component Architectures.
PhD thesis, University of Leicester (2009)

5. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and composing interac-
tion protocols for service-oriented system modelling. In: Derrick, J., Vain, J. (eds.)
FORTE 2007. LNCS, vol. 4574, pp. 358–373. Springer, Heidelberg (2007)

6. Abreu, J., Fiadeiro, J.L.: A coordination model for service-oriented interactions.
In: Wang, A.H., Tennenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052,
pp. 1–16. Springer, Heidelberg (2008)

7. Abreu, J., Mazzanti, F., Fiadeiro, J.L., Gnesi, S.: A model-checking approach for
service component architectures. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
FMOODS 2009. LNCS, vol. 5522, pp. 219–224. Springer, Heidelberg (2009)

8. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, Heidelberg
(2004)

9. Beek, M., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for Service-Oriented
Applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

10. Benatallah, B., Casati, F., Toumani, F.: Web services conversation modeling: A cor-
nerstone for e-business automation. IEEE Internet Computing 8(1), 46–54 (2004)

11. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44(2), 201–236 (1997)

12. Bocchi, L., Fiadeiro, J., Gilmore, S., Abreu, J., Solanki, M., Vankayala, V.:
Analysing time-related properties of service-oriented systems (2010) (submitted),
http://www.cs.le.ac.uk/people/jfiadeiro/Papers/SRML-T.pdf

13. Bocchi, L., Gorton, S., Reiff-Marganiec, S.: Engineering service oriented applica-
tions: From stPowla processes to SRML models. In: Fiadeiro, J.L., Inverardi, P.
(eds.) FASE 2008. LNCS, vol. 4961, pp. 163–178. Springer, Heidelberg (2008)

14. Bocchi, L., Hong, Y., Lopes, A., Fiadeiro, J.: From BPEL to SRML: A formal
transformational approach. In: Dumas, M., Heckel, R. (eds.) WS-FM 2007. LNCS,
vol. 4937, pp. 92–107. Springer, Heidelberg (2008)

15. Bocchi, L., Fiadeiro, J.L., Lopes, A.: Service-oriented modelling of automotive
systems. In: COMPSAC, pp. 1059–1064. IEEE Computer Society, Los Alamitos
(2008)

16. Broy, M., Kruger, I., Meisinger, M.: A formal model of services. ACM
TOSEM 16(1), 1–40 (2007)

17. Buscemi, M., Montanari, U.: CC-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007)

http://cordis.europa.eu/ist/fet/gc.htm
http://www.osoa.org
http://www.sensoria-ist.eu/files/whitePaper.pdf
http://www.cs.le.ac.uk/people/jfiadeiro/Papers/SRML-T.pdf


www.manaraa.com

112 J. Fiadeiro et al.

18. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

19. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quantita-
tive Evaluation of SysTems (QEST), pp. 55–56. IEEE, Los Alamitos (2007)

20. De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition
systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

21. De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. J.
ACM 42(2), 458–487 (1995)

22. Dijkman, R.M., Dumas, M.: Service-oriented design: a multi-viewpoint approach.
International Journal of Cooperative Information Systems 13(4), 337–368 (2004)

23. Elfatatry, A.: Dealing with change: components versus services. Communications
of the ACM 50(8), 35–39 (2007)

24. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems 8(2), 244–263 (1986)

25. Coulson, G., et al.: A generic component model for building systems software. ACM
TOCS 26(1), 1–42 (2008)

26. Bordeaux, L., et al.: When are two web services compatible? In: Shan, M.-C., Dayal,
U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324, pp. 15–28. Springer, Heidelberg
(2005)

27. Zeng, L., et al.: Qos-aware middleware for web services composition. IEEE Trans-
actions on Software Engineering 30(5), 311–327 (2004)

28. Boreale, M., et al.: Scc: a service centered calculus. In: Bravetti, M., Núñez, M.,
Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Hei-
delberg (2006)

29. Fiadeiro, J.L., Lopes, A., Abreu, J.: A formal model for service-oriented interactions
(2010), http://www.cs.le.ac.uk/srml

30. Fiadeiro, J.L., Lopes, A., Bocchi, L.: An abstract semantics of service discovery
and binding. In: Formal Aspects of Computing (to appear)

31. Fiadeiro, J.L., Lopes, A., Bocchi, L.: A formal approach to service-oriented archi-
tecture. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 193–213. Springer, Heidelberg (2006)

32. Fiadeiro, J.L., Lopes, A., Bocchi, L.: Algebraic semantics of service component
modules. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 37–55. Springer, Heidelberg (2007)

33. Fiadeiro, J.L., Schmitt, V.: Structured co-spans: An algebra of interaction pro-
tocols. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007.
LNCS, vol. 4624, pp. 194–209. Springer, Heidelberg (2007)

34. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann, San Francisco (2004)

35. Gu, Q., Lago, P.: A stakeholder-driven service life-cycle model for soa. In: IW-
SOSWE 2007, pp. 1–7 (2007)

36. Hillston, J.: A Compositional Approach to Performance Modelling (1996)
37. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-

vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

http://www.cs.le.ac.uk/srml


www.manaraa.com

The Sensoria Reference Modelling Language 113

38. Mayer, P., Koch, N., Schroder, A.: A model-driven approach to service orchestra-
tion. In: Proceedings of IEEE International Conference on Services Computing,
SCC 2008 (2008)

39. Mazzanti, F.: UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR (2006),
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf

40. Mukhi, N., Plebani, P., Silva-Lepe, I., Mikalsen, T.: Supporting policy-driven be-
haviours in web services: experiences and issues. In: Proceedings ICSOC 2004, pp.
322–328 (2004)

41. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.: Qos-aware service composition
in dino. In: ECOWS 2007, pp. 3–12. ACM Press, New York (2007)

42. Object Management Group. Unified Modeling Language, http://www.uml.org/
43. Peltz, C.: Web services orchestration and choreography. IEEE Computer 36(10),

46–52 (2003)
44. Rao, J., Su, X.: A survey of automated web service composition methods. In: Car-

doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer,
Heidelberg (2005)

45. Reisig, W.: Modeling- and analysis techniques for web services and business pro-
cesses. In: Steffen, M., Tennenholtz, M. (eds.) FMOODS 2005. LNCS, vol. 3535,
pp. 243–258. Springer, Heidelberg (2005)

46. Reisig, W.: Towards a theory of services. In: UNISCON 2008, pp. 271–281 (2008)
47. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-

pline (1996)
48. Lin, K.-J., Yu, T.: A broker-based framework for qos-aware web service composi-

tion. In: Proc. of the Intl. Conf. on e-Technology, e-Commerce and e-Service, pp.
22–29. IEEE Computer Society, Los Alamitos (2005)

49. OASIS WSBPEL TC. Web services business process execution language, Version
2.0. Technical report, OASIS (2007)

50. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/State-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

51. Tribastone, M.: The PEPA Plug-in Project. In: Quantitative Evaluation of Sys-
Tems, pp. 53–54. IEEE, Los Alamitos (2007)

52. van der Aalst, W., Beisiegel, M., van Hee, K., Konig, D.: An soa-based architecture
framework. Journal of Business Process Integration and Management 2(2), 91–101
(2007)

53. Vankayala, V.: Business process modelling using SRML (Advanced System
Design - Project Dissertation) (2008)

http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf
http://www.uml.org/


www.manaraa.com

114 J. Fiadeiro et al.

Appendix A — The Iconography

icon represents type

component interface
(instantiated when a new 
session starts; the lifetime
is that of the session)

business role
(orchestration of inter-
actions)

requires-interface
(bound during service 
execution after discovery)

business protocol
(properties required of 
external services)

provides-interface
(bound when a new ses-
sion starts)

business protocol
(properties offered by 
the service)

uses/serves-interface
(bound to a component in 
the bottom/top layer when 
a new session starts)

layer protocol (proper-
ties assumed of the 
components in the 
bottom or top layer)

wire interface
(instantiated together with 
the second party)

connector (interaction
protocol and attach-
ments)

external configuration
policy

constraint system

internal configuration
policy

state conditions



www.manaraa.com

Model-Driven Development of Adaptable
Service-Oriented Business Processes�

Carlo Montangero1, Stephan Reiff-Marganiec2, and Laura Semini1

1 Dipartimento di Informatica, Università di Pisa
{monta,semini}@di.unipi.it

2 Department of Computer Science, University of Leicester
srm13@le.ac.uk

Abstract. Businesses typically structure their activities with workflows,
which are often implemented in a rather static fashion in their IT sys-
tems. Nowadays, system requirements change rapidly as businesses try to
maintain their competitive edge, calling for similar agility of the IT sys-
tems. To this end, we present StPowla, an approach that marries service
oriented architecture, policies and workflows to support the agile execu-
tion of business workflows. In StPowla, the business is modelled by
workflows, whose tasks are eventually carried out by services. Adapata-
tion is obtained by allowing the stakeholders to define policies that estab-
lish the quality levels required of the services. The prototype StPowla

support architecture comprizes the transformation of the workflow model
into executable WS–BPEL to be deployed in the ODE–BPEL execution
engine, the generation of default policies from the model, and the en-
actment of the policies by the Appel policy server. The SENSORIA

Finance Case Study is used throughout the paper.

1 Introduction

It is common practice, to reduce time-to-market, that enterprises federate their
operations by networking via Web services, and these federations can change to
follow evolving business goals. On a smaller scale, processes may need to adapt
to temporary shortage of resources by simplifying, or even skipping, some steps.
These environmental changes need to be supported while the software system is
operating. The integration of Business Process Management (BPM) and Service
Oriented Architecture (SOA) has been recognized as a promising approach in
this respect [17].

However, the integration of BPM and SOA still requires large efforts by highly
skilled personnel. Currently, the business rules introduced by business roles like
sales or technical managers need to be mediated by business analysts who, thanks
to their knowledge of the business processes, transforms them into directives to
the programmers for updating the workflows, e.g. in WS-BPEL.
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

The authors would also like to thank Hong Qing (Harry) Yu for his contributions
towards the implementation of the approach and his input to a draft of section 4.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 115–132, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

116 C. Montangero, S. Reiff-Marganiec, and L. Semini

Charfi and Mezini [10] discussed the integration of rule–based languages and
process–based service composition, considering either “to adapt one of the lan-
guages to be more compatible with the other by extending e.g., the rule-based
language with process-oriented features, or the other way around”, or “to en-
hance one of the languages with an interface to the other language, so that the
features of the latter can be used in programs written in the former”. They con-
cluded that both approaches suffer from the lack of seamless integration due to
the paradigm mismatch which the programmer is confronted with, and privilege
an Aspect Oriented approach [11].

In the Service-Targeted Policy-Oriented WorkfLow Approach (StPowla – to
be read like “Saint Paula”) [12], we have integrated the two paradigms seamlessly,
via the SOA: the workflow composes coarse–grain business tasks, and the policies
control the fine–grain variations in the service level of each task. The integration
occurs at the conceptual level and in the supporting environment, rather than
at the linguistic level.

Being policy based, the approach naturally distinguishes between a core de-
scription of the process and its variations, which can be specified by declarative
rules, and can be dynamically deployed or removed. This fosters Business Process
flexibility, by raising the abstraction level at which the variations are specified,
while at the same time providing an efficient implementation technique.

In the approach, business tasks are ultimately carried out by services, i.e. com-
putational entities that are characterized by two series of parameters: the invo-
cation parameters (related to their functionalities), and the Service Level (SL)
parameters, related to the resources they exploit to carry out their job: Stake-
holders can adapt the core workflows by requiring higher or lower quality of
service (QoS), therefore consuming more or less resources.

The kind and granularity of the ‘resources’ that are identified in the business
domain are often more abstract than bandwidth and power, i.e. those usually
addressed in service level agreements. For instance, a task of a given type may
need higher levels of authorization in given circumstances, and lower levels in
others. In StPowla, the authorizing business roles are seen as resources, ordered
along an AuthorizationLevel dimension: the identification of these dimensions is
a key design activity in the approach.

The combination of workflows, SOA, and policies can be exploited at its best,
if a coherent design strategy is adopted to foster flexibility. In a nutshell, such
a strategy is to find the best balance between (i) keeping the workflows simple,
i.e. without explicit choices that depend on the quantity/quality of resources
available to the tasks, and (ii) providing large and foreseeing ranges of choices
to the policies, to support modelling the business rules as they emerge.

In this paper we present the embodiments of the StPowla concepts in
UML4SOA [18], the UML profile that introduces stereotypes for the relevant
concepts (workflow, tasks, service level, etc.) in the standard framework of UML
(classes, interfaces, activities, etc). The main contribution of the paper is the
design of an environment to model, deploy, and run StPowla business pro-
cesses. Note that, besides supporting the use of services with different service



www.manaraa.com

Model-Driven Development 117

levels in the business process, the environment itself is based on a service ori-
ented architecture, orchestrating a workflow engine, a policy server and a service
broker.

2 The Modelling Concepts

StPowla is a workflow based approach to business process modelling that in-
tegrates:

– a standard graphical notation, to ease the presentation of the core business
process;

– policies, to provide the desired adaptation to the varied expectations of all
the business stakeholders;

– the SOA, to coordinate the available services in a business process.

More specifically, workflows are used in StPowla to define the business process
core as the composition of building blocks called tasks, à la BPMN. Each task
performs a meaningful step in the business, whose purpose is well understood
at an abstract level by the stakeholders. That is, a task is understood as to its
effects in the business, regardless of the many details that need to be fixed in its
actual enactment.

Policies are used to express finer details of the business process, by defining
Service Level (SL) requirements of task executions. The added value is that
policies can be updated dynamically, to adapt the core workflow to the changing
needs of the stakeholders.

Tasks are the StPowla units where BPM, SOA and policies converge, and
adaptation occurs: the intuitive notion of task is revisited to offer the novel
combination of services and policies.

When the control reaches the task, a service is looked for, bound and invoked,
to perform the main functionality of the task. Functional requirements of the task
are described in the task specification. Conversely, service invocation is always
local to task execution, i.e., a service is invoked to satisfy the requirements of a
task, not to satisfy some overarching business requirement.

A task can be associated to a policy. Indeed, the principal means to adapt a
workflow to the needs of a stakeholder, is by intervening on the behaviour of the
tasks using policies. To define a policy StPowla users can refer to the state of
the execution of the workflow, as described by task and workflow specification.

In the following, terms in “guillemets” are the UML4SOA stereotypes for the
StPowla concepts: A �workflow� is an activity action that calls the specified
behavior, i.e., a lower level workflow; A �Task� is an activity action that calls
the specified main operation.

Next, we present the StPowla concepts with the support of a loan negotia-
tion process, part of the Finance Portal case study (Chapter 0-3).



www.manaraa.com

118 C. Montangero, S. Reiff-Marganiec, and L. Semini

2.1 Model Specification

In StPowla a �Task� is characterized by a �Taskspecification� via a name,
a description, an interface, and a set of service level dimensions. The name and
description convey the purpose of the �Task�: in well established domains,
they identify precise, even if informal, functional requirements for the task. The
interface provides the formal signature of the operation carried out by the task.
As already mentioned, a task is actually carried out by a service: the interface
includes an operation called main, with the same parameters and return type of
the required service.

The �Taskspecification� can specify a number of service level dimensions
(�NFDimension�) that specify the non-functional dimensions that character-
ize the service to invoke. Besides specifying the type of each dimension, the
designer can define:

– the ranges within which the service level can vary. In the case study the non
functional dimensions are specified as enumerations, and the ranges are the
enumeration literals: manual and automatic; supervisor and branchManager
(see Fig. 1).

– a default value. For instance, manual and supervisor in Fig. 1.

Then, the stakeholders can specify the service levels they require along each
dimension, by installing policies for a given task, overriding the default value,
as discussed below.

Finally, a �Taskspecification� can have attributes : they define properties of
a �Task� that depend on the state of the workflow, and can be used in the
policies to access the execution state and select the most appropriate service
levels when the �Task� is activated. Attributes are specified at design–time
and bound at run–time, e.g. on task/workflow entry, as a function of the inputs,
and of the other attributes.

To sum up, from a behavioural perspective, when the control reaches the
task, operation main is executed. The execution of main triggers the search and
invocation of a suitable service, and returns the computed result. The search
identifies a service implementation that satisfies the current policies, i.e., the
policies to be applied in the current state of the workflow, or the default values
for the service level, when not overridden.

Just like tasks, �workflow�s have a �WfSpecification� defining their at-
tributes and signature. Moreover, differently from tasks, their behaviour is de-
fined explicitly, via an associated UML activity, whose nodes are either tasks or
workflows.

2.2 Case Study: Loan Approval

In this scenario, a customer uses a web portal to request a loan from a bank. The
request is forwarded to and handled by the local branch, i.e. the closest one to
the customer’s residence. At the local branch, to process the loan request, and



www.manaraa.com

Model-Driven Development 119

Fig. 1. The specification of BankEvaluation

before a contract proposal is sent to the customer, there are two necessary steps:
a preliminary evaluation (vetting), to ensure that the customer is credible, and
a subsequent step (assessment), where the contract proposal can be approved
or rejected.

We concentrate on an inner workflow of the LoanApproval business process,
Bank Evaluation. The diagrams in Figures 1 and 2 specify this workflow. As
indicated by the main operation in the �WfSpecification�, the Bank Evaluation
workflow processes a LoanRequest, that is, the document collecting all the in-
formation on the loan being worked on . The actual process is in Figure 2, and
shows the steps to accept or reject the request. The attribute managerAvailable

reflects part of the state of the bank’s branch enacting the workflow, and can be
used to state the business policies.

Let us now have a look at �Taskspecification� Assessment, which character-
izes the second step of this workflow. Its �ServiceInterface� identified by the
�requires� association specifies that this task needs a service able to transform
a LoanRequest1. This �ServiceInterface� is implemented by a service invoked by
the task and can be adapted along two dimensions: AutomationLevel and Assesser-

Role. The former is a standard dimension that roughly distinguishes two kinds
of implementations: those that exploit only machine resources, automatic, and

1 The description of the transformation is not shown in the diagram, but should appear
in the report containing it, or in a suitable pane in the supporting environment (for
instance, in the property pane in the IBM Rational Software Architect –RSA– where
the figure comes from).



www.manaraa.com

120 C. Montangero, S. Reiff-Marganiec, and L. Semini

Fig. 2. The BankEvaluation activity

those that need human resources, manual. The second dimension may vary from
one �Taskspecification� to another, since it classifies the different roles that, in
different situations, can be involved in the �Task�. Here, we have two such
roles, branchManager and supervisor, defined as the default.

To deal with service levels, another stereotype has been introduced, �Dim�,
with a tagged value default to specify the default level. In the figure it is shown
how the default values can be set in the model. Two dimensions of the same
�Taskspecification� need not be independent: for instance, in our example, As-

sesserRole makes sense only if AutomationLevel is set to manual.
Besides its�Taskspecification�, a�Task� also has a name, which is only used

to distinguish different occurrences of the same task type in the same workflow.
Therefore, we simply use integers as names for �Task�s. The BankEvaluation

workflow simply states that the request is first subject to Vetting and then, if
accepted, to Assessment. In either step, the request may be rejected; after Vetting,
more information may be requested from the applicant. The default service levels
imply that a supervisor will perform Assessment. Similarly, a clerk will vet the
request by default – not shown here. Variations can be specified by policies, as
shown next.

2.3 Policies

A task may have associated policies, which come in two flavours: those that
adapt the workflow by constraining the task behaviour along its SL dimensions,
and those that modify the workflow structure, adding and/or deleting tasks.
The latters are discussed in [7]; here we concentrate on the formers, and call
them simply policies. For instance, the generic BankEvaluation process can be
adapted to specific situations via policies, like:
P1: In case of loans of small amount, both vetting and assessment are performed

automatically.
P2: In a small branch, the branch manager has to approve all applications.
P3: If the branch manager of a small branch is out of office, loan applications

are approved by the manager’s representative.



www.manaraa.com

Model-Driven Development 121

In StPowla, the policies act on the process by specifying the requested ser-
vice levels as a function of the state of execution as expressed in the attributes.
To this purpose, we use is Appel [36]. Developed in the context of telecom-
munications, Appel is a general language for expressing policies in a variety of
application domains: It is conceived with a clear separation between the core
language and its specialization for concrete domains, a separation which turns
out very useful for our purposes.

In Appel a policy consists of a number of policy rules, grouped using a number
of operators (sequential, parallel, guarded and unguarded choice). A policy rule
has the following syntax

[when trigger] [if condition] do action (1)

The core language defines the structure but not the details of these parts, which
are defined in specific application domains. Base triggers and actions are domain-
specific atoms. An atomic condition is either a domain-specific or a more generic
(e.g. time) predicate. This allows the core language to be used for different
purposes.

The applicability of a rule depends on whether its trigger has occurred and
whether its conditions are satisfied. Triggers are caused by external events. Trig-
gers may be combined using or, with the obvious meaning that either is sufficient
to apply the rule. Conditions may be negated as well as combined with and and
or with the expected meaning. A condition expresses properties of the state and
of the trigger parameters. Finally, actions have an effect on the system in which
the policies are applied. A few operators (and, andthen, or and orelse) have
been defined to create composite actions.

In StPowla, to specify tasks, we specialize Appel. In this paper we only
consider the specializations relevant to refinement policies, additional extensions
exists for reconfiguration policies and they are introduced in [7]. The only pos-
sible trigger of a policy is the activation of the associated task (reconfiguration
policies allow for a number of other triggers). To deal with services, we intro-
duce a special action, req(-, -, -), for service discovery and invocation. The
semantics of this action is to find a service as described by the first and third
arguments (specifying service type and SLA constraints), bind it, and invoke it
with the values in the second argument (the invocation parameters).

A default policy is associated with each task. It states that when the control
reaches the task, a service is looked for, bound and invoked, to perform the
functionality of the task (denoted by main):

when taskEntry(<args>)

do req(main, <args>, [])

where taskEntry denotes the policy trigger, whose arguments are the task pa-
rameters, if any. Adaptation occurs by overriding the default policy. For instance,
to satisfy the requirements expressed by policy P2, we associate the following
policy to task Assessment:



www.manaraa.com

122 C. Montangero, S. Reiff-Marganiec, and L. Semini

P2: when taskEntry([]) if thisWF.branchSize = small

do req(main, [], [AutomationLevel = manual,

AssessorRole = branchManager])

To ease the policy designer task, policies can also be defined by tables, whose
structure is derived from the UML4SOA model of the workflow. A default table
is automatically derived, which corresponds to the default policy: no discrimina-
tor appears, and the default value is assigned to each SL, as in Table 1. Then, the
designer can redefine the default policy, by adding discriminators and SL values.
For each new discriminator, the table is automatically extended, by building the
decision tree, and by assigning the default value to the SLs. Finally, the designer
can override any SL with the intended value. An example, relative to �Task� 2
of the BankEvaluation workflow, is given in Table 2, which reflects the informal
policies P1 and P2 of Section 2. In a policy, task and workflow attributes are ac-
cessed by name, while the usual OO dot notation allows accessing the attributes
of the task data, like in lReq.amount. The left side columns encode a decision
tree, for the two discriminators lReq.amount < 5000 and branchSize = small:
each row on the right side lists the required service level for each dimension (one
per column on the right). For instance, if neither condition holds, the default
values are requested for the service levels. The policy names are there for trace-
ability, and the stars denote the only parts of the table that are input by the
stakeholders.

Table 1. The policy table for task 2 – automatically derived from the workflow model

Policies for BankEvaluation.2: Assessment
Requested SLs

Automation level AssesserRole
default: manual default: supervisor

Table 2. The policy table for task 2 – interactively extended by the designer

Policies for BankEvaluation.2: Assessment
Discriminators Requested SLs

iReqAmount<5000 � branchSize=small � Automation level AssesserRole
true true P1: automatic � N/A
true false P1: automatic � N/A
false true default: manual P2: branchManager �

false false default: manual default:supervisor

3 Design and Deployment

We distinguish two roles in the design of a system integrating BPM and SOA:
the BP Designer dealing with workflow and policy specification, and the Ser-
vice Producer, who is in charge of designing, implementing, and registering the



www.manaraa.com

Model-Driven Development 123

services. We can also distinguish between Workflow and Policy Designer, since
they deal with different aspects of the business process. However, we note that
they normally work in the same organization, they both specify the requirements
from a business point of view, they share the modelling of the task types like
the one in Figure 1, and often they are the same person, namely the Business
Analyst.

In this section we describe the process to apply the StPowla approach, and
the tools we propose to support the designers job.

3.1 Workflow Design

The Workflow Designer defines the task types and orchestrates different tasks
into an executable process to achieve a business goal which is requested by the
end-users. To do that, he uses the UML4SOA profile as notation and the IBM
Rational Software Architect (RSA) as editor. Once the workflow model is created
(or updated), it is transformed into executable WS-BPEL [29] and deployed in
the ODE BPEL execution engine [25]. Besides, policy tables templates, with the
adaptable service levels and the default values are automatically derived from
the workflow model, as discussed in the last part of the previous sections. The
policy definition is also supported by RSA, which has been extended via the
PolicyDesign plug–in, This way the designer is naturally offered the context for
policy definition, that is task types definitions, including attributes and service
level dimensions. Once specified and deployed, the policies affect all subsequent
workflow enactments.

3.2 Service Design

For the moment being, StPowla makes a sort of “closed world” assumption:
whenever a new task or dimension is introduced, new refinement services need
be designed, implemented and deployed. The discussion that follows describes a
method to specify these services.

Any service refining a �Taskspecification� implements the same
�ServiceInterface� interface, but offers a specific kind of QoS, defined in an associ-
ated capability document (capDoc). For instance, an “automatic” implementation,
and one that involves the BranchManager can be specified as shown in Figure 3
for Assessment. The�ServiceInterface� interface of the�Taskspecification� is re-
fined respectively by the interfaces AutomaticAssessment and BranchManager-
ManalAssessment. The capDoc tag of�TaskRefinement� specifies the capDoc de-
scribingwhich service levels the implementation must offer, that is it constrains the
possible implementations. For instance, Table 3 shows the two documents referred
to in Figure 3. So, the implementer has all the information he needs: functionality
from domain knowledge and enterprise standards, service�ServiceInterface�, and
capabilities from the capDoc.

Note that the scenario we assume in StPowla entails a strict co-operation
between task specifier, policy specifier and service implementer: this is possible
since they all share the same UML4SOA model of the business.



www.manaraa.com

124 C. Montangero, S. Reiff-Marganiec, and L. Semini

Fig. 3. Service specifications to refine �Task� 2: Assessment

Table 3. Service capabilities

<capDoc name="AutomaticAssessmentCap" serviceType="Assessment"> <and>

<qos name="AutomationLevel" enum="automatic" confidence="1"/>

</and> </capDoc>

<capDoc name="BranchManagerAssessmentCap" serviceType="Assessment"> <and>

<qos name="AutomationLevel" enum="manual" confidence="1"/>

<qos name="AssesserRole" enum="BranchManager" confidence="1"/>

</and> </capDoc>

3.3 Deployment

The workflow and policy deployment targets three components of the run–time
support, namely the three rightmost ones in Figure 4. Steps 1 to 3 occur when
a new UML model is deployed: The BPEL representation of the workflow is
generated by the central deployment service, the StPowlaDeployEngine, and
downloaded to the workflow engine: We currently use Apache ODE (Orches-
tration Director Engine) [25] to execute WS-BPEL [29] representations of the
workflows. Also, the StPowlaDeployEngine generates the policy tables templates
and stores them back into the RSA. Thereafter, whenever a new table instance is
deployed, the XML representation of the policy is generated and loaded into the
Appel Policy Engine [36,32]. The last component affected by deployment is the
StPowlaEngine, that is, the core of the run–time environment. For each policy,
it is loaded with the paths it will use to access the run–time values needed to
evaluate the policy itself (more details in Section 4).

Fig. 4. Workflow and policy deployment



www.manaraa.com

Model-Driven Development 125

Fig. 5. Runtime StPowla choreography

4 Run–Time Environment

In this section we describe the tools we propose to implement the StPowla

approach. There are four cooperating services and six steps in the run-time
environment to complete a task (see Figure 5). The WFEngine interacts with the
StPowlaEngine, which coordinates the AppelPolicyServer and the GrisuBroker
to select a refinement per each task in the workflow, according to the current state
and policies, and invoke it. The AppelPolicyServer selects the requirements for
service discovery, and the GrisuBroker performs both discovery and invocation.

The WFEngine is the interpreter of the business process. All the tasks have
the same BPEL behaviour: they invoke the StPowlaEngine, to detect and invoke
the task refinement that best suits the current requirements. The StPowlaEngine
receives the task name (tn), task type (tt), state data (sd), and call data (cd).
The latter is the data for the invocation of the chosen service, while sd carries
the relevant information on the state of the workflow enactment, i.e., the current
values of the task and workflow attributes. In our example, the second task of
Figure 2, the WFEngine will pass as arguments “2” , “Assessment”, the current
values of the workflow and task attributes (branchSize and managerAvailable),
and the loan request, that is, the input argument to the task.

Then, the StPowlaEngine builds and sends the environment for policy eval-
uation to the AppelPolicyEngine. The environment has bindings for the task
name and type, and for all the information in the call data and attributes that
are used in the policies currently deployed for the task. In the example, the
domain of the environment will be {taskName, taskSpecification} united with
{branchSize, lReq.amount} or {managerAvailable} according to the deployed
policy (P1 or P2, respectively). Remember that, to allow the StPowlaEngine to
build such an environment at run–time, whenever a new policy is deployed, the
relevant information is stored in the StPowlaEngine itself (step 5 in Figure 4)).
To understand how this is done, we need to point out that i) call data are rep-
resented in XML, according to schemas that are derived from the UML4SOA
model, and ii) state data are also represented in XML in a standard format,
shared among the WFEngine, the StPowlaEngine, and the StPowlaDeployEnv.
So, the StPowlaEngine knows which data to retrieve from the state and call
data, and pairs them to the paths while building the environment.



www.manaraa.com

126 C. Montangero, S. Reiff-Marganiec, and L. Semini

Table 4. The reqDocs for policies P1 and P2

<reqDoc> <serviceType>Assessment</serviceType> <and>

<qos name="AutomationLevel" enum="automatic" confidence="1"/>

</and> </reqDoc>

<reqDoc> <serviceType>Assessment</serviceType> <and>

<qos name="AutomationLevel" enum="manual" confidence="1"/>

<qos name="AssesserRole" enum="branchManager" confidence="1"/>

</and> </reqDoc>

The AppelPolicyServer determines the requirements of the task refinement
service to call, in the current state of workflow enactment, and according to the
policies currently installed in the policy engine. We are using the Appel policy
engine [36,32] to reap the benefits of its architecture. Indeed Appel neatly dis-
tinguishes between the core mechanisms for policy evaluation and the extensions
mechanisms that allow tailoring the engine to particular domains. Tailoring is
done by defining the relevant triggers, predicates and actions: for StPowla,
we defined i) the trigger related to task entry, which reacts to the invocation
from the StPowlaEngine, and ii) the action that builds and returns a specific
requirements document (reqDoc) for the service broker. For instance, when pol-
icy P2 above is triggered, the policy server returns the upper reqDoc in Table 4.
Similarly, the policy server generates the lower document for P1.

The GrisuBroker uses the input reqDoc to discover a matching service, i.e.
one of the correct �Taskspecification� and offering service levels that match the
request. The discovered endpoint is used to invoke the main operation, with the
call data as argument. The data returned by the service is then passed back to
the workflow engine, which carries on with the workflow. Note that the lack of
a matching service denotes a flaw in the design/deploy process. Indeed, due to
StPowla’s “closed world” assumption, whenever a new service is deployed the
needed data access paths are stored in the StPowlaEngine.

For the two policies in our example, Grisu would discover respectively the
capDocs shown in Table 3. Grisu can discover these services by comparing re-
qDocs (like the one in Table 4) and capDocs: no other information is needed.
The format of reqDoc and capDoc is taken from the service broker DINO[26]:
For this reason, our service broker is called Grisu2.

5 Barbed Model Driven Development

When thinking of model driven development, the immediate understanding is
that models drive software development, in the sense that the software is con-
structed by transforming models from higher levels of abstraction to the point
where we reach a model which is executable with the desired degree of qual-
ity characteristics. What tends to be less evident, is that, precisely in order to
2 Grisu is a popular Italian cartoon character, a small dragon: since DINO is a di-

nosaur, we see Grisu as DINO’s child.



www.manaraa.com

Model-Driven Development 127

reach the desired quality, many other models are used in the verification and
assessment of the solutions under consideration at the various stages of devel-
opment. That is, looking at the development process, besides a spine of model
transformations moving from highly abstract, domain related models down to
concrete platform related models (programs), we can see a number of barbs,
relating models in the spine to specialized models that permit specific, often
very sophisticated, analysis of parts of the software under development, usu-
ally in the early stages. We called this approach Barbed Model–Driven Software
Development [24].

Within the work on StPowla, we applied this idea to address the detection
of possible conflicts among policies. Indeed, when several policies are composed
(or applied simultaneously) they might contradict each other: a phenomenon re-
ferred to as policy conflict. Policy conflict has been recognised as a problem [31]
and there have been some attempts to address this, mostly in the domain of
access or resource control. In the case of end-user policies the problem is signif-
icantly increased by a number of factors. To name a few:

– the application domains are much more open and hence more difficult to be
modelled,

– there will be many more end-user policies than there are system policies
(sheer number of policies),

– end-users are not necessarily aware of the wider consequences of a policy
that they formulate.

To provide the user with confidence that the rules are conflict free, we pro-
pose to filter his/her input to detect those policies that, if entered in the policy
engine, would originate conflicts. The advantages include that we can antic-
ipate conflict detection—traditionally performed at run-time—at design-time.
Indeed, the well-known advantages of early verification apply to policies as well.
In [20,21], we take a logic–based approach to this end: conflicts are detected by
deducing specific formulae in a suitable theory. A translation function has been
defined to derive the logical representation of Appel policies in the temporal
logic ΔDSTL(x) [22,23]: as a side effect, this function defines a formal semantics
for Appel, which before was only defined informally, like most of the policy lan-
guages. The translation maps a group of policies into a logical theory expressing
its meaning. The temporal features of ΔDSTL(x) permit the expression of the
dynamics of the rules, the event operator facilitates dealing with the triggers,
and the spatial features permit addressing the localization of the policies.

More specifically, the filter maintains a logical theory representing

1. the relevant information on the domain, that is, interesting facts and infer-
ence rules valid in the application domain,

2. the set of policies currently installed, i.e. contained in the Policy Base,
3. a representation of the state space of the system, restricted to the part

accessed when selecting the policies, and
4. the definition of what constitutes a conflict.



www.manaraa.com

128 C. Montangero, S. Reiff-Marganiec, and L. Semini

Then , it is sufficient to equip the filter also with a deduction engine for the logic
in use: before a new policy is added to the Policy Base, its logical representation
is added to the filter theory, and then the deduction engine is run: if one of the
formulae identifying a conflict is derived, the user is informed and he can resolve
the detected conflict.

Taking a similar direction, we designed a barb towards UML state machines to
model check whether policies are free of conflicts [5]. To this aim, we have defined
a semantics-preserving compositional mapping from Appel to UML, suitable for
model checking with UMC [19,37]. Since UMC operates on UML state machines,
the target of the mapping happens to be a subset of UML state machines: policies
and policy groups are defined using composite states, i.e. states with structure
reflecting the one imposed by the Appel operators onto policies and actions.

A policy in Appel is built with triggers, conditions, and actions, just like state
machine transitions. Indeed, triggers, conditions and basic map onto the UML
triggers, conditions and actions that decorate the machine state transitions, in
the natural way. This is fortunate, since they are domain dependent, and we
can exploit the flexibility that UML provides w.r.t the language in which to
express them, to best fit the domain peculiarities. Some more work is needed
to map combination of actions since action combinators are defined in terms
of the outcome of the actions under composition. However, this is true in a
very broad sense that need not consider the details of the action semantics, but
only an abstract notion of success and failure. Intuitively, these notions entail
that an action may complete normally (success) or may abort for some reason
(failure). Again, Appel leaves the specifics of when an action succeeds or fails
to the domain, and simply defines the success or failure of a composed action as
a combination of the successes and failures of the actions under composition.

UMC is an on-the-fly model checker built to analyze UML state machines
for properties expressed in the action- and state-based branching-time temporal
logic UCTL [6]. In the case of policies, conflicts arise if a pair of conflicting
actions is executed. To prove conflict freeness the full state space must be checked
to exclude a path along which both actions are executed (in any order). The
approach has been validated with the SENSORIA finance case study.

6 Related Work

Much work has been published in the area of business process specifications,
ranging from natural English to structured languages used for expressing pro-
cesses. BPEL [16] is considered the de–facto standard for SOA-based business
processes, despite its initial purpose as a service composition language.

Policies are descriptive and essentially provide information that is used to
adapt the behaviour of a system. Most work deals with declarative policies.
Notable examples are the formalisms to define access control policies, and to
detect conflicts [33,15]; formalisms for modelling the more general notion for
usage control [38]; formalisms for SLA, i.e. to specify client requirements and
service guarantees, and to sign an agreement between them [9,8].



www.manaraa.com

Model-Driven Development 129

Ideas of introducing flexibility into workflows have been presented by Reichert
and Dadam [30] and in the Woklet system by Adams et al [3]. The formers discuss
a framework for dynamic process change, but do not include support for changes
to the workflow in progress. The latter is based on an extensible repertoire of sub–
processes aligned to each task, one of which is chosen at runtime. The difference
here is that our adaptation focuses on changing the Service Levels, thus providing
guidance in the design phase.

In AgentWork [27], rules can be used to drop or add individual tasks to
workflows. This is close to our reconfiguration policies [13,14]. However, there
is no notion of tasks being linked to services in this work, and the policies are
concerned with task replacement rather than task implementation or service
selection.

A policy-driven approach is proposed in [34], to extend BPEL definitions with
transactional behaviour, as the one offered by WS-Coordination. To actually
enforce the coordination behaviour for the BPEL processes, as specified by the
policies, a separate middleware system has been integrated in the architecture.

Among the various types of software tools available in the marketplace for
BPM support, several business rules management tools (BR tools) became avail-
able in recent years. Among the most complete and promising solutions are Blaze
Advisor [1] and JRules [2]. Recently BR tools have been including SOA integra-
tion features, such as deploying rule services as part of an SOA [28].

It is worthwhile to locate StPowla in the grid provided by two popular clas-
sification of the BR tools [4,35]. Being aimed at business analysts, StPowla

falls in the knowledge–based BR tools, and can benefit the people/document
intensive processes, which it can support with respect to workflow agility and
resource management via its reconfiguration/refinement mechanisms. Histori-
cally, the knowledge-based BR tools have been targeted to decision intensive
business processes. They foster ‘rule–driven programming’, with no clear differ-
ence between the rules driving the high level behavior of the workflow and those
governing the application low level, such as computation and inference rules. In
this respect, StPowla improves the overall structure of process representation
with its distinction between core process and variations along the SL dimensions.

7 Conclusions and Future Work

StPowla introduces a novel combination of policies and workflows that allows
the designer to capture the essence of a business process as workflow and to
express variations in a descriptive way.

In this paper we have only considered static QoS requests, which involve no
run-time assessment of the resources. Consider now P4: “In a big branch, the
request should be vetted and approved by different members of staff”. With-
out introducing cross-task requirements, the reqDoc for Assessment cannot be
completed at design time, that is, it must be parametric and instantiated at run–
time as a function of the identity of the vetter. On the capDocs side, one way
is to introduce as many different task refinements as assessors, specify each one



www.manaraa.com

130 C. Montangero, S. Reiff-Marganiec, and L. Semini

statically, and let Grisu make the choice. Alternatively, one should change the
�ServiceInterface� of the �TaskRefinement�, adding as a parameter the needed
info (the assessor, for P4). In terms of service level, this amounts to characterize
the refinement as being able to use any specific resource of the requested type.

We already mentioned that in StPowla we assume a strict co-operation
between task specifiers, policy specifiers and service implementers, which share
the same UML4SOA model of the business process. Looking for task refinements
made available by independent providers, involving e.g. interface adaptation, is
left for future work.

References

1. http://www.fico.com/en/Products/DMTools/Pages/

Fair-Isaac-Blaze-Advisor-System.aspx (last visited: March 2009)
2. http://www.ilog.com/products/businessrules/index.cfm (last visited: March

2009)
3. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A

service-oriented implementation of dynamic flexibility in workflows. In: Meersman,
R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp. 291–308. Springer, Heidelberg
(2006)

4. Bajech, M., Krisper, M.: A methodology and tool support for managing business
rules in organizations. Information Systems 30, 423–443 (2005)

5. ter Beek, M., Gnesi, S., Montangero, C., Semini, L.: Detecting policy conflicts by
model checking UML state machines. In: Reiff-Marganiec, S., Nakamura, M. (eds.)
Feature Interactions in Software and Communication System X, pp. 59–74. IOS
Press, Amsterdam (2009)

6. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An Action/State-Based
Model-Checking Approach for the Analysis of Communication Protocols for
Service-Oriented Applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS,
vol. 4916, pp. 133–148. Springer, Heidelberg (2008)

7. Bocchi, L., Gorton, S., Reiff-Marganiec, S.: Engineering Service Oriented Applica-
tions: From StPowla Processes to SRML Models. In: Fiadeiro, J.L., Inverardi, P.
(eds.) FASE 2008. LNCS, vol. 4961, pp. 163–178. Springer, Heidelberg (2008)

8. Buscemi, M.G., Ferrari, L., Moiso, C., Montanari, U.: Constraint-Based Policy
Negotiation and Enforcement for Telco Services. In: TASE 2007, pp. 463–472. IEEE
Computer Society, Los Alamitos (2007)

9. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007)

10. Charfi, A., Mezini, M.: Hybrid web service composition: business processes meet
business rules. In: Aiello, M., Aoyama, M., Curbera, F., Papazoglou, M.P. (eds.)
ICSOC, pp. 30–38. ACM, New York (2004)

11. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. In:
World Wide Web, pp. 309–344 (2007)

12. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: StPowla: SOA, Policies
and Workflows. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907,
pp. 351–362. Springer, Heidelberg (2009)

http://www.fico.com/en/Products/DMTools/Pages/Fair-Isaac-Blaze-Advisor-System.aspx
http://www.fico.com/en/Products/DMTools/Pages/Fair-Isaac-Blaze-Advisor-System.aspx
http://www.ilog.com/products/businessrules/index.cfm


www.manaraa.com

Model-Driven Development 131

13. Gorton, S., Reiff-Marganiec, S.: Policy support for business-oriented web service
management. In: Web Congress. LA-Web 2006. Fourth Latin American, pp. 199–
202. IEEE Computer Society, Los Alamitos (2006)

14. Gorton, S., Reiff-Marganiec, S.: Towards a task-oriented, policy-driven business
requirements specification for web services. In: Dustdar, S., Fiadeiro, J.L., Sheth,
A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 465–470. Springer, Heidelberg (2006)

15. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In:
Proceedings of the Computer Security Foundations Workshop (CSFW 2003), pp.
187–201. IEEE Computer Society, Los Alamitos (2003)

16. IBM. BPEL4WS, Business Process Execution Language for Web Services, version
1.1 (2003)

17. Kamoun, F.: A roadmap towards the convergence of business process management
and service oriented architecture. Ubiquity 8(14) (2007)

18. Koch, N., Mayer, P., Heckel, R., Gonczy, L., Montangero, C.: UML for service-
oriented systems, SENSORIA EU-IST 016004 Deliverable D1.4.a. (2007),
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_24/D1.4.a.pdf

19. Mazzanti, F.: UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR (2006)

20. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based detection of conflicts
in APPEL policies. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767,
pp. 257–271. Springer, Heidelberg (2007)

21. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based conflict detection for
distributed policies. Fundamenta Informaticae 89(4), 511–538 (2008)

22. Montangero, C., Semini, L.: Distributed states logic. In: 9th International Sympo-
sium on Temporal Representation and Reasoning (TIME 2002), Manchester, UK.
IEEE CS Press, Los Alamitos (2002)

23. Montangero, C., Semini, L., Semprini, S.: Logic Based Coordination for Event–
Driven Self–Healing Distributed Systems. In: De Nicola, R., Ferrari, G., Meredith,
G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 248–262. Springer, Heidel-
berg (2004)

24. Montangero, C., Semini, L.: Barbed model–driven software development: A case
study. Electron. Notes Theor. Comput. Sci. 207, 171–186 (2008)

25. Moser, S., van Lessen, T.: Developing, deploying and running a hello world BPEL
process with the Eclipse BPEL designer and Apache ODE,
http://people.apache.org/~vanto/helloworld-bpeldesignerandode.pdf

26. Mukhija, A., Rosenblum, D.S., Dingwall-Smith, A.: Dino: Dynamic and adaptive
composition of autonomous services (2007),
http://www.cs.ucl.ac.uk/research/dino/

27. Müller, R., Greiner, U., Rahm, E.: Agent work: a workflow system supporting
rule-based workflow adaptation. Data Knowl. Eng. 51(2), 223–256 (2004)

28. Núñez, S.: ILOG JRules 6.5 brings rules to SOA. InfoWorld: Product Guide: ILOG
JRules 2007: Review (2007)

29. Oasis Organization. Web services business process execution language version 2.0.
- primer (2007)

30. Reichert, M., Dadam, P.: ADEPT flex -supporting dynamic changes of workflows
without losing control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

31. Reiff-Marganiec, S., Turner, K.J.: Feature interaction in policies. Comput. Net-
works 45(5), 569–584 (2004)

32. Reiff-Marganiec, S., Turner, K.J., Blair, L.: Appel: The accent project policy en-
vironment/language. Technical Report TR-161, University of Stirling (December
2005)

http://www.pst.ifi.lmu.de/projekte/Sensoria/del_24/D1.4.a.pdf
http://people.apache.org/~vanto/helloworld-bpeldesignerandode.pdf
http://www.cs.ucl.ac.uk/research/dino/


www.manaraa.com

132 C. Montangero, S. Reiff-Marganiec, and L. Semini

33. Siewe, F., Cau, A., Zedan, H.: A compositional framework for access control policies
enforcement. In: FMSE 2003, pp. 32–42. ACM Press, New York (2003)

34. Tai, S.: Composing web services specifications: Experiences in implementing policy-
driven transactional processes. In: BTW. LNI, vol. 65, pp. 547–559. GI (2005)

35. Teubner, C.: The Forrester Wave: Human Centric BPM for Java Platforms, Q3
2007 (2007),
http://www.forrester.com/Research/Document/

Excerpt/-0,7211,38886,00.html

36. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P., Ireland, J.:
Policy support for call control. Computer Standards and Interfaces 28(6), 635–649
(2006)

37. UMC v3.5., http://fmt.isti.cnr.it/umc
38. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal model and policy

specification of usage control. ACM Trans. Inf. Syst. Secur. 8(4), 351–387 (2005)

http://www.forrester.com/Research/Document/Excerpt/-0,7211,38886,00.html
http://www.forrester.com/Research/Document/Excerpt/-0,7211,38886,00.html
http://fmt.isti.cnr.it/umc


www.manaraa.com

A Formal Support to Business and Architectural
Design for Service-Oriented Systems�

Roberto Bruni1, Howard Foster2, Alberto Lluch Lafuente3,
Ugo Montanari1, and Emilio Tuosto4

1 Department of Computer Science, University of Pisa, Italy
{bruni,ugo}@di.unipi.it

2 Imperial College London, UK
howard.foster@imperial.ac.uk

3 IMT Institute for Advanced Studies Lucca, Italy
alberto.lluch@imtlucca.it

4 Department of Computer Science, University of Leicester, UK
emilio@mcs.le.ac.uk

Abstract. Architectural Design Rewriting (ADR) is an approach for the
design of software architectures developed within Sensoria by reconciling
graph transformation and process calculi techniques. The key feature that
makes ADR a suitable and expressive framework is the algebraic handling
of structured graphs, which improves the support for specification, analy-
sis and verification of service-oriented architectures and applications. We
show how ADR is used as a formal ground for high-level modelling lan-
guages and approaches developed within Sensoria.

1 Introduction

The IST-FET Integrated Project Sensoria aims at developing a comprehensive
approach to the engineering of service-oriented software systems where founda-
tional theories, techniques and methods are fully integrated into pragmatic soft-
ware engineering processes. The development of mathematical foundations and
mathematically well-founded engineering techniques for service-oriented com-
puting constitutes a key research activity of Sensoria.

In this paper we report the outcome of some research efforts within Sen-

soria aimed at developing formalisations of high-level modelling languages for
service-oriented systems. More precisely, we present Architectural Design Rewrit-
ing (ADR) [5] and we explain how ADR can be used as a formal model for ar-
chitectural and business design and how it helps in formalising crucial aspects of
the UML4SOA and SRML modelling languages, see Chapter 1-1 (UML Exten-
sions for Service-Oriented Systems) and Chapter 1-2 (The Sensoria Reference
Modelling Language), respectively, as well as the Software Modes approach [9].

ADR has been inspired by the long-term experience of Sensoria researchers
on Graph Transformation Systems, process calculi and software engineering and

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 133–152, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

134 R. Bruni et al.

has been entirely developed under the Sensoria project, allowing us to estab-
lish interesting links with many other formalisms developed within Sensoria

and making it possible to strengthen the collaboration among different research
groups with different expertise within the project.

Synopsis. § 2 explains the motivating principles of ADR. § 3 introduces ADR
basics and explains how ADR can be considered as an Architectural Description
Language on the basis of a running example. § 4 overviews some key aspects of
ADR-based formalisations of UML4SOA, SRML and Sofware Modes.

2 Rationale behind Architectural Design Rewriting

The use of graphs or diagrams of various kinds is pervasive in Computer Science,
as they are very handy for describing in a two-dimensional space the logical or
topological structure of systems, models, states, behaviours, computations, etc.;
the reader might be familiar, for example, with the classical graphical presenta-
tions of entity-relationship diagrams, of finite state automata and labelled tran-
sition systems, of data-structures (like various kinds of lists and trees), static and
behavioural UML diagrams (like class, message sequence and state diagrams), of
computational formalisms like Petri nets, and so on. One obvious advantage of
using graphs or diagrams lies in their ability to represent in a direct way relevant
topological features of the systems or models they describe.

On the one hand, software architectural models are intended to describe the
structure of a system in terms of computational components, their interactions,
and its composition patterns [12]. Using plain hypergraphs, the above perspective
can find its realisation by modelling “components” and “connectors” as hyper-
edges and their interconnecting “ports” as nodes. Moreover, nodes, hyperedges
and their tentacles can be typed so to discard erroneously linked systems.

On the other hand, in [2] it is argued that structured graphs are the most
appropriate ones for service-oriented and global computing systems, where scal-
able techniques and open-ended specifications are important issues not imme-
diately met by plain hypergraphs alone. Structured graphs offer better support
for “understanding” graphs (like parsing and browsing large systems), designing
systems (like expressing requirements and specifications, facilitating abstraction
and refinement, allowing modularity and seamless composition), supporting au-
tomated analysis and verification (like model construction, model conformance,
behavioural analysis, assessing sound reconfiguration and refactoring transfor-
mations) and last but not least, sound and complete visual encoding of compu-
tational systems.

Different kinds of structures can be super-imposed on graphs. The simplest one
is enclosing a graph G in some sort of box whose label B implicitly defines some
properties of the enclosed graph, i.e., its style. For example, Fig. 1 (left) shows
some basic examples of “topologically” labelled graphs, that can be written,
e.g., Seq[G] and Star [G′] (for obvious graphs G, G′ derivable from Fig. 1) or,
equivalently, as membership annotations G : Seq and G′ : Star , where Seq can
be read as the set of all sequentially-linked graphs, and similarly for Star .



www.manaraa.com

A Formal Support to Business and Architectural Design 135

Fig. 1. “Graphs within boxes” (left) and “Graphs within edges” (right)

Fig. 2. “Nested graphs”

The natural extension of taking a “graphs within boxes” view is then the
“graphs within edges” (or “nested graphs”) view, where boxing can be iterated
by allowing style labels that are edges themselves (see Fig. 1 (right)). Note that
the boxed interfaces are now equipped with tentacles and that dotted lines make
explicit the correspondence between inner nodes exposed by interfaces and ac-
tual nodes where the module is linked to. When the nodes attached to the
tentacles of its (outermost) interface are read as formal parameters, we call it
a design. This way, boxes can be read as enhanced interfaces allowing for more
sophisticated forms of containment, strctured composition, modular specifica-
tion, logical hierarchies, and node sharing, among others, making such features
easily understandable also to non-specialists. For example, Fig. 2 shows that se-
quential composition of (nested) sequential graphs still yields a sequential graph.
Note that if we remove all enclosing boxes from a nested graph then we are left
with an underlying plain graph, but we loose any information about the concep-
tual organization of its elements. Thus in a sense, nested graphs can be read as
“blueprints” of their underlying graphs.

3 Design Foundations

This section overviews the principles of Architectural Design Rewriting (ADR) [5].



www.manaraa.com

136 R. Bruni et al.

Fig. 3. A type graph (left) and a configuration (right)

3.1 System Configurations

A system configuration in ADR is the underlying graph of a design, representing
the architectural units and their interconnections. Recall that a graph is a tuple
G = 〈V, E, θ〉 where V is the set of nodes, E is the set of edges and θ : E → V ∗ is
the tentacle function. Given a graph T (called the type graph), a T -typed graph
is a pair 〈G, tG : G→ T 〉, where G is the underlying graph and tG : G→ T is a
graph morphism. From now on we assume that graphs are always typed over a
suitable type graph T , even if sometimes it is not described explicitly. Intuitively,
a type graph plays the role of an architectural vocabulary and enforces certain
tentacles to be connected to nodes of a given type, but note that a type graph T
itself cannot impose any sophisticated topological structure on T -typed graphs.

The distinction between refinable components and non-refinable components
in software architectures amounts to the distinction between non-terminal and
terminal edges in ADR. The underlying idea is the same: a non-terminal edge is
an edge intended to be refined (i.e., replaced by an arbitrarily complex graph).
Non-terminal edges can appear in designs, representing unspecified parts of a
configuration (a refinable component) or in design productions (see later). Ter-
minal edges instead represent parts of a graph that cannot be further refined
(non-refinable components).

Fig. 3 shows a type graph (left) and a configuration typed over it (right), where
the typing is made explicit by the shapes and labels of nodes and edges. Refinable
components are represented as group-boxes, while non-refinable components as
plain boxes. The type graph in Fig. 3 includes both kinds of edges, while the
configuration is ground, in the sense that it consists of terminal edges only.

3.2 Architectural Designs

An architectural design is a nested graph representing a structured system con-
figuration. Technically, a design is a triple d = 〈Ld, Rd, id〉, where Ld is the
interface graph consisting of a single non-terminal edge (the interface) whose
tentacles are attached to distinct nodes; Rd is the body graph; and id : VLd

→ VRd

is the (injective) function that maps interface nodes to body nodes.
For example, Fig. 4 shows three designs: the design on the left has a ground

body graph that matches the intuition of its interface edge Star ; the design on the



www.manaraa.com

A Formal Support to Business and Architectural Design 137

Fig. 4. Three designs

center has a ground body graph shaped as a ring, hence not exactly matching the
intended meaning associated with the interface edge Seq ; the rightmost design
has a body graph involving all different kinds of edges and exhibiting little
correspondence with the intuitive meaning of its interface edge Star .

3.3 Architectural Styles

To avoid the above raised problems, the shape of graphs embedded in a design
must be constrained. To this aim architectures are designed inductively by a
set of composition operators called design productions which enable: (i) top-
down refinement, like replacing a refinable components with its (possibly non-
ground) realisation, (ii) bottom-up typing, like inferring the “style” of a system
configuration, and (iii) well-formed composition, like composing some well-typed
architectures together so to guarantee that the result is still well-typed.

Design productions take inspiration from Graph Grammars [7], where hyper-
edge replacement rules allow to substitute, in a graph G, a (refinable) edge L
with a particular graph R, suitably connected to the nodes of G where L was
connected to. Technically, a design production p = 〈Lp, Rp, ip〉 is very much like
a design but with an order on the non-terminal edges {e1, ..., enp} appearing in
its body graph (intuitively, the order of the arguments they represent). The type
of a production p is A1 × A2 × . . . × Anp → Ap, where Ak is the non-terminal
symbol labelling the k-th non-terminal edge ek of the body of the production.
The functional type means that p can be considered as a function that when
applied to a tuple 〈d1, d2, . . . , dnp〉 of designs such that di : Ai, returns a design
d = p(d1, d2, . . . , dnp) of type Ap. The definition is obvious: d = (Lp, Rd, ip),
where Rd is obtained from Rp by replacing each non-terminal edge ek in it with
body graph Rdk

of dk respecting its tentacle function idk
, for k = 1, . . . , np.

This view corresponds to a bottom-up design development: a design is con-
structed by putting together some component designs. However, the dual view is
also possible: a production can be seen as a refinement of an abstract component
of type Ap as an assembly of concrete and abstract components, the latter being
of type A1, A2, . . . Anp .



www.manaraa.com

138 R. Bruni et al.

Fig. 5. Architectural styles for sequences and stars

For example, Fig. 5 shows simple design productions for configurations shaped
as sequences (Seq) and stars (Star). Note that, according to the functional flavor
described above, the labels of enclosing boxes are enriched with the information
about the name of the production, the names of its “arguments”, their types and
the type of the result. For example, we have constant building blocks a and b (re-
spectively for Seq and Star) and operation seq(X, Y ) that takes two arguments
X, Y of style Seq and returns a graph of style Seq obtained by concatenating
the two ends of X and Y to form a sequence and exposing a suitable interface.
Another possible reading for the rules is the following: a graph has style Seq if it
is either a single component a or the sequential composition of two other graphs
of styles Seq; a graph has style Star if it is a single component b or a sequence
seen as a chord, or the joint composition of two other graphs of styles Star .

3.4 Design Algebra

One key feature of architectural styles is that design productions provide us with
a signature for defining graphs. Furthermore, the terms over such a signature
do not even need to mention node names or edge names, because the way in
which components are connected is entirely embedded in each operation (i.e., in
each design production). For example, a term like star(b, chord(seq(seq(a, a), a)))
describes a ground configuration, that is conformant to style Star : a component
b joined with a chord embedding three components a.

In general, it can be the case that different terms denote the same underlying
configuration, like star(b, star(b, b)) and star(star(b, b), b): they essentially cor-
respond to the graph in Fig. 4 (left). In some cases this distinction can be even
desirable, to mark significant design choices no longer recoverable from the con-
figuration itself. In other cases, the distinction can be annoying, because the order
in which certain refinement steps are applied is not essential. Often the latter sit-
uation can be dealt with at the level of design algebra by imposing suitable struc-
tural congruence axioms. All such axioms must be sound, in the sense that terms



www.manaraa.com

A Formal Support to Business and Architectural Design 139

denoting non-isomorphic ground configurations must be kept distinct. However
the axiomatization is not required to be complete, i.e. terms that are not struc-
turally congruent may still denote the same graph (up to isomorphism). For ex-
ample, the associativity and commutativity of star(·, ·) and the associativity of
seq(·, ·) are natural axioms for our running example.

3.5 Design Reconfiguration

Software architectures might evolve in different dimensions. First, they might
change statically when components are refined or architectures are assembled
together. At run-time instead, architectures might evolve due to actions of nor-
mal behaviour or reconfigurations. Components leaving or joining the system can
require correcting actions that lead the system into a proper state. Sometimes
a reconfiguration rule can be described as a direct manipulation of a design or
its corresponding term (without variables). However, reconfigurations arise more
naturally and in a well-disciplined way at the abstract level of the architecture,
i.e., as manipulations of designs. An additional issue that one would like to have
in a reconfiguration mechanism is the capacity to give guarantees about the
architectural style. For instance, whether it is preserved or not.

Reconfiguration as Graph Rewrites. Since our configurations are repre-
sented by graphs, reconfigurations can be defined as graph transformations [7],
e.g. based on the single-pushout and double-pushout approaches. Basically the
rules come with left- and right-hand side graphs GL, GR. Operationally, the
rewrite can be applied to any graph G larger than GL by finding a suitable
match (i.e. an occurrence of GL in G) and the result is the graph obtained from
G by removing that instance of GL and releasing a fresh instance of GR. There
can be items shared by GL and GR that are required to trigger the rewrite, but
are preserved by the transformation.

This view operates on flat, unstructured graphs, thus disregarding the archi-
tectural information and, for instance, not guaranteeing style preservation in the
general case. When style preservation is a requirement, we need either ad hoc
proofs or a rule format that ensures that any reconfiguration of a well-styled
configuration leads to another well-styled configuration. This is not obvious to
set-up for graph rewriting techniques as one has to consider all possible contexts
where rules are applied.

Synchronised Hyperedge Replacement (SHR) [8] is a graph-based framework
for modelling the operational semantics of systems with mobility and multiple
synchronisation. Several flavours of SHR semantics exist, but here we focus on
a variant without mobility and with Milner dyadic synchronisation, where pairs
of complementary transition actions (e.g. read and write) can be synchronised.
Since each transition may carry more than one action the synchronisation might
involve the whole system. In § 4.2 we shall see that this variant is suitable for
defining SRML run-time semantics with ADR. In particular, rewrite rules in that
style do not change the interface of components and this is a sufficient condition
for the style preservation.



www.manaraa.com

140 R. Bruni et al.

Reconfiguration as Term Rewrites. We have seen that design rules can be
given an algebraic formulation in terms of many-sorted operations over a suit-
able algebra of typed graphs (with interfaces), with terms describing a particular
style-proof. Note that in this way it is possible that: (i) the same well-defined
architecture can be described by different terms; (ii) the same well-defined ar-
chitecture can be assigned different classes.

Since style-preserving reconfigurations essentially operate at the level of style-
proofs, the algebraic view can be pushed further by term rewriting over (style-)
proof terms: a graph transformation rule is seen as a rewrite rule l → r, where l
and r are terms of our design algebra with the same type. Typically, both l and
r may contain (typed) variables, but they are linear and all the variables in r
appear in l. These variables can be instantiated in any way consistent with the
types, and both r and l can be freely contextualized in larger contexts. Then,
it is possible to apply the rule in any larger architecture t(lσ), where σ assigns
proof terms to variables and where the type of the hole in t(·) is at the same as
the type of l. After the reconfiguration, the architecture t(rσ) is obtained.

There is a simple sufficient condition for enforcing style preservation, namely
that both the left-hand side l and the right-hand side r of the reconfiguration
can be assigned the same proper abstract class. For example, the rewrite rule
chord(seq(a, x)) → star(b, chord(x)) can be applied under star(b, ·) with substi-
tution x �→ a for rewriting star(b, chord(seq(a, a))) to star(b, star(b, chord(a))).

However, it is often the case that a structured architecture can be reconfig-
ured only if all its sub-components are suitably reconfigured first. Stretching the
analogy between reconfigurations and rewrite systems the expressiveness of our
reconfiguration language is increased by considering conditional labelled rewrite
rules, defined inductively over the terms encoding style proofs in SOS style:

x1 : S1
a1−→ x′

1 : S′
1 . . . xn : Sn

an−→ x′
n : S′

n

l(x1, . . . , xn) a−→ r(x′
1, . . . , x

′
n)

The labels a, a1, ..., an tag the kind of rewrite under consideration. The meaning
of such a rule is that, given any assignment σ of concrete architectures to the
parameters of l and r, the architecture lσ can be reconfigured according to rσ
only if each xiσ (conformant to style Si) can be reconfigured to x′

iσ (conformant
to style S′

i). Obviously, types are not preserved by some of these cases and thus
the right- and left-hand sides of the rewriting rule cannot be applied in the same
contexts. But this is not a problem because rules are intended to be applied in
appropriate (inductively defined) contexts. When no tag labels a rewrite step,
then we tacitly assume that its source and target have the same style and that
the rewrite step can be applied in any larger context. For example the three SOS
rules below account for sequence to star transformation:

a
�→ b

x : Seq �→ x′ : Star y : Seq �→ y′ : Star

seq(x, y) �→ star(x′, y′)
x : Seq �→ x′ : Star

chord(x) → x′



www.manaraa.com

A Formal Support to Business and Architectural Design 141

Using them it is possible, e.g., to infer the one-step, unlabelled rewrite leading
from star(b, chord(seq(a, a))) to star(b, star(b, b)).

We shall exploit SOS style rules in § 4.1 and § 4.3 for modelling reconfigura-
tions in UML4SOA and in software Modes.

4 Formal Support to Business and Architectural Design

We provide in this section a brief overview on the ADR-based formalisation of
business and architectural design issues of UML4SOA and SRML.

4.1 UML4SOA Reconfiguration Profile

UML4SOA is a UML profile for designing service-oriented software, defined as
a conservative extension of the UML2 metamodel, see Chapter 1-1 (UML Ex-
tensions for Service-Oriented Systems). Such a UML profile is the basis for the
specification of a model-driven approach for the automated generation of service-
oriented software through model transformations. UML4SOA uses extended in-
ternal structure and deployment diagrams. The extension for structure diagrams
comprises service, service interface and service description. A component may
publish several services specified as ports, which are described by service descrip-
tions. Each service may contain a required and a provided interface containing
operations. The orchestration of these services defines a new service. The exten-
sion for deployment diagrams is restricted to different types of communication
paths between the nodes of a distributed system: permanent, temporary and
on-the-fly.

UML4SOA profile aims at providing convenient mechanisms to model the
inherent dynamic topologies of service-oriented systems: components join and
leave the system, and connections are re-arranged. Such dynamic reconfigura-
tions exhibit a number of beneficial features, but require a suitable mechanism to
constrain the possible evolutions of system configurations and to avoid ill-formed
configurations. In order to express such constraints on topologies, UML4SOA
provides ingredients to specify architectural styles, and a methodology for mod-
elling dynamic changes of configurations under architectural styles.

The main idea behind the ADR formalisation is that 〈〈fragment〉〉-stereotyped
components, i.e. configurations, are represented by ADR designs, while the ar-
chitectural constraints imposed by UML4SOA concepts such as multiplicity or
productions are captured by appropriate ADR types and design productions.
UML4SOA reconfiguration rules specified as 〈〈transformation〉〉 packages are rep-
resented by ADR rewrite rules. It is worth to recall that the main novel princi-
ples of the profile, i.e. style-consistent design-by-refinement and style-preserving,
conditional reconfigurations are indeed the quintessence of ADR.

Figure 6 exemplifies how UML4SOA 〈〈fragment〉〉 components can be mapped
to ADR designs: 〈〈service〉〉 ports are mapped to ADR nodes, while the port
type determines the node type (e.g. UML types ChainingPort, CarAcccessPort
and StationAcccessPort are represented by node types •, ◦ and �, respectively).



www.manaraa.com

142 R. Bruni et al.

Fig. 6. A configuration of the On Road Connectivity scenario

Components are mapped to hyper-edges, where the component type determines
the hyper-edge type.

The interface of the design is defined by the ports and the generalisation of the
〈〈fragment〉〉 component. The ports of the 〈〈fragment〉〉 define the set of interface
nodes VLd

, and each 〈〈delegates〉〉 edge defines a maplet of the mapping id from
interface to body nodes VRd

. The type of the graph, as defined by the UML4SOA
model, is determined by the generalisation of each 〈〈fragment〉〉.

Modelling Architectural Styles in ADR. Refinable components and non-refinable
components of UML4SOA specifications are respectively modelled by non-
terminal and terminal edges in ADR. Internal structure diagrams and produc-
tions are the style definition mechanisms of UML4SOA; they are modelled by
ADR design productions. Note however that some of the architectural constraints
involved in class diagrams, such as multiplicities, cannot be expressed by type
graphs directly. Indeed, type graphs do not impose any multiplicity constraint,
i.e. they would amount to a UML [0..∗] multiplicity constraint. A suitable way
to impose a multiplicity constraint in ADR is by means of design productions.
For instance, in ADR the treatment of sets of cars in the UML4SOA specifi-
cation via multiplicities is dealt with the design productions Car and Cars (see
Fig. 7), which respectively allow to refine a generic set of cars as an empty set,
a single car or the union of two other sets. In this way, UML4SOA productions
are directly mapped into ADR design productions.

Modelling Reconfigurations under Architectural Styles. We just recall here that
one of the advantages of ADR reconfigurations over other graph-based ap-
proaches is style-preservation, which is guaranteed by rewrites that do not change
the overall type (they can actually change the type of certain sub-parts in the
rule derivation of the overall reconfiguration).



www.manaraa.com

A Formal Support to Business and Architectural Design 143

Fig. 7. Design productions for On Road Connectivity scenario

Translating UML4SOA reconfiguration rules to ADR in the general case is
done by translating the precondition rules, the 〈〈transforms〉〉 left- and right-
hand sides of the rule conclusion, and translating transformation labels into
their respective counterparts in ADR. In this process, 〈〈pattern〉〉 components
are translated to ADR designs by first producing ADR design graphs (replacing
components with [0..∗] multiplicities by the corresponding non-terminal hyper-
edge, as done in the example with Cars) and then parsing the result using the
ADR productions generated from the UML4SOA productions.

We show now a simple example of an ad-hoc network reconfiguration, which
is modelled with inductive reconfiguration rules in SOS style. The base recon-
figuration involves a single car:

CarToCell : Car
tocell−→ CarCell

The inductive case we consider is when the union of two collections of cars is
reconfigured as the concatenation of the respective reconfigured cells:

CarsToCellChain :
x1

tocell−→ x′
1 x2

tocell−→ x′
2

Cars(x1, x2)
tocell−→ Chain(x′

1, x
′
2)

Finally, the cell with the station shutting down is reconfigured by:

CellToChain : x
tocell−→ x′

CarStation(x) −→ x′

Obviously, types are not preserved by CarToCell and CarsToCellChain and thus
the right- and left-hand sides of the rewriting rule cannot be applied in the



www.manaraa.com

144 R. Bruni et al.

same contexts. Type changing allows for the modelling of reconfigurations that
lead from one architectural style to another. The last rule CellToChain, instead,
is given as a conditional term rewrite rule, where the premise is in its turn
a rewrite rule requiring a collection of cars to become a chain cell, while the
conclusion actually transforms a chain of cells into a chain of cells. The type is
preserved and the silent label makes it applicable in any larger context (unlike
style-changing rewrites labelled tocell).

4.2 SRML

In this section we provide a formalisation of some aspects of the Sensoria Ref-
erence Modelling Language (SRML), see Chapter 1-2 (The Sensoria Reference
Modelling Language). SRML is inspired by the Service Component Architecture
(SCA [11]). Roughly, it provides primitives for modelling composite services and
activities whose business logic involves the orchestration of interactions among
more elementary components and the invocation of services provided by external
parties.

In [4] we presented a formalisation of the design and reconfiguration aspects
of SRML based on ADR. The main idea was to define an ADR architectural
style of correct SRML diagrams and set of ADR reconfiguration rules correctly
modelling the internalisation of services that occurs in SRML, both at design-
time (static module composition) and at run-time (dynamic service binding).
After recalling the work in [4], this section mainly outlines a formal semantics
of the behaviour of SRML specifications based on ADR rules in the form of
Synchronised Hyperedge Replacement (SHR).

More precisely, given a SRML specification, first we exploit the translation
given in [4] to derive a corresponding ADR design term that evaluates to a
particular design, and then we consider the application of SHR rules directly
over the design and not over the design term as in the case of reconfiguration.

Binding-time reconfigurations in SRML. We consider a scenario that involves
an activity OnRoadRepair that takes place in a software system embedded in
a vehicle to handle engine failures detected by a sensor. When the activity is
triggered, the system determines the current location of the car by using a GPS
device, searches for the closest garage that can ensure minimal levels of repair
and call a tow truck, and contacts a car rental service near the garage.

Some architectural elements of SRML are drawn in Fig. 8 and include service
modules, service components, wires and interfaces. A module is specified in terms
of a number of entities and the way they are interconnected. For example, the
activity module shown in Fig. 8 (top-left) involves the following software entities:
OR (the orchestrator that coordinates the interactions with the external services)
and IM (the component that manages the interactions with the driver). These
entities are interconnected through wires, each of which defines an interaction
protocol between two entities. Typically, wires deal with the heterogeneity of
partners involved in the activity by performing data integration. The activity
OnRoadRepair relies on a number of external services that will be discovered on



www.manaraa.com

A Formal Support to Business and Architectural Design 145

Fig. 8. An SRML diagram before (top) and after (bottom) composition

the fly: (1) the service for booking a garage and calling a tow-truck, and (2) the
service for booking a rental car. This dependency is made explicit through the
requires-interfaces GA and CR, respectively. As illustrated, every activity module
declares interfaces of various kind: one and only one provides-interface that binds
the activity to the application that triggered its execution (e.g., CR in module
RepairService), and a number of requires-interfaces (possibly none) that bind the
activity to services that are procured externally when certain conditions become
true (e.g., GA in module OnRoadRepair). Service modules such as RepairService
in Fig. 8 provide a service to the external environment and can be dynamically
discovered and invoked (instead of being launched directly by users).

The graphical notation of SRML is inspired by the traditional boxes-and-lines
or component-and-connectors notations and elements are shaped as in SCA. The
structural constraints, in turn, require modules to be interconnected via external
wires such that one of the require interfaces of a module is connected to the
provide interface of another one. Inside a module, components and interfaces
are connected via internal wires. An SRML architecture is given at the highest
level of abstraction by an assembly of modules with possibly some discovered but
not yet bound service modules (i.e., they are still connected via external wires).
Figure 8 (top) shows the architecture of our scenario with the service module
OnRoadRepair, where one of the two required services (namely RepairService,
corresponding to the interface GA) has been discovered and connected via an
external wire (EW).

An example of a reconfiguration in SRML is the composition of (already
discovered) interconnected modules into a single module. SRML provides a



www.manaraa.com

146 R. Bruni et al.

Fig. 9. ADR-view of SRML binding (top) and composition (bottom)

mechanism to achieve this static reconfiguration, by means of an algorithm that
manipulates SRML specifications. As an example, the assembly of Fig. 8 (top)
can be composed into the service module depicted in Fig. 8 (bottom), where the
wire OCG is derived according to certain composition rules. Such reconfigura-
tions require a proof of correctness w.r.t. style preservation.

The formalization of SRML in ADR given in [4] introduces suitable archi-
tectural elements for representing service components, internal wires, external
wires, provide interface specifications, require interface specifications as termi-
nal edges and activity modules, service modules, wrapped modules and their
bodies as non-terminal edges. While the interested reader is referred to [4] for
full details, we sketch here the basic idea of the modelling. Figure 9 (top) shows
the ADR service module and wrapped module corresponding to the SRML di-
agram in Fig. 8 (top). When a binding is performed, then the wrapped module
is plugged-in the service module. SRML composition is then realised via con-
ditional rewrite rules that synthesize a suitable wiring out of the specifications
of the require interface and provide interface of the composed modules, accord-
ing to the internal and external wiring connecting them. The result is shown in
Fig. 9 (bottom), where the internal wiring OCG is synthesized out of OG, GA,
EW, CR, and CG.



www.manaraa.com

A Formal Support to Business and Architectural Design 147

Fig. 10. Some operational rules modelling SRML behaviour

Operational Semantics for SRML. To illustrate the SHR modelling of ordinary
computational aspects of SRML, let us consider the automotive scenario where
the service execution is at the point in which a garage service has been dis-
covered and bound (see Fig. 9 (bottom). The new configuration includes the
components and the top/bottom layer interfaces of OnRoadRepair and those of
RepairService. The representation of a configuration does not include the ex-
ternal provide/require interfaces because external interfaces do not describe an
executable process. Note that Fig. 9 presents a simplified form of the actual
graphs, where we just decorate the edges with the component and connector
names, while additional information such as the type and state of components
or the name of interactions are abstracted away. We shall explicitly represent
some of those details when needed.

We continue our illustration with the representation of a transition getCon-

textData of the business role Orchestrator (to retrieves the data of the driver,
for example from InterfaceManager) as a rule in SHR style (see Fig. 10): the
transition label witnesses that the component is ready to receive (?) a reply
event (B) on interaction askUsrDetails (aUD) and simultaneously send (!) an ini-
tiation event (�) on interaction bookGarage (bG), while changing state from FD
(FAILURE DETECTED) to CR (CONTEXT RECEIVED).

Note that the graphical representation of the rules is simplified for the sake
of readability. For instance, not all interactions (represented here as labelled
tentacles) are drawn. We put state information (local state, variables) as edge
labels in tuples, and we neglect some of the parameters of the interactions.
The type of interactions is drawn using different node types, so to forbid any
mismatched connection: e.g. we use • for s&r and ◦ for r&s.

Observe that the various events involved in the transition (i.e. the trigger
and the events to be sent) are put on the rule label. In this particular case
the transition guard is implicit in the edge label (containing the state of the



www.manaraa.com

148 R. Bruni et al.

component). In general, guards are modelled as side conditions. Effects, instead,
are just the resulting edge label. Transitions are thus given an atomic semantics:
trigger, effects and sends are executed simultaneously.

SHR rules can be synchronised together using different styles. In our case, we
follow the Milner style, where rule synchronisation requires an action being sent
on a node to be synchronised with a corresponding co-action on the same node.
Note that since a rule can involve actions of more than one node among those
attached to an edge, multiple synchronisations are possible. In our example, rule
getContextData can only be fired if the surrounding connectors are able to
perform the corresponding co-actions.

For instance, in the surroundings of the orchestrator component we find two
connectors involved in transition getContextData, namely OG and OI. The
binding is such that the bookGarage and askUserDetails interactions of the or-
chestrator are assigned to roles S of connectors OG and OI, respectively.

All the rules that we need are such that the left-hand side and the right-
hand side differ only in the label of the edge, meaning that only the state is
changed, but neither the interface nor its bindings, i.e. the type is preserved.
This condition is enough to guarantee that the overall design term is not affected
by the application of operational rules. Part of the behaviour of the connectors
include rules to buffer and unbuffer events (see Fig. 10). For instance, consider
the rule to buffer the init event: it changes the state of the connector from Idle
to Busy (buffered), and the received parameter l is enqueued (it is just part of
the edge label).

A straightforward ternary synchronisation allow us to derive the rewrite

−→

out from rules getContextData, IO-UnBuffer and OG-Buffer. Such
derivation synchronises a component with two of its attached connectors. In
some cases, connectors might synchronise with both parties such that complex
synchronisations involving multiple components and connectors are possible.

4.3 Software Modes

In this section, we consider the ADR modelling of Software Architecture Modes,
as presented in [9]. There, a mode abstracts away a specific set of services that
must interact for the completion of a specific subsystem task. Modes are first-
class architectural ingredients that govern the architecural constraints and re-
configuration mechanisms of a software system.



www.manaraa.com

A Formal Support to Business and Architectural Design 149

Fig. 11. The RPS subsytem production

Fig. 12. Building detour convoy groups

Service Modes extend the concept of Software Architecture Modes with that
of behaviour and policy specifications for service adaptation and dynamic re-
configuration. Service Modes are specifically aimed at specifying “operational
adaptation” for a service-oriented system. They are based upon an evolving set
of scenarios describing service component architecture, behaviour and events
which trigger reconfiguration, whilst upholding quiescence in service operation.

We illustrate the ADR formalisation of modes with a road assistance scenario
of the automotive case study. In the scenario, cars are equipped with navigation
systems connected to a road assistance service platform. The focus of our exam-
ple is on the Route Planning Subsystem (RPS) which is in charge of providing
guiding indications to the driver. The RPS has three modes of operation: Au-
tonomous, i.e. connected to the GPS to establish the route, Convoy, i.e. following
another car, Detour, i.e. following indications from the Highway Emergency sys-
tem (HES).

The components that form the RPS subsystem are the Global Positioning
System (GPS) the Highway Emergency System (HES), the Route Planning Sub-
system (RPS), the Planner (P), the User Interface (UI), and the User Prompt
(UP). Some of these (sub)components can be in a different mode. For instance,
P can be in modes P-Master or P-Slave, while the user interface UI and prompt
UP can be in modes Enable or Disable.

Informally, the main architectural constraints require that an RPS must be
composed of a P, an UI and an UP. The mode of the RPS depends on the modes



www.manaraa.com

150 R. Bruni et al.

Fig. 13. Building RPSs in various modes

of its constituents. Convoys are formed by a leader RPS followed by RPSs in
convoy mode. Leaders can be either in autonomous or detour mode. Autonomous
RPSs are connected to the GPS. Detour RPSs are connected to the HES.

The main idea of the formalisation with ADR is to encode a software class as
a type T and its various modes as subsorts T-M of T. Additional types can stand
for complex constructions (shapes, styles, patterns) such as sequences, sets or
trees. Such types can be used to define composition operations that determine
the valid configurations. Mode types play a relevant role in reconfigurations.

Structural constraints are captured by a set of ADR design productions that
build conformant configurations. For instance, we use productions to build sys-
tems (see Fig. 11) and Detour Convoy Groups (DCG) either as a single RPS in
detour mode followed by a sequence of RPSs in convoy mode (Fig. 12, left) or
two DCGs (Fig. 12, right). Dotted lines between ports denote interface expo-
sure and not binding of actual ports (denoted by straight lines). The figures are
drawn according to Darwin notation, but the correspondence with our designs
is immediate (ports are nodes, boxes are edges and the flattening axioms apply
if the contour of a box is dotted), except for the fact that each port binding
actually corresponds to a terminal edge b. Whenever necessary (i.e., not implied
by flattening axioms), we assume the expected properties for the operations to
hold (commutativity, associativity, etc.). Similar operations are used to build
Autonomous Convoy Groups (ACG): they can be built from an RPS in au-
tonomous mode (RPS-autonomous) followed by a sequence of RPSs in convoy
mode (CS) or from two ACGs. Productions are also used to build a CS as single
RPS in convoy mode or as the concatenation of CSs.



www.manaraa.com

A Formal Support to Business and Architectural Design 151

There are also productions to build RPSs in various modes (see Fig. 13 for
the productions needed in the examples that concludes this section). An RPS
in autonomous mode is a composite component with a P in master mode, an
UP in enable mode and an UI in enabled mode. An RPS in detour mode is a
composite component with a P in master mode, an UP in disable mode and an
UI in enabled mode. An RPS in convoy mode is a composite component with a
P in slave mode, an UP in enable mode and an UI in enabled mode. Basically,
each pair (component type,mode) has a corresponding constructor and ADR
type. Constructors for HES and GPS are similar.

The allowed RPS reconfigurations are from Detour to Autonomous mode (and
back) and from Convoy to Autonomous and Detour mode (and back). However,
RPS components should not reconfigure independently: their constituents and
contexts should reconfigure such that architectural constraints are respected.

For instance, a single RPS in detour mode is moved from the group of RPSs
in detour mode to the group of convoys if that RPS reconfigures itself from mode
detour to mode autonomous, i.e. if its UP reconfigures from disable to enable
mode. Exploiting our design algebra, the corresponding rules can be written as
the following (labelled) conditional term rewrite rules:

upd d2e−→ upe

Xupd
d2e−→ Xupe

rpsd(Xpm, Xupd ,Xuie) d2a−→ rpsa(Xpm,Xupe ,Xuie)

Xrpsd
d2a−→ Xrpsa

system(Xgps, Xhes ,Xacg , group(single(Xrpsd ,Xcs),Xdcg))
−→ system(Xgps ,Xhes , group(Xacg , single(Xrpsd ,Xcs)),Xdcg)

5 Conclusion

This chapter collects results from [1,3,4,5,6]. In particular, we have provided
an overview of main ADR features and the ADR representation of UML4SOA,
SRML and Software Modes; the latter being original to this contribution. The
formal semantics prepares the ground towards tool support for analysis and
verification from the very early stages of modeling. Thus, ADR offers a com-
prehensive and pragmatic yet theoretically well founded approach to software
engineering for service-oriented systems. Our current efforts are aimed at com-
pleting our tool support. First, by automatising the translation of high-level spec-
ifications in the considered languages, possibly by means of Maude-supported,
MOF-based model transformations. Second, by upgrading the prototypical im-
plementation of ADR into a tool that can be used to formally analyse ADR
models either specified directly or transformed from other models.

In fact, ADR specifications can be exploited to perform formal specification
and verification based on techniques developed, e.g. for term rewrite systems and
graph transformation systems. For instance, ADR specifications can be encoded
into Rewriting Logic [10] and benefit from Maude’s built-in tools.



www.manaraa.com

152 R. Bruni et al.

References

1. Bruni, R., Hölzl, M., Koch, N., Lluch Lafuente, A., Mayer, P., Montanari, U.,
Schroeder, A., Wirsing, M.: A service-oriented UML profile with formal support. In:
Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900,
pp. 455–469. Springer, Heidelberg (2009)

2. Bruni, R., Lluch Lafuente, A.: Ten virtues of structured graphs. In: Boronat, A.,
Heckel, R. (eds.) Proceedings of the 8th International Workhshop on Graph Trans-
formation and Visual Modeling Technique (GT-VMT 2009). Electronic Communi-
cations of the EASST, vol. 18 (2009)

3. Bruni, R., Lluch Lafuente, A., Montanari, U.: Hierarchical design rewriting with
Maude. In: Rosu, G. (ed.) Proceedings of the 7th International Workshop on
Rewriting Logic and its Applications (WRLA 2008). Electronic Notes in Theo-
retical Computer Science, vol. 238 (3), pp. 45–62. Elsevier, Amsterdam (2009)

4. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Service-oriented archi-
tectural design. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp.
186–203. Springer, Heidelberg (2008)

5. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style Based Architectural
Reconfigurations. Bulletin of the European Association for Theoretical Computer
Science (EATCS) 94, 161–180 (2008)

6. Bucchiarone, A., Bruni, R., Gnesi, S., Lluch Lafuente, A.: Graph-Based Design
and Analysis of Dynamic Software Architectures. In: Degano, P., De Nicola, R.,
Bevilacqua, V. (eds.) Concurrency, Graphs and Models. Essays Dedicated to Ugo
Montanari on the Occasion of His 65th Birthday. LNCS, vol. 5065, pp. 37–56.
Springer, Heidelberg (2008)

7. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout
Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing
by Graph Transformation, pp. 163–246. World Scientific, Singapore (1997)

8. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hy-
peredge replacement as a model for service-oriented computing. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 22–43. Springer, Heidelberg (2006)

9. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures.
In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126.
Springer, Heidelberg (2006)

10. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science 373(3), 213–237 (2007)

11. Service Component Architecture, http://osoa.org
12. Shaw, M., Garlan, D.: Software architecture: Perspectives on an emerging disci-

pline. Prentice Hall, USA (1996)

http://osoa.org


www.manaraa.com

Core Calculi for Service-Oriented Computing�

Luı́s Caires1, Rocco De Nicola2, Rosario Pugliese2,
Vasco T. Vasconcelos3, and Gianluigi Zavattaro4

1 CITI and Dept. de Informática, FCT, Universidade Nova de Lisboa, Portugal
luis.caires@di.fct.unl.pt

2 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy
rocco.denicola@unifi.it, rosario.pugliese@unifi.it

3 LaSIGE and Dept. Informática, Faculdade Ciências Lisboa, Portugal
vv@di.fc.ul.pt

4 Dipartimento di Scienze dell’Informazione, Università di Bolona, Italy
zavattar@cs.unibo.it

Abstract. Core calculi have been adopted in the Sensoria project with three
main aims. First of all, they have been used to clarify and formally define the
basic concepts that characterize the Sensoria approach to the modeling of service-
oriented applications. In second place, they are formal models on which the Sen-
soria analysis techniques have been developed. Finally, they have been used to
drive the implementation of the prototypes of the Sensoria languages for pro-
gramming actual service-based systems. This chapter reports about the Sensoria
core calculi presenting their syntax and intuitive semantics, and describing their
main features by means of a common running example, namely a Credit Request
scenario taken from the Sensoria Finance case study.

1 Introduction

The objective of the Sensoria project [Sen] was to develop a novel, comprehensive ap-
proach to the engineering of software systems for service-oriented overlay computers
where theories, techniques and methods are fully integrated in a pragmatic software
engineering approach. Specifically, Sensoria focused on methods and tools for the de-
velopment of global services that are context adaptive, personalisable and deployable
on significatively different platforms over a global computer. A central role in this con-
text is played by the linguistic primitives and the associated semantic models. They are
needed both to describe, discover and compose systems and to prove that their behavior
is consistent with the expectation of the designer.

In this chapter we report on the work for providing a foundational understanding of
the Service-Oriented Computing (SOC) paradigm and for developing calculi for ser-
vice specifications that allow for modular description of services and support dynamic,
ad-hoc, “just-in-time” composition. We used process algebras as our starting point
and added primitives for manipulating semi-structured data (e.g. pattern-matching),
mechanisms for describing safe client-service interaction (e.g. sessions), operators for
composing (possibly unreliable) services, and techniques for services discovery. The
outcome was not a single core language but a few calculi differentiated by the chosen

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 153–188, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

154 L. Caires et al.

level of abstraction, the chosen interaction/coordination mechanisms, the chosen prim-
itives for orchestration. Indeed, process calculi are natural candidates as frameworks
for the formal investigation and experimentation of new programming primitives and
have indeed already been used in the area of concurrent and distributed programming
to understand the different mechanisms for modeling processes interactions.

In the design and definition of the Sensoria core calculi, we started with the selection
and classification of the basic mechanisms usually considered in the literature for the
specification and development of service-oriented applications. The common basic con-
cepts that we have identified are that of service caller and service callee. Upon service
invocation, differently from what usually happens in traditional client-server paradigms,
the caller and the callee can engage in a conversation during which they exchange the
information needed to complete all the activities related to the specific service. For in-
stance, a client of an airplane ticket reservation service usually interacts several times
with the service before selecting the specific flight to be reserved.

In the service-oriented computing literature, two main approaches are considered to
maintain the link between the caller and the callee.

Sessions: A private channel is implicitly instantiated when calling a service: it binds
caller and callee and is used for their future communication [HVK98].

Correlations: The link between partners (caller and callee) is determined by cor-
relation values. Those values are explicitly included in the exchanged messages
and only messages containing the ‘right’ correlation values are processed by the
partner [OAS07].

In order to investigate session-based service invocation and conversation, we developed
the SCC calculus [BBC+06] following a minimalistic approach that can be synthesized
with the “everything is a service” slogan. After experimentation of the calculus through
the modeling of the Sensoria case studies, we noticed that a primitive for inter-session
communication was lacking. In fact, if two distinct sessions need to interact in order to
complete their activities, the only possibility in SCC is to open a new sub-session. But,
the communication sessions and their sub-sessions is limited to the possibility for the
sub-session to produce (a sequence of) return values. Due to this limitation, we have
decided to investigate a number of different inter-session communication mechanisms
to be added to SCC:

Dataflow communication: Different session can be combined using pipelines that im-
plicitly direct the data returned by the sessions connected to the source of the
pipelines to the sessions connected to the target.

Stream-based communication: Several named streams can be constructed among
sessions, and the processes running in one session can explicitly indicate the stream
from which they intend to receive messages.

Conversation-based communication: A single session, although initially established
between a caller and callee, is allowed to progressively accommodate and dismiss
participants, thus the concept of “conversation” is introduced which mitigates the
need of always resorting to sub-sessions.

The extension of SCC with the three inter-session communication mechanisms out-
lined above lead to the three new calculi CaSPiS [BBDL08], SSCC [LVMR07a], and
CC [VCS08], respectively.



www.manaraa.com

Core Calculi for Service-Oriented Computing 155

As far as correlation-based service invocation and conversation is concerned, we
have identified two possible techniques for implementing correlation sets. The first one
follows more tightly the tradition of process calculi, adding a sophisticated pattern-
matching mechanism on top of a π-calculus like communication. The second one,
more tightly related to actual service-oriented programming languages such as WS-
BPEL [OAS07], introduces the notion of state. More precisely, we have considered the
following two forms of correlation-based service interaction.

Stateless correlation: In order to direct a message to the correct partner, the most in-
stantiated input is selected. More precisely, an input operation selects via pattern
matching the message to receive, and in case a message matches several input pat-
terns, the one that requires less substitutions is selected.

Stateful correlation: Every process has a corresponding state consisting of valued
variables. Given the correlation variables (i.e. those variables explicitly indicated
as those driving the correlation), a message is directed to a process that contains in
its correlation variables the same correlation values included in the message.

The modeling of these two forms of correlation-based service invocation and conversa-
tion generated the two process calculi COWS [LPT07a] and SOCK [BGG+06].

In the remaining sections we shall briefly describe the session-based and the
correlation-based calculi introduced above. To enable the reader to appreciate the dif-
ferences between the used formalisms, we will show how they can be used to model a a
common running example, namely a Credit Request scenario taken from the Sensoria
Finance case study (see Chapter 0-3).

There are several parties that are involved in this scenario:

– the client that asks for a credit;
– the supervisors and employees that can be asked to review the request;
– the portal that interfaces clients, employees and supervisors with the services;
– the orchestration process that coordinates the whole procedure;
– some auxiliary services, like the ratingService, that are invoked by the orchestrator

to assist during the request evaluation.

A Client that wants to submit a credit request has to first log into the system. If the
login is successful then he will be asked for some credit data (e.g. the amount) and for
some balance and security guarantees. Then the request review phase starts. A rating
is computed for the client: either the credit is immediately granted (rating “AAA”) or
the intervention of either an employee or a supervisor is required (rating “BBB” and
“CCC”). The decision (refuse or accept) is then communicated to the client. In case of
accept, the client can decide to either agree or decline. In case of decline, the client can
ask to submit an updated request. The client can withdraw from the request procedure
at any time.

2 Session-Based Core Calculi

An important group of calculi for modeling and proving properties of services is the one
based on the explicit notion of session. A session corresponds to a private channel that



www.manaraa.com

156 L. Caires et al.

is instantiated when calling a service: it binds caller and callee and is used for their com-
munication. Our first proposal has been the core calculus SCC that has been influenced
by Cook and Misra’s Orc [MC07], a basic programming model for structured orches-
tration of services, and by π-calculus [MPW92] the by now classical representative of
name passing calculi. Indeed one could say that SCC combines the service-oriented
flavour of Orc with the name passing communication mechanism of π-calculus.

Orc has been appealing to us because of its simplicity and yet great generality. In-
deed, its three basic composition operators can be used to model the most common
workflow patterns, identified in [vdAtKB03]. We have been aiming at a session based
process calculus with a descriptive power similar to that of Orc but with the mathemat-
ical cleanness of π-calculus.

SCC supports explicit modeling of sessions that are rendered as private bi-directional
channels created upon services invocation and used to bind caller and callee. The in-
teraction is programmed by two communication protocols installed at each side of the
bi-directional channel. This session mechanism permits describing and reasoning about
interaction patterns that are more structured than the classical one-way and request-
response pattern. SCC could be thus defined as a name passing process calculus with
explicit notions of service definition, service invocation and bi-directional sessioning.

Within SCC, services are seen as interacting functions (and even stream processing
functions) that can be invoked by clients. Service definitions take the form s ⇒ (x)P,
where s is the service name, x is a formal parameter, and P is the actual implementa-
tion of the service. For instance, succ ⇒ (x)x + 1 models a service that, received an
integer, returns its successor. Service invocations are written as s{(x)P} ⇐ Q: each new
value v produced by the client Q will trigger a new invocation of service s; for each
invocation, an instance of the process P, with x bound to the actual invocation value
v, implements the client-side protocol for interacting with the new instance of s. As
an example, a client for the simple service described above will be written in SCC as
succ{(x)(y)return y} ⇐ 5: after the invocation, x is bound to the argument 5, the client
waits for a value from the server and the received value is substituted for y and hence
returned as the result of the service invocation.

A service invocation causes activation of a new session. A pair of dual fresh names, r
and r, identifies the two sides of the session. Client and service protocols are instantiated
each at the proper side of the session. For instance, interaction of the client and of the
service described above triggers the session

(νr)
(
r � 5 + 1 | r � (y)return y

)

(in this case, the client side makes no use of the formal parameter). The value 6 is
computed on the service-side and then received at the client side, that reduces first to
r � return 6 and then to 6 | r � 0 (where 0 denotes the nil process).

More generally, within sessions communication is bi-directional, in the sense that
the interacting protocols can exchange data in both directions. Values returned outside
the session to the enclosing environment can be used for invoking other services. For
instance, what follows is a client that invokes the service succ and then prints the
obtained result:

print{(z)0} ⇐ ( succ{(x)(y)return y} ⇐ 5 ) .

(in this case, the service print is invoked with vacuous protocol (z)0).



www.manaraa.com

Core Calculi for Service-Oriented Computing 157

A protocol, both on client-side and on service-side, can be interrupted (e.g. due to the
occurrence of an unexpected event), and interruption can be notified to the environment.
More generally, the keyword close can be used to terminate a protocol on one side and
to notify the termination status to a suitable handler at the partner site. For example, the
above client is extended below for exploiting a suitable service fault that can handle
printer failures:

print{(z)0} ⇐fault ( succ{(x)(y)return y} ⇐ 5 ) .

The original proposal of SCC was somehow unsatisfactory with respect to the handling
of inter-session communications, thus variants of SCC that make use of different com-
munication mechanisms have been put forward. In the next sections we shall analyze in
sequences three of the variants of SCC that have been studied during the project.

2.1 CaSPiS: A Dataflow Service Centered Calculus

CaSPiS [BBDL08] is a variant of SCC that is dataflow oriented and makes use of a
pipelining operator (à la ORC) to model the passage of information between sessions.
A return operator is used by sessions for passing values to the environment and a new
policy for handling (unexpected or programmed) session closures is introduced. Spe-
cific care is devoted to formal semantics and minimality of the operators.

Like in [HVK98], a session is a chain of dyadic interactions whose collection con-
stitutes a program. Services are seen as passive objects that can be invoked by clients
and service definitions can be seen as specific instances of input prefixed processes.
The two endpoints of the same session can communicate by exchanging messages. A
fresh shared name is used to guarantee that messages are exchanged only between part-
ners of the same session, so that two instances of the same persistent service (that was
invoked from two different sessions) run separately and cannot interfere. The central
role assigned to sessions and the direct use of operators for modeling sessions interac-
tion renders the logical structure of programs more clear and leads to a well disciplined
service specification language that enable us to guarantee proper handling of session
closures and in general simplifies reasoning on the specified services.

A gentle introduction to CaSPiS. Within CaSPiS, service definitions are rendered as

s.P

where s is the service name and P is the body defining the service behaviour. P can be
seen as a process that receives/sends values from/to the client side and then activates
the corresponding computational activities. For instance,

succ.(?x)〈x + 1〉
models a service that receives an integer and returns its successor.

Service invocations can be seen as specific instances of output prefixed processes
and are rendered as

s.P



www.manaraa.com

158 L. Caires et al.

where s is the name of the service to invoke while P is the process implementing the
client-side protocol for interacting with the new instance of s. As an example, a client
for the simple service described above will be written in CaSPiS as

succ.〈5〉(?y)〈y〉↑

After succ is invoked, argument 5 is passed on to the service side and the client waits
for a value from the server: the received value will be substituted for y and returned as
the overall result of the service invocation.

A service definition s.P and a service invocation s.Q running in parallel can syn-
chronize with each other: in doing so, they must agree on a fresh session name r. As a
result, a new, private session r will be created. The session has two ends, one at client’s
side where protocol Q is running and one at service’s side where protocol P is running.
For instance, the interaction of the client and of the service described above triggers the
session

(νr)
(
r � 〈5 + 1〉 | r � (?y)〈y〉↑)

Values produced by a concretion (〈V〉P) at one side of a session are consumed by an
abstraction ((F)P) at the other side. A concretion 〈V〉P can evolve to P by sending
value V over the session. An abstraction (F)P is a form of guarded command that relies
on pattern-matching: (F)P can evolve to Pσ retrieving a value V matching the pattern
F with substitution σ (match(F,V) = σ). Here, the pattern-matching function match is
defined as expected: match(F,V) = σ, if σ is the (only) substitution such that dom(σ) =
bn(F) and Fσ = V .

In the example above, value 6 is computed at the service-side and then received at
the client side; the remaining activity is then performed by the client-side of the session

r � 〈6〉↑

that emits the value 6 outside of the session and becomes

r � 0

where 0 denotes the empty process. Indeed, the return primitive 〈V〉↑P can be used to
return a value outside the current session, if the enclosing environment is capable of
consuming it.

Values returned outside of the session (to the enclosing environment) with the re-
turn operator 〈·〉↑ can be used for invoking other services. Indeed, processes can be
composed by using the pipeline operator

P > Q.

A new instance of process Q is activated in correspondence of each of the values pro-
duced by P that Q can receive. For instance, what follows is a client that invokes the
service succ and then prints the obtained result:

〈5〉 > (?x)succ.〈x〉(?y)〈y〉↑ > (?z)print.〈z〉
To improve usability, structured values are permitted; services are invoked using struc-
tured values that drive usage of the exchanged information. Using this approach, each



www.manaraa.com

Core Calculi for Service-Oriented Computing 159

service can provide different methods corresponding to the exposed activities. For
instance:

calculator. (“sum”, ?x, ?y)〈“result”, x + y〉
+ (“sub”, ?x, ?y)〈“result”, x − y〉
+ (“mul”, ?x, ?y)〈“result”, x ∗ y〉
+ (“div”, ?x, ?y)〈“result”, x/y〉

models a service calculator that exposes the methods for computing the basic arith-
metic operations. This service can be invoked as follows:

calculator.〈“sum”, 2, 4〉(“result”, ?y)〈y〉↑ .
A similar approach is used for session interaction. Indeed, thanks to tags and pattern

matching, more sophisticated protocols can be programmed for both the server and
client side of a session. For instance, a service-side can reply to a client request with
different values denoting the status of the execution:

r � (“fail”, ?x)P1 + (“result”, ?y)P2 .

Till now, we have seen that CaSPiS permits to define private dyadic sessions between
a caller and a callee and that in principle, each side has a protocol to execute and the
conversation is concluded when both protocols terminate. On the other hand, if some
unexpected event happens on one side, then the session and the corresponding partner
would be stuck. This motivates the introduction of suitable primitives for handling the
proper closure of a session.

These primitives might be useful to garbage-collect terminated sessions. Most impor-
tant, one might want to explicitly program session termination, or to manage abnormal
events, or timeouts. Being sessions units of client-server cooperation, their termination
must be programmed carefully. At least, one should avoid situations where one side of
the session is removed abruptly and leaves the other side dangling. CaSPiS comprises
a disciplined mechanism for closing sessions following this guidelines:

– a partner can abandon a session at any time, by taking unilateral decision;
– a side cannot force the other one to abandon the session, unless it is willing to;
– if a side abandon a session, then the partner must be informed;
– in case the abandoned session contains nested subsections, then they must be aban-

doned as well (and their partners must be informed);
– the completion of a session is the default commit, the unexpected abandoning of

one side is a failure to be handled by the remaining partner.
– each side must be given the possibility of programming suitable counteractions to

be triggered if the partner abandons the session.

The syntax of CaSPiS is reported in Fig. 1. We will call close -free the fragment of
the calculus obtained from Fig. 1 by removing close, listeners, signals and terminated
sessions. We assume the following disjoint sets

– a countable set of namesN ranged over by n, n′, ...
– a countable set of signal namesK ranged over by k, k′, ...
– a signature σ of constructors f , f ′, ..., each coming with an integer arity.



www.manaraa.com

160 L. Caires et al.

N is assumed to contain two disjoint countable sets Nsrv of service names s, s′, ... and
Nsess of session names r, r′ . . ., such thatN \ (Nsrv ∪Nsess) is infinite. The setN \Nsess

is ranged over by x, y, ..., u, v....
Concerning basic values, note that, for simplicity, we only consider value expres-

sions V built out of constructors in Σ and names x, y, ..., u, v, ..., the latter playing the
role of variables or basic values depending on the context. We leave the signature Σ un-
specified, but in several examples we shall assume Σ contains tuple constructors 〈·, ..., ·〉
of arbitrary arity. Richer languages of expressions, comprising specific data values and
evaluation mechanisms, are easy to accommodate. Finally, it is worth to note that ses-
sion names r, r′, ... do not appear in values or patterns: this implies that they cannot be
passed around.

Notice how, in Fig. 1, service and session names are annotated with signal names;
such annotations have been introduced to handle the premature closure of sessions. The
idea is that upon creation of a session, one associates with the session a pair of names
(k1, k2), identifying a pair of termination handlers services, one for each side (k1 · P1

specified in the service definition and k2 · P2 in the service call, respectively). Then:
(a) a session side is unilaterally terminated when its protocol executes the command
close ; (b) the execution of close triggers a signal †(k) sent to the termination-handler
service ki listening at the opposite side of the session; (c) at the same time, the session
side that has executed close will enter a special closing state denoted � P, where all
subsessions of P will be gradually closed. In order to accomplish (b) the name ki must
be known to the current side of the session. To this end, in sessions r �k P the subscript
k refers to the termination handler of the opposite side. To sum up the above discussion,
we have that r �k

(
close | P) may evolve to †(k) | �P. Note that the operator � should

stop any activity but invocations †(k) of other handlers. Information about termination
handlers to be used is agreed upon by the two sides at invocation time. To this purpose,
invocation, sk1 .Q, mentions a name k1 at which the termination handler of the client-
side is listening. Symmetrically, service definition, sk2 .P, mentions a name k2 at which
the termination handler of the service-side is listening. Then sk1 .Q|sk2 .P can evolve to
(νr)(r�k2 Q|r �k1 P): in this way, if Q terminates with close , the termination handler k2

of the callee will be activated, and vice versa.
Note that the simple pattern (νk)sk.(Q|k · close ) defines a default protocol for closing

the own session after receiving the closure signal from the partner. As another example,
the encoding of high level transactional constructs, such as compensation pairs S ÷ C,
where S is a certain activity to be executed (e.g. a service call) and C is the correspond-
ing compensation, could be encoded in CaSPiS as (νk)S k.(k ·C).

As expected, in (νn)P, the restriction (νn) binds free occurrences of n in P, while in
(F).P any ?x in (F) binds free occurrences of name x in P.

In order to simplify the specification of many important patterns for service com-
position, some CaSPiS derived operators, defined as macros, have been presented
in [BBDL08]. Here, we consider some of these macros that will be used in the sequel.

First of all we will abbreviate s.〈V〉(?x)〈x〉↑ as s(V). This process implements a func-
tional interaction that invokes s, sends value V over the established session, then waits
for a value (the result of service invocation) and publishes it locally.

∑
i∈I τPi will stand



www.manaraa.com

Core Calculi for Service-Oriented Computing 161

P,Q ::=
∑

i∈I πiPi Guarded Sum π ::= (F) Abstraction

| sk.P Service Definition | 〈V〉 Concretion

| sk.P Service Invocation | 〈V〉↑ Return

| rk � P Session

| P > Q Pipeline V ::= u | f (Ṽ) Value ( f ∈ Σ)

| P|Q Parallel Composition

| (νn)P Restriction F ::= ?x| u | f (F̃) Pattern ( f ∈ Σ)

| !P Replication

| close Close

| k · P Listener

| †(k) Signal

| � P Terminated Session

Fig. 1. Syntax of CaSPiS processes

for 〈•〉↑ > ∑i∈I (?x)Pi, with x �
⋃

i∈I fn(Pi). We will use also the following abbrevia-
tions:

select F1, . . . , Fn from P in Q is a process that waits for the first n values emitted by
P matching patterns F1, . . . , Fn. Once these n values have been collected, process
Q is activated.

wait F1, . . . , Fn from P1, . . . , Pn in Q is a process that waits for a tuple (V1, . . . ,Vn),
where Vi is the first value emitted by Pi matching Fi, and then activates process Q.

select ?x from s(V) inif (x = F1) then P1 elseif (x = F2) then P2 elseif · · · else Pn+1

is a process that binds to x the first value emitted by the service call s(V) and then
activates Pi if the ith guard is true. If no-one of the n guards is satisfied then Pn+1

is activated.

The Credit Request scenario. Here, we will show how the Credit Request Scenario,
briefly described in the Introduction, can be specified in CaSPiS.

The scenario is modeled by introducing some simplifications. First, we leave some
of the auxiliary services unspecified: below, these services are supposed to receive some
data and then send a reply to the invoker, after some internal computations that always
terminate (e.g. access to databases). As an example, we specify the service CheckUser,
that receives the user’s credentials and checks their validity by sending back the result
of the evaluation of the internal function auth(user). Moreover, for the sake of brevity,
we omit the parallelism between the requests for balances and for securities and fix an
ordering (balances will be demanded first).

Finally, we will merge the behaviour of the portal and of the client into the CreditRe-
quester participant. The orchestration process is modeled by the process CreditPortal.
The latter offers the service CrReq that can be invoked by clients in order to start the
credit request procedure.



www.manaraa.com

162 L. Caires et al.

For the sake of readability, the main service (the orchestrator) is divided into subpro-
cesses reported below and we have omitted the termination handlers associated to each
invocation to the auxiliary services: they are only supposed to close the current session.

CreditPortal offers the CrReq service that is invoked by credit requesters. Once in-
voked, it installs a termination handler (k · C, where the compensation handler C is
left unspecified), which handles session closing originating from the caller side, and
then proceeds to the conversation with the requester. It receives the user credentials
and checks their validity by means of the auxiliary service CheckUser. In case of in-
correct login, an error message is sent to the client (〈excpt(“InvalidLogin”)〉) and the
communication is closed. Otherwise an acknowledgment is sent to the requester and
the interaction proceeds as specified in process Creation.

CreditPortal
�
= !(νk)CrReqk.

(
k ·C | (?id)select ?logged from CheckUser(id)

inif logged then 〈“Valid”〉Creation(id)
else 〈excpt(“InvalidLogin”)〉close

)

Creation asks the service GetUserData for the user data associated to the given
credentials and then proceeds to first receiving the credit data from the requester
((?creditD)), then to creating a new credit request record (by service invocation
InitCreditData(·)) and then to asking for balances and securities, in this order. An
error may occur in the record creation phase: in this case a message is sent to the client
(〈excpt(“InvalidRequest”)〉) and the communication is closed.

Creation(id)
�
= select ?userD from GetUserData(id)

in (?creditD)select ?init from InitCreditData(userD, creditD)
inif init then 〈“enterBalances”〉(?bals)〈“enterSecurities”〉(?secs)

wait ?ackSec, ?ackBal from
UpdateBalanceRating(userD, bals),
UpdateSecurityRating(userD, secs)

in Decision(userD, creditD)
else 〈excpt(“InvalidRequest”)〉close

Then the Decision phase starts. A rating for the client is computed
(CalculateRating(·)). The subsequent interaction depends on the result of this
computation:

– in case of “AAA”, an offer is immediately sent to the client, by continuing as spec-
ified in process Offer;

– in case of “BBB” (resp. “CCC”), the intervention of an employee (resp. supervisor)
is required.

In the latter case, either an offer or a decline document is generated (by either
GenOffer(·) or GenDecline(·)) and sent to the requester. In case an offer is sent to
the client, he can decide to accept or decline; acceptance is registered by the service
call AcceptOffer. In case of decline, the client can possibly decide to update some of
its request data, and this is registered by UpdCreditData.



www.manaraa.com

Core Calculi for Service-Oriented Computing 163

Decision(user, credit) �=
select ?ratingD, ?resp from CalculateRating(user)
inif (resp = “AAA”) then Offer(ratingD, credit)

elseif (resp = “BBB”) then ToClerk(user, ratingD, credit)
else ToSupervisor(user, ratingD, credit)

ToClerk(user, rating, credit) �= select ?approval from reqClerkApproval(user, rating)
inif (approval = “decline”) then Decline(rating, credit)

else Offer(rating, credit)

ToSupervisor(user, rating, credit) �= select ?approval from reqSupervisorApproval(user, rating)
inif (approval = “decline”) then Decline(rating, credit)

else Offer(rating, credit)

Offer(rating, credit) �= select ?offer from GenOffer(rating)
in 〈offer〉((true)AcceptOffer.〈credit〉 + (false)0)

Decline(rating, credit) �= select ?decline from GenDecline(rating)
in 〈decline〉((true)UpdCreditData.〈credit〉 + (false)0)

CreditRequester is a recursive client that invokes the CrReq service and then pro-
ceeds in the interaction as expected. Notice that, after calling the service CrReq,
the client installs a compensation handler (k′ · D) that is left unspecified. At two
points, he can non-deterministically decide to end the conversation ((“Valid”)close and
〈“enterBalances”〉close). Please notice also that acceptance of the offer depends on an
internal function eval, whose result is sent to the CreditPortal ((eval(offer))). In case
the credit request is declined, the user non-deterministically decides either to retry or to
abandon. The creation of new credit balances and securities data is rendered here as the
creation of new names: (ν creditD, bals, secs). Recursion can be encoded in CaSPiS by
combining replication, service definitions and invocations, and pipelines.

CreditRequester
�
= (νk′)CrReqk′ .

(
k′ · D | 〈id〉((excpt(?x))close + (“Valid”)close + (“Valid”)CR)

)

CR
�
= (νcreditD, bals, secs)

(
〈creditD〉

(excpt(?y))close
+ (“enterBalances”)close
+ (“enterBalances”)〈bals〉(“enterSecurities”)〈secs〉(

(?offer)〈eval(offer)〉 + (?decline)( τ.〈true〉CreditRequester

+ τ.〈false〉)))

Process AuthenticationService offers the service CheckUser that receives users creden-
tials and returns a boolean value depending on the result of an authentication function,
aut, that checks the validity of the credentials by accessing some private databases.

AuthenticationService
�
=!CheckUser.(?id)〈aut(id)〉



www.manaraa.com

164 L. Caires et al.

The whole system, Sys, is given by the parallel composition of all processes:

Sys �= (ν id)CreditRequester|(ν CheckUser, · · · )(CreditPortal|AuthenticationService| · · · ) .

2.2 SSCC: Stream-Based Service-Centered Calculus

SSCC (Stream-based Service Centered Calculus [LVMR07a, CLM+08, CLM+07])
captures in a direct way the main activities in service-oriented computations: defini-
tion and invocation of services, long-running interactions between the invoker and the
provider, and orchestration of complex computations exploiting services as building
blocks. SSCC is a variant of SCC that, to better support orchestration, introduces a
new construct, called stream, with the aim of collecting the results from some ongo-
ing computations and make them available for new ones. This is the main aspect that
differentiates SSCC from CaSPiS [BBDL08], the most direct evolution of SCC. This
design choice has been taken in order to simplify static analysis techniques, trying to
find a suitable trade-off between expressiveness of the chosen primitives and suitability
to analysis. In particular, since stream names can not be communicated, their scope is
known statically. An example on how this feature can be exploited while developing
a type system can be found in [LVMR07a], where a type system for checking proto-
col compatibility between invoker and provider of a service is presented. Bisimilarity
techniques for proving equivalence of service-oriented systems modeled in SSCC were
also studied [CLM+08, CLM+07].

A gentle introduction to SSCC. We present here in detail the stream construct; refer
to CaSPiS for the semantics of other primitives (the full syntax of the calculus can be
found in Fig. 2). A stream f is declared using a process of the form

stream P as f in Q

Here, P and Q are executed concurrently, but only P can insert data v in f , by executing

feed 〈v〉P′

Notice that the name of the stream is not explicitly mentioned in the left-hand-side of
the construct: the syntactically closest stream is always used. This allows a process to
send data to its context, without knowledge of the structure of the context itself, thus
enhancing code re-usability. Also, the feed operation is non-blocking, and f acts as a
buffer. The context, represented by Q, can read from stream f via a process of the form

read f (x)Q′

In this case the name of the stream is explicit in the code, allowing a process to acquire
data from multiple sources. Also, the read is blocking, allowing the context to wait for
the necessary input. A main feature of stream communication is that it is completely
orthogonal with respect to the structure of sessions, allowing to easily retrieve data
from nested sessions. This reflects in the language the conceptual difference between



www.manaraa.com

Core Calculi for Service-Oriented Computing 165

P,Q ::= Processes

P | Q Parallel composition

| (νa)P Name restriction

| 0 Terminated process

| X Process variable

| rec X.P Recursive process definition

| a⇒ P Service definition

| a⇐ P Service invocation

| 〈v〉P Value sending

| (x)P Value reception

| stream P as f in Q Stream

| feed 〈v〉P Feed the process’ stream

| read f (x)P Read from a stream

u, v ::= Values

| a Service name

| unit Unit value

Fig. 2. Syntax of SSCC

session communication, based on the network infrastructure, and local communication,
based e.g., on shared memory.

A typical situation where streams turn out to be useful is, in our running example,
when the CalculateRating service needs to obtain various credit ratings from different
internal agencies and then chooses one of the ratings based on some criteria. Suppose
that the CalculateRating service, while aiming at providing better deals for the clients,
asks credit ratings to three internal agencies, waits for the first two results to come, and
publishes the best rating offer of the two. Calling the services for a given user data is as
follows.

CreditRating1 ⇐ <user>(rating1) ... |
CreditRating2 ⇐ <user>(rating2) ... |
CreditRating3 ⇐ <user>(rating3) ...

In order to collect the ratings, we use the stream constructor, playing the role of a service
orchestrator. The various ratings are fed into the stream; a different process reads the
stream. We write it as follows.

stream
CreditRating1 ⇐ <user>(rating1) feed <rating1> |
CreditRating2 ⇐ <user>(rating2) feed <rating2> |
CreditRating3 ⇐ <user>(rating3) feed <rating3>

as f in
read f (x) read f (y) { publish−the−most−suitable−rating−between−x−and−y}



www.manaraa.com

166 L. Caires et al.

call a<x1 ,..., xn> � a ⇐ <x1> ... <xn>(y) feed<y>
P >n x1 ... xn > Q � stream P as f in read f (x1) ... read f (xn) Q
a *⇒ P � rec X. a ⇒ (P|X)
if b then P � b ⇐ (x)(y) x ⇐ feed<unit> >1 > P
if b else P � b ⇐ (x)(y) y ⇐ feed<unit> >1 > P
if b then P else Q � if b then P | if b else Q
true *⇒ (νa) (νb) <a><b> a⇒ (x) feed<x>
false *⇒ (νa) (νb) <a><b> b⇒ (x) feed<x>

Fig. 3. SSCC derived constructs

The above pattern is so common that we provide a special syntax for it, inspired by
Orc [MC07].

( call CreditRating1<user> |
call CreditRating2<user> |
call CreditRating3<user>) >2

x y > { publish−the−most−suitable−rating−between−x−and−y}
The various abbreviations used in this section are summarized in Fig. 3. The first models
a synchronous request-response protocol. The second implements sequential composi-
tion with value passing from the first process P to the second Q. The third one realizes
persistent services, i.e., services that survive multiple invocations. The last five defini-
tions model boolean values (which are not primitive in the calculus) and conditional
processes. An implementation in SSCC of the van der Aalst et al. [vdAtKB03] work-
flow patterns can be found in [LVMR07b].

The Credit Request scenario. We start by modeling a simplified customer that inter-
acts with a CreditPortal service. For that, the client identifies itself, and upon successful
login provides the requested amount and the guarantee. It then waits for the reply from
the Bank and accepts it, regardless of its nature.

creditRequester � CreditPortal ⇐ <id> (logged)
if logged then <amount> <guarantee> (reply) <ok>

The Credit Request Scenario system consists of the following components, among
others.

System � CreditPortal | Decision | ToClerk | ToSupervisor | CalculateRating | ...

The CreditPortal service handles credit requests from customers. The Decision service
determines the decision level for the credit, returning the appropriate service to be called
next: either reply immediately to the customer, hand over to a clerk, or deliver to a
supervisor. Services ToClerk and ToSupervisor handle the approval process by clerks
and supervisors. The CalculateRating service is used by the Decision service and me-
diates the process of asking ratings to various independent rating agencies. It relies on
a MostSuitableRating service, chaining the first two answers from the credit rating agen-
cies, and publishing the result m.



www.manaraa.com

Core Calculi for Service-Oriented Computing 167

CalculateRating *⇒ (user)
( call CreditRating1<user> |

call CreditRating2<user> |
call CreditRating3<user>) >2

x y > call MostSuitableRating<x,y> >1 m > m

The Decision service, based on the score rating obtained from CalculateRating , deter-
mines which service should handle the credit decision: directly Offer the credit to the
client, forward the request toClerk or forward the request ToSupervisor. We rely on a
service strcmp to compare strings.

Decision * ⇒ (user) (amount) call CalculateRating<user>
>1 rating > <rating>. call strcmp<rating , ”AAA”> >1 b >

if b then <Offer> else call strcmp<rating , ”BBB”> >1 b >
if b then <ToClerk> else <ToSupervisor>

After receiving its arguments user and amount, service Decision synchronously invokes
service CalculateRating . The most appropriate rating (following the bank’s current pol-
icy) provided by this last service is collected in variable rating , sent to the invoker, and
then the appropriate service to handle the loan approval is determined. One of the three
service references, Offer, ToClerk, or ToSupervisor, is returned so that the invoker may
use the service to trigger the appropriate approval procedure.

Synchronous interactions are modeled by service invocations followed by a bidi-
rectional session communication, such as the values user and amount received by the
Decision service or the interaction with the CalculateRating service. Asynchronous inter-
actions instead are modeled by invocations that send the name of services to the invoker
(namely, Offer, ToClerk, and ToSupervisor), which should be called by the provider to
achieve a result. Notice also that streams (both the explicit ones and the ones hidden
inside derived construct >x>) can be exploited to synchronize and collect the results of
the different activities.

2.3 CC: A Conversation-Oriented Service Centered Calculus

The Conversation Calculus [VCS08, CV09], usually abbreviated as CC, integrates a
small set of programming language abstractions for expressing and analyzing service-
based systems. Technically, it may be seen as an applied π-calculus that evolved from
SCC.

More crucially, the CC introduces the concept of conversation context, a notion
originally introduced within the Sensoria project for modeling and analyzing loosely-
coupled, multi-party, dynamically evolving service centered interactions. A conversa-
tion context is a first-class communication medium where several partners may interact
by message passing. In a nutshell, the distinguishing aspects of the CC are:

– Conversation contexts, and dynamically evolving multi-party conversations.
– A context sensitive message-passing communication mechanism.



www.manaraa.com

168 L. Caires et al.

As explained in the introduction, concepts such as sessions [HVK98] and conversations
have been used frequently to discuss communication abstractions for service-oriented
computing [CHY+06, BBC+06]. The CC model proposes the technical concept of “con-
versation” as an extension of the classical concept of binary session, in a precise sense.

Unlike the more specific notion of binary session, which involves exactly two part-
ners (typically, a service provider and a service client), a conversation is a structured,
not centrally coordinated, possibly concurrent, collection of interactions between a pos-
sibly dynamically varying number of participants. A conversation context may be trans-
parently distributed in many pieces, and processes in any piece may seamlessly talk to
processes in the same or any other piece of the same conversation context. Intuitively a
conversation context may be seen as a virtual chat room where remote participants ex-
change messages according to some discipline, while being possibly engaged in some
other conversations at the same time. Another advantage of conversations, from a mod-
eling and design viewpoint, is that they prevent the model to be partitioned, sometimes
artificially, in a collection of independent binary sessions.

Conversation context identities can be passed around, allowing participants to dy-
namically join conversations. To join an ongoing conversation, a process may perform
a remote conversation access using the conversation context identifier. Then, it becomes
able to participate in the conversation to which it has joined, while being able to interact
back with the caller context through the access point; all these features are not in the
scope of other approaches to multi-party session-based systems, prominently [HYC08].
On the other hand, like a binary session, a conversation may still be implemented using
a single private channel identifiers, only known to the current participants. The flexi-
bility in design provided by the notion of conversation as introduced by the CC turns
out to be extremely convenient to model and analyze complex service interactions, as
we find in real systems, at a very manageable level of abstraction; on the other hand,
conversations may also be conveniently disciplined and analyzed by means of typing
(see Chapter 2-3).

A gentle introduction to the Conversation Calculus. We informally present the syn-
tax and semantics of the Conversation Calculus, full technical details may be found
in [VCS08, CV09]. The syntax of CC is defined in Fig. 4. For simplicity, and with-
out loss of generality, we restrict the current presentation to a monadic version. Es-
sentially, the core CC is an extension of the π-calculus static fragment, obtained by
adding the conversation construct n � [P], and replacing channel-based communica-
tion with context-sensitive message-based communication. A simple mechanism for
handling exceptional behavior is also present. The static fragment is defined by the in-
action 0, parallel composition P | Q, name restriction (νa)P and recursion recX.P. The
conversation access construct n � [P], allows a process to interact, as specified by P, in
conversation n. The distinguished occurrences of a, x, x and X are binding occurrences
in (νa)P, ld?(x).P, this(x).P and recX.P, respectively.

Conversation Context. A conversation context is a named delimited container where
closely related computation and communication happen. In more general terms, a con-
text is a general abstraction that may be used to model locations (e.g., a unit of dis-
tribution), service endpoints (e.g., a delimited scope of communication), contexts of



www.manaraa.com

Core Calculi for Service-Oriented Computing 169

a, b, c, . . . ∈ Λ (Names) d ::= � | � (Directions)
x, y, z, . . . ∈ V (Variables)
n,m, o . . . ∈ Λ ∪V α, β ::= ld!(n) (Output)
l, s . . . ∈ L (Labels) | ld?(x) (Input)
X,Y, . . . ∈ χ (Process Vars) | this(x) (Conversation Awareness)

P,Q ::= 0 (Inaction) | recX.P (Recursion)
| P | Q (Parallel Composition) | X (Process Variable)
| (νa)P (Name Restriction) | Σi∈I αi.Pi (Action-Guarded Choice)
| n � [ P ] (Conversation Access)

| try P catch Q (Handler block)
| throw P (Throw exception)

Fig. 4. Syntax of the Conversation Calculus

conversation (e.g., a correlated set of interacting partners), and other forms of localized
interaction. Contexts encapsulate functionality and appear to the surrounding environ-
ment as a plain local process, thus allowing system descriptions to abstract away from
particular implementation details. We write n � [P] to express that process P is inside
conversation context names n. Notice that in CC only conversation names (in Λ) may
be subject to binding, and freshly generated via (νa)P.

It is important to stress that if a CC process contains several different sub-terms of the
form n � [Pi], then all the processes Pi are in the same context, and may transparently
interact, so the notation n � [P] should not be confused with similarly looking nota-
tions in different models, such as ambients in the Ambient Calculus [CG98], or even
session pieces, such as CaSPiS or SSCC session constructs. In particular, the strong
bisimilarity n � [P] | n � [Q] ∼ n � [P | Q] holds (see Chapter 2-2). This equation
also allows us to present CC programs modularly, where services published by a site n,
modeled by a context n � [P], are given in separate program fragments. We will use
this in our description below of the Credit Request Scenario.

Communication. In CC, interaction between subsystems (modeled by conversation
contexts) is realized by labeled message passing. In general, communication is ex-
pressed by the guarded choice construct Σi∈I αi.Pi, meaning that the process may select
some initial action αi and then progress as Pi. Communication actions are of two forms:
ld!(n) for sending messages and ld?(x) for receiving messages. Message communication
is defined by the label l and the direction d. There are two message directions: � (read
“here”) meaning that the interaction should take place in the current conversation or �
(read “up”) meaning that the interaction should take place in the caller conversation. It
is not therefore possible for processes in unrelated different conversations to interact di-
rectly. Notice that message labels (fromL) are not names but free identifiers (cf. record
labels, text strings, or XML tags), and therefore are not subject to fresh generation,
restriction or binding. To lighten notation we omit the � in the �-directed messages,
without any ambiguity.



www.manaraa.com

170 L. Caires et al.

Context awareness. A process executing in a given context should be able to dynam-
ically access the identity of such context, in order to correlate its behavior with other
partners, and act accordingly. Thus, the CC introduces a context awareness primitive,
that binds x to the “current” context name, and proceeds with the continuation as in
this(x).P. Thus, a basic action may also be of the form this(x), allowing a process to
dynamically access the name of the current conversation.

Service publication and instantiation. Service definitions are published in conversation
contexts – seen then as sites or service providers. Published services may be instanti-
ated on clients request, resulting in the creation of a new conversation context split in
two pieces. By instantiating a service, a client is able to incorporate in its workflow a
new process which, although executing remotely in the server environment, appears to
the client as any other of its local subsystems. Access to a newly created conversation
may later on be progressively given to other partners, allowing them to join in. Service
definition, service instantiation, and conversation join are written respectively

def ServiceName⇒ ServiceBody
new ServiceProvider · ServiceName⇐ ParticipantProtocol
join ServiceProvider · ServiceName⇐ ParticipantProtocol

The def, new and join constructions are idiomatic in CC, encoded using message pass-
ing and conversation contexts as follows.

def s⇒ P � s?(x).x � [P]
new n · s⇐ Q � (νc)(n � [s!(c)] | c � [Q])
join n · s⇐ Q � this(x).(n � [s!(x)] | Q)

Exception handling. Exceptional behavior, in particular fault signaling, fault detec-
tion, and resource disposal, are important aspects, orthogonal to communication mech-
anisms, we therefore provide specific constructions for exception handling, extending
the classical try/throw primitives. Using these mechanisms, one may define several
expressive error recovery mechanisms. For example, in Chapter 3-3 we illustrate how
structured compensating transactions, in the style of [BHF04], may be faithfully ex-
pressed in the CC.

The Credit Request scenario. We illustrate the expressiveness of the CC by providing
a multi-party implementation of the Credit Request scenario. Our CC implementation
makes use of all the key features of CC, including multi-party conversations via join,
(first-class) conversation delegation. In Chapter 2-3 it is also shown how this specific
implementation is well-typed, ensuring conversation fidelity and deadlock absence. In
Fig. 5 we present a message sequence chart rendering all the interactions in the scenario.
While browsing through the example, the reader is invited to notice the following two
key aspects.

Dynamic join and leave. The conversation initially established only between client and
portal, is later on enlarged by the participation of the bank (to inform the client rate).
This illustrates how dynamic multi-party conversations are modeled in CC.



www.manaraa.com

Core Calculi for Service-Oriented Computing 171

Client

RateCalc

userData

rateValue

Bank FinancePortal Clerk Manager

CreditRequest

login

request
login

show

deny

ReviewApp

approved
requestEval

branch{
denied

pass

login

AuthCredit

requestApp
show

accept

reject
approved

denied

branch{

Fig. 5. Credit Request scenario message sequence chart

Partial delegation. In the cases where the portal cannot autonomously decide approval,
it postpones the ongoing conversation with the client, by using the portal context as a
cache for requests to the clerk (requestEval), who may then delegate even further
to the manager (requestApp). These messages, represented by the traced circles in
Fig. 5, contain references to ongoing conversations, which will be later on resumed by
the portal, to give the final answer to the client. All this will happen asynchronously with
respect to the initial conversation, as effect of independent clerk /manager conversations
with the portal. This illustrates how first class delegation of conversation names may
be used to conveniently model message correlation, possibly with partial delegation
(unlike session delegation in session calculi [HVK98], which is forced to be total).
Notice also how the conversation between client, portal and bank, interacts with the
conversations between portal and clerk, and portal and manager in a loosely coupled
way, by means of context sensitive communication.

We first describe the (sub)conversation between Client, FinancePortal, and Bank,
presented in Fig. 6. Interaction starts between the client and the portal by the instanti-
ation of service CreditRequest. Under this service instance, the client-portal interac-
tion starts by the exchange of message login that authenticates the client in the system.
At that point the client places the credit request, transmitting the relevant data in mes-
sage request. Upon reception of the clients request, the portal asks an external service
RateCalc published by Bank to join in the ongoing service conversation, in order to de-
termine the financial rate of the client. To that end messages userData and rateValue
are exchanged in the CreditRequest service conversation between the portal and the



www.manaraa.com

172 L. Caires et al.

FinancePortal � [
def CreditRequest ⇒
login�?(uId). request�?(data).
join Bank · RateCalc ⇐
userData�!(data).
rateValue�?(rate).
if rate = AAA then approved�!()

else this(clientChat).
requestEval�!(clientChat, uId, data) ]

|
Bank � [
def RateCalc ⇒
userData�?(data).
assessRate�!(data).
rateVal�?(rate). rateValue�!(rate) ]

|
Client � [
new FinancePortal · CreditRequest ⇐
login�!(uId).
request�!(data).

(approved�?().approved�!() + denied�?().denied�!()) ]

Fig. 6. Interaction between Client and Finance Portal

bank. So, at this point client, finance portal and bank share a conversation between
them. Notice that the finance portal asked bank to join in, via service RateCalc, but
while doing so the portal did not lose access to the conversation and actually gets to
interact with the bank. After receiving the client rating information the finance portal
may either approve the request automatically, if the client rating is very good (triple A),
in which case a message approved is sent to the client, or, in case the rating is not high,
a bank clerk is asked to review the application. To that end a message requestEval is
sent by the CreditRequest service definition code, directed (�) to the FinancePortal
conversation, that will be eventually picked up by a service instance that handles inter-
action between clerks and the portal: service ReviewApp. To allow for the final reply
to be issued in the correct CreditRequest service instance conversation, its identity is
accessed, via this, and is passed along in message requestEval.

Interaction between a bank clerk and the portal, depicted in Fig. 7 is realized by
the instantiation of service ReviewApp. Upon service instantiation the clerk authenti-
cates himself by sending message login to the portal. After that, the service definition
code specifies the reception of a requestEvalmessage in the (conversation) context of
FinancePortal (notice the direction is �). which originated from some previous interac-
tion between a client and the portal, and that contains the credit request information and
also the reference of the conversation in which notification of the final decision on the
loan should be sent. Message show is sent to the clerk containing the client data, and the
clerk replies back with either a deny message or a pass message. In the former case,
the client is immediately notified of the decision: conversation clientChat is accessed
(clientChat was received in message requestEval) and message denied is posted in



www.manaraa.com

Core Calculi for Service-Oriented Computing 173

FinancePortal � [
def ReviewApp ⇒
login�?(clerkId).
requestEval�?(clientChat, uId, data).
show�!(uId, data).
(deny�?().clientChat � [ denied�!() ]
+

pass�?().requestApp�!(clientChat, uId, data) ) ]
|

Clerk � [
new FinancePortal · ReviewApp ⇐
login�!(clerkId).
show�?(uId, data).
printRequest�!(uId, data).
(pass�?().pass�!() + deny�?().deny�!() ) ]

Fig. 7. Interaction between Clerk and Finance Portal

FinancePortal � [
def AuthCredit ⇒
login�?(managerId).
requestApp�?(clientChat, uId, data).
show�!(uId, data).
(accept�?().clientChat � [ approved�!() ]
+

reject�?().clientChat � [ denied�!() ] ) ]
|

Manager � [
new FinancePortal · AuthCredit ⇐
login�!(managerId).
show�?(uId, data).
printRequest�!(uId, data).
(accept�?().accept�!() + reject�?().reject�!() ]

Fig. 8. Interaction between Manager and Finance portal

it. In the latter case, a bank manager is consulted so as to provide a final decision. To
that end, message requestApp is posted to the FinancePortal context (carrying the
clientChat reference and the credit request data), for further processing.

The interaction between a bank manager and the finance portal is carried out by an
instance of service AuthCredit, and presented in Fig. 8. Interaction in the triggered
conversation starts by the exchange of message login. After receiving the loginmes-
sage the service definition code specifies the reception of a requestApp message in
the conversation context of FinancePortal. The relevant information is then sent to the
manager (in message show) who replies with either a message accept or a message
reject, after which the client is notified accordingly. Notice that the previously del-
egated clientChat conversation is accessed, and the message approved or a message
denied is sent on it.



www.manaraa.com

174 L. Caires et al.

3 Correlation-Based Core Calculi

Service-oriented computing goes beyond the traditional function invocation (i.e.
request-response) pattern introducing stateful interactions also called conversations.
The calculi presented so far are based on implicit sessions. In this section, we con-
sider an alternative approach based on correlation information, that are data explicitly
introduced in part of the exchanged messages in order to route the messages to the
correct process instances.

Correlation information is the basis of the Web Services interaction mechanisms
which are implemented on top of stateless Internet protocols, such as the hyper-text
transfer protocol HTTP. As an example of correlation information, consider the Internet
Cookies used by web sites in order to relate an HTTP request to a user profile which
permits to return, for instance, a customized HTML file.

Correlation information, besides being useful to implement stateful communication
on top of stateless protocols, represent also a flexible and user programmable mech-
anism for managing the relationships among the collaborating partners. For instance,
let us consider an orchestrator that must interact in parallel with n different partners.
Using binary implicit sessions, the orchestrator activates n different sessions, one for
each partner, and in order to exchange data among these sessions the interprocess com-
munication primitives (pipeline, streams or message-exchange) can be exploited. On
the contrary, the correlation approach allows the orchestrator to run only one process
instance, at the price of including in the exchanged messages, for instance, a process
identifier to be used as correlation information.

As an example let us suppose a distributed game scenario where two main services are
involved: the master service and the game service. The master service invokes the game
service for initiating a game by sending a freshly created game id (gId) that will be used
by the latter service for identifying the new game session. When the game is started, the
game service waits for two players univocally identified by their ids. Let us assume the
players with ids pId1 and pId2 register themselves to the game. In this case, the game
service will add their identifiers to the correlation set of the session game so that the data
set formed by gId, pId1 and pId2 identify the session. From now to the end of the session
game, the master service can interact with the service game by exploiting its id gId,
whereas the two players can exploit the pairs (pId1, gId) and (pId2, gId), respectively,
assuming that a player can be involved in more than one session game. As shown by this
example, correlation set allows for the identification of a service session by means of
a set of data which can be partially exploited by other participants for interacting with
the right session (e.g. the master service uses only its id without knowing the ids of the
players). Moreover, correlation data can be communicated to other services in order to
allow them to interact with the right session. In the example above we can imagine that
a player leaves the game by communicating its id to a third player which will replace it.

At the programming level, linguistic mechanisms are necessary in order to specify
which part of the message contains the correlation information. A typical approach
is to declare a correlation set, i.e. a set of identifiers of containers for the correlation
information.

In order to investigate the impact of the correlation approach in SOC, we have em-
bedded it in memoryless and memoryful services thus designing two different calculi



www.manaraa.com

Core Calculi for Service-Oriented Computing 175

called COWS and SOCK, respectively. In COWS variables can be assigned only once,
and they are replaced with the assigned value; in SOCK, on the contrary, variables
can be assigned more than once. The most visible consequence of these two different
approaches is that the processes instantiated upon service invocation are explicitly rep-
resented in SOCK, while this is not the case in COWS. More precisely, in SOCK, a
newly instantiated process P is explicitly associated with its state S using the notation
[P,S], while in COWS a newly instantiated process P is simply added in parallel with
the other processes.

Another more subtle difference is that in SOCK the correlation information can
change during the execution of one process simply by assigning new values to the con-
tainers indicated by the correlation set. In this way, for instance, it is possible for a
process to dynamically change partners simply by modifying the corresponding corre-
lation information.

The remainder of this section is devoted to the presentation of the two calculi COWS
and SOCK. We simply present the syntax and the modeling in the calculi of the Credit
Request scenario; the reader interested in the definition of the operational semantics can
refer to [LPT07a] and [BGG+06].

3.1 COWS: Calculus for Orchestration of Web Services

COWS (Calculus for Orchestration of Web Services [LPT07a]) is a process calculus
for specifying and combining services. It provides a novel combination of primitive
constructs and features borrowed from well-known process calculi, such as non-binding
receiving activities, asynchronous communication, polyadic synchronization, pattern
matching, protection, and delimited receiving and killing activities. As a consequence
of its careful design, the calculus makes it easy to model many important aspects of
service orchestrations à la WS-BPEL [OAS07], such as service instances with shared
state, services playing more than one partner role, stateful sessions made by several
correlated service interactions, and long-running transactions. In fact, COWS evolved
from ws-calculus [LPT06], a process calculus previously introduced to formalize the
semantics of WS-BPEL, with the aim to achieve a more foundational and expressive
formalism.

In the rest of this section, we report the syntax of COWS, informally explain its
semantics and present a specification of the Credit Request scenario. We refer the in-
terested reader to [Lap08, Tie09] for a formal account of COWS’s semantics and some
analysis techniques, for several examples illustrating peculiarities and expressiveness
of the calculus, and for comparisons with other process-based and orchestration for-
malisms. COWS’s basic primitives for termination and for error and compensation
handling are specifically described in Chapter 3-3. The specification presented in this
section results from a simplification of a COWS specification of the Sensoria Finance
case study described and analyzed in Chapter 7-4.

A gentle introduction to COWS. The syntax of COWS is presented in Fig. 9. It is
parameterized by three countable and pairwise disjoint sets: the set of (killer) labels
(ranged over by k, k′, . . .), the set of values (ranged over by v, v′, . . . ) and the set of
‘write once’ variables (ranged over by x, y, . . . ). The set of values is left unspecified;



www.manaraa.com

176 L. Caires et al.

s ::= u • u′!ε̄ | g (invoke, receive-guarded choice)
| [e] s | s | s | ∗ s (delimitation, parallel composition, replication)
| kill(k) | {|s|} (kill, protection)

g ::= 0 | p • o?w̄.s | g + g (empty, receive prefixing, choice)

Fig. 9. Syntax of COWS

however, we assume that it includes the set of names, ranged over by n, m, o, p, . . . ,
mainly used to represent partners and operations. The syntax of expressions, ranged
over by ε, is deliberately omitted; we just assume that they contain, at least, values and
variables, but do not include killer labels (that, hence, can not be communicated).

We use w to range over values and variables, u to range over names and variables, and
e to range over elements, i.e. killer labels, names and variables. The bar ¯ denotes tuples
(ordered sequences) of homogeneous elements, e.g. x̄ is a compact notation for denoting
a tuple of variables as 〈x1, . . . , xn〉. We assume that variables in the same tuple are pair-
wise distinct. We adopt the following conventions for operators’ precedence: monadic
operators bind more tightly than parallel, and prefixing more tightly than choice. We
omit trailing occurrences of 0 and write [e1, . . . , en] s in place of [e1] . . . [en] s. Finally,

we write I
�
= s to assign a name I to the term s.

Services are structured activities built from basic activities, i.e. invoke, receive and
kill, by means of choice, parallel composition, delimitation, protection and replication.

Invoke and receive are the basic communication activities provided by COWS. Be-
sides input parameters and sent values, both activities indicate an endpoint, i.e. a pair
composed of a partner name p and of an operation name o, through which communi-
cation should occur. An endpoint p • o can be interpreted as a specific implementation
of operation o provided by the service identified by the logic name p. An invoke p • o!ε̄
can proceed as soon as the evaluation of the expressions ε̄ in its argument returns the
corresponding values. A receive p • o?w̄.s offers an invocable operation o along a given
partner name p. Execution of a receive within a choice operator permits to take a deci-
sion between alternative behaviours. Partner and operation names are dealt with as val-
ues and, as such, can be exchanged in communication, although dynamically received
names cannot form the endpoints used to receive further invocations. This permits to
easily model many service interaction and reconfiguration patterns.

The delimitation operator is the only binder of the calculus: [e] s binds e in the scope
s. The scope of names and variables can be extended while that of killer labels cannot (in
fact, they are not communicable values). Besides for generating ‘fresh’ private names
(as ‘restriction’ in π-calculus [MPW92]), delimitation can be used for introducing a
named scope for grouping certain activities. It is then possible to associate suitable
termination activities to such a scope, as well as ad hoc fault and compensation handlers,
thus laying the foundation for guaranteeing transactional properties in spite of services’
loose coupling. This can be conveniently done by relying on the kill activity kill(k),
that causes immediate termination of all concurrent activities inside the enclosing [k]
(which stops the killing effect), and the protection operator {|s|}, that preserves intact a
critical activity s also when one of its enclosing scopes is abruptly terminated.

Delimitation can also be used to regulate the range of application of the substitution
generated by an inter-service communication. This takes place when the arguments of



www.manaraa.com

Core Calculi for Service-Oriented Computing 177

a receive and of a concurrent invoke along the same endpoint match and causes each
variable argument of the receive to be replaced by the corresponding value argument of
the invoke within the whole scope of variable’s declaration. In fact, to enable parallel
terms to share the state (or part of it), receive activities in COWS do not bind variables,
which is different from most process calculi.

Execution of concurrent terms is interleaved, but when a kill activity or a commu-
nication can be performed. Indeed, the parallel operator is equipped with a priority
mechanism which allows some actions to take precedence over others. Kill activities
are assigned greatest priority so that they pre-empt all other activities inside the en-
closing killer label’s delimitation. In other words, kill activities are executed eagerly,
this way ensuring that, when a fault arises in a scope, (some of) the remaining activi-
ties of the enclosing scope are terminated before starting execution of the relative fault
handler. In fact, activities forcing immediate termination of other concurrent activities
are usually used for modeling fault handling. The same mechanism, of course, can also
be used for compensation handling. Additionally, receive activities are assigned prior-
ity values which depend on the messages available so that, in presence of concurrent
matching receives, only a receive using a more defined pattern (i.e. having greater pri-
ority) can proceed. This way, service definitions and service instances are represented
as processes running concurrently, but service instances take precedence over the cor-
responding service definition when both can process the same message, thus preventing
creation of wrong new instances. In the end, this permits to correlate different service
communications, thus implicitly creating interaction sessions.

Finally, the replication operator ∗ s permits to spawn in parallel as many copies of s
as necessary. This, for example, is exploited to model persistent services, i.e. services
which can create multiple instances to serve several requests simultaneously.

The Credit Request scenario. The scenario includes several terms composed in par-
allel and possibly sharing some private names. It can be modeled by a term of the form

Portal | . . . | [customerManagement, . . .] ( CreditRequest | CustomerManagement | . . . )
Hereafter we only focus on the service orchestrator CreditRequest.

CreditRequest
�
=

∗ [xId, xName, xPassword]
creditReq • initialize?〈xId, xName, xPassword〉.

( customerManagement • checkUser!〈xId, xName, xPassword〉
| [xUserOK , xCustomerData] creditReq • checkUser?〈xId, xUserOK , xCustomerData〉.

( portal • initialize!〈xId, xUserOK〉
| [if , then] ( if • then!〈xUserOK〉

| if • then?〈true〉.
[raise] ( [k] ( Creation | creditReq • cancel?〈Id〉.

( kill(k) | {| raise • abort!〈〉 |} )
| raise • abort?〈〉.CompensateAll ) ) ) )

Whenever prompted by a customer request, CreditRequest creates an instance to serve
that specific request and is immediately ready to concurrently serve other requests.



www.manaraa.com

178 L. Caires et al.

Each interaction with the service starts with a receive activity of the form creditReq •

initialize?〈xId, xName, xPassword〉 corresponding to reception of a request emitted by Portal
on behalf of a customer. The receive activity creates a new service instance and initial-
izes the variables xId, xName and xPassword, declared local to the instance by the delimi-
tation operator, with data provided by a customer. In particular, variable xId is used to
store a fresh identifier, generated by Portal, univocally identifying a session of the pro-
cess (which, in COWS, coincides with an instance of the service). The identifier allows
CreditRequest to safely communicate with the involved services. In fact, in each inter-
action among them, the identifier is used as a correlation datum, i.e. it appears within
each message. Pattern-matching permits locating such identifier in the messages and,
therefore, delivering the messages to the instances identified by the same identifier.

Once created, a CreditRequest’s instance requires CustomerManagement to check
the customer login data, by invoking the operation checkUser provided by the ‘internal’
partner name customerManagement through the invoke activity customerManagement •
checkUser!〈xId, xName, xPassword〉, and waits for a reply. The answer is forwarded to the
customer by means of the invoke activity portal • initialize!〈xId, xUserOK〉. Concurrently,
by exploiting the private names if and then, the instance can check the answer. In case
of a positive answer, the service instance activates a ‘scope’ activity named k which
associates an event and a fault handler to the term Creation. When the scope starts, the
handlers are enabled. The event handler is activated by an invocation of the operation
cancel, corresponding to reception of a withdrawal of the credit request emitted by the
Portal on behalf of the customer. This forces the immediate termination of all (unpro-
tected) activities representing the normal behaviour of the scope, by means of activity
kill(k), and the execution of activity raise • abort!〈〉, which activates the fault handler.
To guarantee eventual execution of this invoke, it is protected by the protection operator
{| |} that prevents it to be canceled due to an abrupt termination of its enclosing scope k.
The fault handler, in its turn, activates all installed compensation handlers.

Creation
�
= [xCreditAmount, xCreditType, xMonthlyInstalment]

crediReq • createNewCreditRequest?〈xId, xCreditAmount, xCreditType, xMonthlyInstalment〉.
( creditManagement • initCreditData!〈xId, xCreditAmount, xCreditType, xMonthlyInstalment〉
| HandleBalanceAndSecurityData | CreationCH )

After the data for a new credit request have been received, the service forwards them
to the credit management service, activates the term HandleBalanceAndSecurityData,
and installs the compensation handler CreationCH for undoing the activities previously
performed along the operation initCreditData.

HandleBalanceAndSecurityData
�
= [flow, end]

( [xBalancePackage] creditReq • enterBalanceData?〈xId, xBalancePackage〉.
( balance • updateBalanceRating!〈xId, xCustomerData, xBalancePackage〉
| creditReq • updateBalanceRating?〈xId〉. flow • end!〈〉 )

| [xSecurityPackage] creditReq • enterSecurityData?〈xId, xSecurityPackage〉.
( security • updateSecurityRating!〈xId, xCustomerData, xSecurityPackage〉
| creditReq • updateSecurityRating?〈xId〉. flow • end!〈〉 )

| flow • end?〈〉. flow • end?〈〉. ( Decision | HandleBalAndSecCH ) )



www.manaraa.com

Core Calculi for Service-Oriented Computing 179

It receives (in parallel) the customer’s balance and security data and, then, sends them
to the balance and security services that store such data and, when requested, will com-
pute the corresponding ratings. When the parallel computation ends, i.e. after that two
signals along flow • end have been consumed, the term Decision is activated and the
compensation handler HandleBalAndSecCH for undoing the already executed activi-
ties is installed.

Decision
�
=

rating • calculateRating!〈xId, xLoginName, xFirstName, xLastName〉
| [xResult, xRatingData] creditReq • calculateRating?〈xId, xResult, xRatingData〉.

[if , then] ( if • then!〈xResult〉
| if • then?〈AAA〉.Accept
+ if • then?〈BBB〉.ClerkApproval
+ if • then?〈CCC〉. SupervisorApproval )

It invokes the service rating for getting the rating of the customer request. The returned
answer is then used to make a conditional choice. If the answer is AAA, the request
is accepted without further evaluations and the term Accept is activated. Instead, if the
answer is either BBB or CCC, the credit request needs to be further evaluated by a
clerk or a supervisor, thus either ClerkApproval or SupervisorApproval is activated,
respectively.

ClerkApproval
�
=

portal • requestClerkApproval!〈xId, xRatingData〉
| [xManualAcceptance] creditReq • approvalResult?〈xId, xManualAcceptance〉.

[if , then] ( if • then!〈xManualAcceptance〉 | if • then?〈true〉.Accept
+ if • then?〈false〉.Decline )

It requests a clerk approval and, according to the received answer, activates either the
term Accept or Decline (SupervisorApproval is similar).

Accept
�
=

creditManagement • generateOffer!〈xId, xRatingData〉
| [xAgreementData] creditReq • generateOffer?〈xId, xAgreementData〉.

( portal • offerToClient!〈xId, xAgreementData〉
| [xAccepted] creditReq • offerToClient?〈xId, xAccepted〉.

( creditManagement • acceptOffer!〈xId, xAccepted〉
| portal • goodbye!〈xId〉 ) )

It requires the credit management service to generate the offer data and forwards them
to the customer. The customer will reply by indicating if he accepts or not the offer,
and such an answer is then sent to the credit management service. The invoke activity
portal • goodbye!〈xId〉 simply informs the customer that the process is concluded.



www.manaraa.com

180 L. Caires et al.

Decline
�
=

portal • declineToClient!〈xId〉
| [xUpdateDesired] creditReq • declineToClient?〈xId, xUpdateDesired〉.

[if , then] ( if • then!〈xUpdateDesired〉
| if • then?〈true〉. updatingManagement• init!〈xId〉
+ if • then?〈false〉. portal • goodbye!〈xId〉 )

It behaves similarly to the previous term, except for the fact that a decline is sent to
the customer instead of an offer. The customer will reply by indicating if he desires or
not to perform a data update. In the positive case, the service updatingManagement is
invoked, otherwise a goodbye message is sent to the customer.

3.2 SOCK: Service-Oriented Computing Kernel

Differently from COWS, the SOCK [BGG+06] calculus was developed not only taking
inspiration, but also trying to be more strongly related to the current Web Services
technology. In particular, the following aspects have been extracted:

– the interaction modalities: they directly deal with the communication patterns de-
fined by the WSDL specification [WSD01] (e.g. one-way and request-response);

– the workflow composition model: it deals with the emerging trend to compose ser-
vices by means of workflows experienced not only with WS-BPEL but also with
more abstract notations such as BPMN [Obj06];

– the execution modality: it deals with the possibility to execute service sessions in a
concurrent or in a sequential way;

– the correlated sessions: they cope with the characteristic of some Web Services to
manage different sessions related to different participants by means of the correla-
tion set mechanism;

– the service state: it consists of execution state of the service, which can be a shared
state among all the service sessions or a session state that expires when the session
terminates.

A gentle introduction to SOCK. SOCK organizes the previous mentioned SOC fea-
tures in a stack of layers: the service behaviour layer, the service engine layer and the
services system layer. The first one allows for the design of service behaviours by sup-
plying computation and external communication primitives inspired to Web Services
operations and workflow operators (e.g. sequence, parallel and choice). The service en-
gine layer is built on top of the former and allows for the specification of the service
declaration where it is possible to design in an orthogonal way three main features: exe-
cution modality, persistent state flag and correlation sets. The execution modality deals
with the possibility to execute service sessions in a sequential order or concurrently.
The persistent state flag allows to declare if each session (of the service engine) has its
own independent state or if the state is shared among all the sessions of the same service
engine. Since the interaction model is stateless the correlation sets is a mechanism for
distinguishing sessions initiated by different invokers by means of the values received
within some specified variables. The services system layer allows for the definition and



www.manaraa.com

Core Calculi for Service-Oriented Computing 181

P, Q, . . . ::= processes
0 null process
ε output
x := e assignment
χ?P : Q if then else
P; P sequence
P|P parallel∑

i∈W εi; Pi non-det. choice
χ� P iteration

ε ::= output
s output signal
o@c(x) notification
or@c(x, y) solicit-Response

ε ::= input
s input signal
o(x) one-way
or(x, y, P) request-response

Fig. 10. Syntax of SOCK processes

for the reasoning on the behaviour of the whole system (i.e. all the services involved in
the application).

Service behaviour. In the following we present the syntax of the service behaviour layer
which provides the basic communication primitives, the operators to modify the state
and the workflow operators. Let Loc be a set of locations on which services can run.
Let O be a set of operations used for inter-service interactions. Let S ignals be a set of
signal names exploited for synchronizing intra-service processes. Let Var be a set of
variables ranged over by x, y, z and Val, ranged over by v, be a generic set of values.
We exploit the notations x = 〈x0, x1, ..., xi〉 and v = 〈v0, v1, ..., vi〉 for representing tuples
of variables and values respectively. Let c ranges over Var∪ Loc where Var∩ Loc = ∅.
For the sake of brevity, we do not present the syntax for representing expressions and
logical conditions which are ranged over by e and χ, respectively; here we assume that
they include all the arithmetic and logic operators, values in Val and variables.

We denote with S C the set of all possible processes ranged over by P and Q. 0 is
the null process. Outputs can be a signal s̄, a notification o@c(x) or a solicit-response
or@c(x, y) where s ∈ S ignals, o ∈ O, c ∈ Var∪Loc, x is the array of the variables which
contain the information to send and y is the array of variables where, in the case of the
solicit-response, the received information will be stored. Dually, inputs can be an input
signal s, a one-way o(x) or a request-response or(x, y, P) where s ∈ S ignals, o ∈ O, x is
the array of variables where the received information are stored whereas y is the array
of variables which contain the information to send in the case of the request-response;
finally P is the process that has to be executed between the request message and the
response message in a request-response. Signals are used for synchronizing parallel
threads within a service behaviour whereas one-way, notification, request-response and
solicit-response are exploited for external communication. x := e assigns the result



www.manaraa.com

182 L. Caires et al.

of the expression e to the variable x. χ?P : Q is the if then else process, where χ
is a logic condition; P is executed only if the condition χ is satisfied; otherwise Q
is executed. P; Q, P | Q represent sequential and parallel composition respectively,
whereas

∑
i∈W εi; Pi is the non-deterministic choice guarded on inputs. Such a restriction

is due to the fact that we are not interested to model internal non-determinism guarded
on output processes because they do not actually model any relevant real language
construct. Finally, χ� P is the construct to model guarded iterations. It is worth noting
that simple input primitives can be programmed by considering a choice with a single
branch having empty continuation (i.e. where the process Pi is the process 0).

SOCK has been recently extended with mechanisms for fault and compensation han-
dling [GLMZ08]. The main distinguishing feature is that SOCK allows for sophisti-
cated dynamic installation and updating of such handlers. The main principles are:

– the distinction between fault handlers and termination/compensation handlers (the
compensation handler is implicitly defined as the latest installed termination han-
dler);

– the possibility to associate handlers to any portion of code using the scope con-
struct;

– the possibility to dynamically define and update handlers;
– the occurrence of a fault inside a request-response pattern triggers the correspond-

ing fault on the client side.

Correspondingly, the syntax is extended as follows:

P,Q ::= ... | inst(H) | {P : H}q | throw( f ) | comp(q) | cH

We useH to denote a function from the (disjoint) domains of Faults and Scopes names
to processes.

We consider two kinds of handlers: fault handlers to deal with an internal fault and
termination/compensation handlers to deal with compensations of an activity in case of
an external fault. Handlers are installed by the primitive inst(H) where H is a partial
function from faults and scope names to processes. The construct {P : H}q defines a
process P that runs within a scope named q, with H defining the currently installed
handlers. Commands throw( f ) and comp(q) respectively raise fault f and ask to com-
pensate scope q. Finally, cH allows to refer to the previously installed handler in the
expressions for handler updates.

To illustrate the expressiveness of the dynamic installation of handlers, consider the
process P ≡ {true � or@z(y, x); inst([q �→ C|cH]) : H0}q, where H0 is a function
undefined on all fault names and defined as 0 for all scope names. The process P re-
peatedly invokes the service or (using the request-response modality) and installs as
many compensations C as the calls to or. As soon as the first fault is raised by or, all the
installed C are executed in parallel. Such a dynamic mechanism is difficult to encode in
classical frameworks, where handlers are allocated statically.

Service engine. The second layer, called service engine layer, deals with all the as-
pects that come into play when a behaviour is executed within a service engine. When
a service is invoked a particular instance of a service behaviour, called session, is cre-
ated and executed within the corresponding service engine. Since multiple invocations



www.manaraa.com

Core Calculi for Service-Oriented Computing 183

can be concurrently done by different clients, it is important to define how the several
sessions are executed: they could be performed sequentially or concurrently. Such a
feature is called execution modality. Moreover, for each created session, it should be
defined how the service state is managed. A session state could expire when the session
terminates or a it could remain available and accessible by other sessions. In the for-
mer case the state is not persistent whereas in the latter case the state is persistent. We
call this feature state persistence. Depending on the execution modality and the state
persistence, four service categories are distinguished and summarized below:

1. concurrent/not persistent: services which concurrently execute their sessions, each
one equipped with its own state that expires when the session is terminated. Usually,
WS-BPEL processes belong to this category.

2. concurrent/persistent: services which concurrently execute their sessions. Sessions
share a common state which does not expire. Services which access to a database
could belong to this category.

3. sequential/not persistent: services whose sessions are forced to be executed follow-
ing a sequential order, where each session is equipped with its own state that expires
when the session is terminated. For example, a video game is accessed sequentially
by each player and each session of the game has its own ephemeral state.

4. sequential/persistent: services whose sessions are forced to be executed following
a sequential order, where the state does not expire after a session termination. A
cash teller machine could be considered as an example of service belonging to this
category.

Another issue which is strongly related to the service engine layer is message corre-
lation. This deals with the session identification within a service engine. In the case
of multiple service invocations that generate a set of sessions, we need to program the
engine in such a way that messages are delivered to the right session instance. These
aspects are usually in charge of the service execution engines which provide mech-
anisms for managing with these details. In general, message correlation provides an
application level mechanism for supporting session identification independently from
the underlying executing framework.

The syntax of the service engine layer is composed of a service declaration and a ser-
vice execution environment. Within the service declaration it is possible to specify the
service behaviour, the state persistence, the correlation set and the execution modality
whereas in the service execution environment all the initiated service sessions will be
executed. Namely, the service declaration is defined as follows:

U ::= P× | P• W ::= c  U D ::=!W | W∗

where P ∈ XS C is a service behaviour, flag × denotes that P is equipped with a not
persistent state and flag • denotes that P is equipped with a persistent one. c is the
correlation set which guards the execution of the sessions, !W denotes a concurrent ex-
ecution of the sessions and W∗ denotes the fact that sessions are executed in a sequential
order. D is a service declaration. Hence, a service engine is defined as follows:

Y ::= D[H] H ::= PS | H | H PS ::= (P,S)



www.manaraa.com

184 L. Caires et al.

where Y is service engine and it is composed of a service declaration D and an execution
environment H. H can be a service behaviour coupled with a state (PS ) or the parallel
composition of them (H | H).

Services system. The services system layer allows for the composition of different en-
gines into a system. The service engines are composed in parallel and they are equipped
with a location that allows us to univocally distinguish them in the system. Namely, the
syntax of systems is as follows:

E ::= Yl | E ‖ E

A service engine system E can be a located service engine Yl, where l is a location, or
a parallel composition of engines. A message can be exchanged between two service
engines only if an input operation and an output operation on the same operation can
be executed by the two service engines.

The Credit Request scenario. We now present part of orchestrator for the credit re-
quest scenario modeled with SOCK.

WorkFlow ::= login(credentials, response, CheckLogin);
enterCredit(credit);
enterBalances(balances);
enterSecurities(securities);
{Decision}dec

CheckLogin ::= checkLogin@AccountService(credentials,response)
Decision ::= calculateRating@RatingService(〈 balances, securities, credit 〉,rating);

(rating==“AAA”? 0: Employee);Offer
Employee ::= rating==“BBB”? ToClerk: ToSupervisor
ToClerk ::= inst([denyFault �→ DeclineCk]);

requestApproval@ClerkService( 〈 balances, securities, credit 〉, 〈〉 )
ToSupervisor ::= inst([denyFault�→ DeclineSv]);

requestApproval@SupervisorService( 〈 balances, securities, credit 〉, 〈〉 )
DeclineCk ::= genDeclineCk@DeclineService( 〈 balances, securities, credit 〉, decline);

sendDecline@Customer(decline)
DeclineSv ::= genDeclineSv@DeclineService( 〈 balances, securities, credit 〉, decline);

sendDecline@Customer(decline)
Offer ::= genOffer@OfferService( 〈 balances, securities, credit 〉,offer);

sendOffer@Customer(offer)

The process WorkFlow describes the behaviour of the orchestrator responsible for re-
ceiving the customer’s request and then replying her/him after having invoked the Rat-
ingService and, in case it is necessary, the ClerkService or the SupervisorService. The
customer initially invokes the login, enterCredit, enterBalences, and enterSecurities
operations. Note that login is a request-response operation that invokes a remote Ac-
countService to check the credentials, while the other operations are one-way. After
receiving the needed information, the orchestrator starts the scope Decisiondec respon-
sible for sending the reply to the customer. Reply can be sent either to the sendOffer or



www.manaraa.com

Core Calculi for Service-Oriented Computing 185

to the sendDecline operations of the Customer. We assume that sendDecline is gener-
ated by a fault handler of the orchestrator activated by the fault denyFault. This fault
is not raised internally by the orchestrator, but by the external ClerkService or Supervi-
sorService while they are processing the requestApproval operation.1 We assume that
those services raise denyFault in case their evaluation of the customer’s request is neg-
ative. As denyFault is raised while processing a request-response operation invoked by
the orchestrator, the SOCK semantics guarantees that denyFault is transparently sent
back to the orchestrator thus activating the corresponding fault handler. On the orches-
tration side, the inst primitive is used to dynamically install the correct fault handler that
invokes either genDeclineCk or genDeclineSv in order to generate the expected decline
message (in which we assume that there is also indication of who decided to decline the
offer). This decline message is then sent back to the customer through its sendDecline
operation. In case no denyFault is raised, an offer generated by an external OfferService
is sent back to the customer through its sendOffer operation.

JOLIE: Java Orchestration Language Interpreter Engine. One of the features that
mainly distinguishes SOCK from the other Sensoria calculi is that it is closer to real
programming languages. On the one hand, this makes SOCK syntax richer of con-
structs and details (such as, e.g., the three layers definition) but, on the other hand,
this makes SOCK also closer to actual service orchestration languages. This feature of
SOCK is witnessed by the fact that JOLIE, a fully fledged programming language, has
been developed simply extending the calculus with primitives for data manipulation and
by adding the support for interoperability with network protocols (such as SOAP and
https). JOLIE (Java Orchestration Language Interpreter Engine) [MGZ07, GMLZ07] is
an opensource project released under the LGPL license and publicly available for con-
sultation and use [JOL]. The syntax of JOLIE resembles that of C. This is in contrast
with the most credited Web Services orchestration languages, such as XLANG [Tha01]
and WS-BPEL, which are based upon XML. The interpretation of JOLIE programs is
done via inspection of their abstract syntax tree, and the correspondence with the oper-
ational semantics of the SOCK calculus is guaranteed by the fact that each node in the
abstract syntax tree simply implements the SOS rules of the corresponding construct.

4 Conclusion

We have reported the main activities conducted on the development of new linguis-
tic tools for services specification and verification. To enable the reader to appreciate
the differences between the used formalisms, we considered a simple case study as a
running example. The presented formalisms have been the basis for developing new
techniques for qualitative and quantitative analysis of services as well as for the formal
investigation of patterns and good practices for the composition and orchestration of
services. Results on these aspects are reported in other chapters of this volume or have
been published elsewhere.

1 Due to space limitation we do not report the specification of the behaviour of the external
services invoked by the orchestrator.



www.manaraa.com

186 L. Caires et al.

A type systems for guaranteeing safe interaction of CaSPiS processes in presented in
Chapter 2-3 while a markovian variant of CaSPiS and an associated stochastic logic is
introduced in Chapter 5-1 for assessing quantitative aspects of services. A type system
for checking protocol compatibility between invokers and service providers in SSCC
is presented in [LVMR07a]; moreover, SSCC is endowed with bisimilarity techniques
used for proving equivalence of service-oriented systems [CLM+08, LVMR07b].

In Chapter 2-3, a type system has been introduced for ensuring conversation fidelity
and deadlock absence of CC specifications; a synopsis of the associated behavioral
theory is studied in Chapter 2-2. A summary of encoding techniques that guarantee a
faithful representation of compensable transactions in CC, may be found in Chapter 3-3
while a model-checking tools for CC is presented in Chapter 4-3.

Several analysis techniques have been developed for COWS. A Flow Logic for
checking information flow properties is presented in [BNNP08], a stochastic extension
of COWS that enables verification of quantitative properties is presented in Chapter 5-
5, and a few observational semantics for checking interchangeability of COWS terms
and conformance against service specifications are briefly presented in Chapter 2-2. A
temporal logic and the associated model checker for functional properties are presented
in Chapter 4-2, while a type system for guaranteeing confidentiality properties is pre-
sented in [LPT07b]. The application of the last two techniques to the analysis of the
Finance case study is reported in Chapter 7-4.

As described in Chapter 3-3 the core calculus SOCK allowed us to investigate prob-
lems deriving from the combination of failure recovery techniques with bidirectional
service invocations, and to formally verify a correct implementation in the orchestra-
tion language JOLIE of the SAGAS model for programming long running transactions.

Acknowledgements. This paper is the result of a collaborative effort of many re-
searchers not just of those mentioned in the list of authors. The names of the con-
tributors can be inferred from the list of published papers on the specific core calculi
listed in the references. Nevertheless, here we would like to specifically thank some of
our colleagues. Lucia Acciai and Francesco Tiezzi contributed to the formalization of
the case study that we used as a running example. Francisco Martins wrote the case
study in SSCC. Hugo T. Vieira is one of the main co-author of CC and of the asso-
ciated conversation-type theory. Claudio Guidi contributed to the modeling of the case
study in SOCK and to the description of the JOLIE language. Finally, we would like to
thank Mariangiola Dezani and Emilio Tuosto for the careful reading of the paper and
the many useful suggestions.

References

[BBC+06] Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins,
F., Montanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.:
SCC: a service centered calculus. In: Bravetti, M., Núñez, M., Tennenholtz, M.
(eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

[BBDL08] Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for
structured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS
2008. LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)



www.manaraa.com

Core Calculi for Service-Oriented Computing 187

[BGG+06] Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: SOCK: a calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 63–81. Springer, Heidelberg (2006)

[BHF04] Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running
transactions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) CSP 2005.
LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

[BNNP08] Bauer, J., Nielson, F., Nielson, H.R., Pilegaard, H.: Relational Analysis of Cor-
relation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp.
32–46. Springer, Heidelberg (2008)

[CG98] Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS
1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

[CHY+06] Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.: A
Theoretical Basis of Communication–Centred Concurrent Programming. Tech-
nical report, WCDL-Working Note (2006)

[CLM+07] Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconcelos, V.T.: Bisimu-
lations in SSCC. DI/FCUL TR 07–37, Department of Informatics, University of
Lisbon (December 2007)

[CLM+08] Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconcelos, V.T.: Be-
havioural theory at work: program transformations in a service-centred calculus.
In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 59–77.
Springer, Heidelberg (2008)

[CV09] Caires, L., Vieira, H.T.: Conversation Types. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

[GLMZ08] Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: ACSD 2008, pp. 190–
198. IEEE, Los Alamitos (2008)

[GMLZ07] Guidi, C., Montesi, F., Lanese, I., Zavattaro, G.: Dynamic fault handling for ser-
vice oriented applications. In: ECOWS 2008, pp. 225–234. IEEE, Los Alamitos
(2007)

[HVK98] Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type disci-
pline for structured communication-based programming. In: Hankin, C. (ed.)
ESOP 1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

[HYC08] Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types.
In: POPL 2008, pp. 273–284. ACM, New York (2008)

[JOL] JOLIE: website, http://www.jolie-lang.org
[Lap08] Lapadula, A.: A Formal Account of Web Services Orchestration. PhD thesis,

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze (2008)
[LPT06] Lapadula, A., Pugliese, R., Tiezzi, F.: A WSDL-based type system for WS-

BPEL. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS,
vol. 4038, pp. 145–163. Springer, Heidelberg (2006)

[LPT07a] Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web
Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47.
Springer, Heidelberg (2007), http://rap.dsi.unifi.it/cows

[LPT07b] Lapadula, A., Pugliese, R., Tiezzi, F.: Regulating data exchange in service
oriented applications. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS,
vol. 4767, pp. 223–239. Springer, Heidelberg (2007)

[LVMR07a] Lanese, I., Vasconcelos, V.T., Martins, F., Ravara, A.: Disciplining Orchestra-
tion and Conversation in Service-Oriented Computing. In: SEFM 2007, pp.
305–314. IEEE, Los Alamitos (2007)



www.manaraa.com

188 L. Caires et al.

[LVMR07b] Lanese, I., Vasconcelos, V.T., Martins, F., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. DI/FCUL TR 07–2, DIFCUL
(March 2007)

[MC07] Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area com-
puting. Journal of Software and Systems Modeling 6(1), 83–110 (2007)

[MGZ07] Montesi, F., Guidi, C., Zavattaro, G.: Composing services with jolie. In:
ECOWS 2007, pp. 13–22. IEEE, Los Alamitos (2007)

[MPW92] Milner, R., Parrow, J., Walker, J.: A Calculus of Mobile Processes, I and II.
Information and Computation 100(1), 1–40, 41–77 (1992)

[OAS07] OASIS WSBPEL TC. Web Services Business Process Execution Language Ver-
sion 2.0. Technical report, OASIS (April 2007)

[Obj06] Object Management Group (OMG). Business Process Modeling Notation
(BPMN) Specification (February 2006)

[Sen] Sensoria Project. Public web site, http://sensoria.fast.de/
[Tha01] Thatte, S.: XLANG: Web Services for Business Process Design (2001)
[Tie09] Tiezzi, F.: Specification and Analysis of Service-Oriented Applications. PhD

thesis, Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
(2009)

[VCS08] Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model of Ser-
vice Oriented Computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960,
pp. 269–283. Springer, Heidelberg (2008)

[vdAtKB03] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

[WSD01] Web Services Description Language (WSDL). World Wide Web Consortium
(2001)



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi�

Ivan Lanese1, Antonio Ravara2, and Hugo Torres Vieira2

1 Focus Team, Università di Bologna/INRIA, Italy
lanese@cs.unibo.it

2 CITI and Dep. of Informatics, FCT, Univ. Nova de Lisboa, Portugal
{aravara,htv}@fct.unl.pt

Abstract. This chapter presents the behavioral theory of some of the
Sensoria core calculi. We consider SSCC, μse and CC as representa-
tives of the session-based approach and COWS as representative of the
correlation-based one.

For SSCC, μse and CC the main point is the structure that the session/
conversation mechanism creates in programs. We show how the differ-
ences between binary sessions, multiparty sessions and dynamic conver-
sations are captured by different behavioral laws. We also exploit those
laws for proving the correctness of program transformations.

For COWS the main point is that communication is prioritized (the
best matching input captures the output), and this has a strong influence
on the behavioral theory of COWS. In particular, we show that communi-
cation in COWS is neither purely synchronous nor purely asynchronous.

1 Introduction

In most formal languages, it is common to have several terms denoting the same
computational process. To understand when this situation occurs, the language
needs to be equipped with a notion of equivalence. This notion relies on an
underlying description of the behavior of such process.

In process calculi the behavior of systems is usually defined in terms of either a
reduction relation or of a labeled transition relation (also called labeled transition
system, or LTS). The former describes the possible evolutions of a process in
isolation; the latter allows to describe also the potential interactions with the
environment (usually, the latter relation includes the former).

The most natural notion of term equivalence is behavioral indistinguishabil-
ity in any possible context the term may occur in. In fact, it should be possible
to replace one equivalent process for another without changing the observable
behavior of the system (or part of it). Then, such a relation guarantees the cor-
rectness of program transformations developed for, e.g., improving the global
performance or to increase fault tolerance. In service-oriented computing, equiv-
alent services can serve the same purpose in a complex orchestration, thus the
choice can be driven by their non-functional properties such as cost or perfor-
mance. Such a notion is called a contextual equivalence, and distinguishability
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 189–213, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

190 I. Lanese, A. Ravara, and H.T. Vieira

is based on a notion of observation. In sequential settings, one may define as
observables the values produced by a computation, or even simply termination;
in concurrent settings the observables are usually descriptions of a process in-
teraction potential.

Contextual equivalences are, however, difficult to use. They require an univer-
sal quantification over possible contexts (normally infinitely many), thus lacking
a practical proof technique. A typical solution is to look for a co-inductive con-
gruence relation which characterizes it.

In the realm of process algebras, one can find a myriad of behavioral equiva-
lence notions (van Glabbeek presents an overview, interrelating several notions,
in [11]). Different equivalences (or pre-orders) take into account different ways
of observing the behavior of processes. Considering the most significant notions,
trace equivalence [12] looks at the sequence of observable actions, (labeled) bisim-
ilarity [17] takes into account also points of choice, and testing equivalences [10]
consider the interactions between the process and an observer.

Different equivalences can be useful for different purposes; however, two cri-
teria are important: being a congruence, and, in particular, coinciding with the
contextual equivalence (which is a congruence by definition). The former result
means that given two equivalent processes, placing them in a language context
will produce two processes that are again equivalent, thus allowing substituting
“equals for equals” in context, not changing the global behavior. The congruence
result also testifies that all the constructs of a calculus may be soundly inter-
preted as compositional semantic operators on bisimilarity equivalence classes. If
an equivalence coincides with a given contextual equivalence, it captures exactly
the abstract semantics given by the chosen observables.

In mobile process calculi like the π-calculus [21], standard contextual equiv-
alences are barbed congruence [18] and barbed bisimilarity [13] (the basic ob-
servables are called barbs). Their co-inductive characterization is based on the
notion of bisimilarity. For instance, for barbed congruence, it is full bisimilarity
(the substitution-closed ground bisimilarity) over a(n early) LTS. Bisimilarity is
the largest bisimulation, the latter being a relation R such that if (P, Q) ∈ R
then for each action of P there is a corresponding action of Q and the two actions
lead to processes P ′ and Q′ such that (P ′, Q′) ∈ R. Bisimilarity is a good tool
for proving process equivalence, since it is naturally equipped with a proof tech-
nique: to prove that two processes P and Q are bisimilar it is enough to exhibit
a bisimulation including the pair (P, Q). There are, in general, two notions of
bisimulation: a strong one, taking into account also internal actions, and a weak
one, abstracting them away. The latter is particularly interesting, since it allows
to prove correctness of program optimizations (in fact equivalent processes need
not perform the same number of internal actions).

In this chapter we apply bisimilarity notions to some of the Sensoria core
calculi, namely SSCC, μse, CC and COWS (see Chapter 2-1 for a description
of SSCC, CC and COWS, and [6] for μse). The different features of the calculi
have a strong impact on their behavioral theory.



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 191

For the session-based calculi, standard notions of equivalence can be used,
and the main point is the characterization of the communication structure of the
processes. In fact, the different notions of binary session (for SSCC), multiparty
session (for μse) and dynamic conversation (for CC) are captured by different
behavioral equations. We discuss those laws, and exploit them to prove the
correctness of different kinds of program transformations. For CC we also prove
a normal form result.

Communication in COWS is based on the correlation set mechanism, which
provides prioritized communication (the best matching input captures the out-
put). The corresponding barbed bisimilarity is captured by a more complex form
of bisimilarity with respect to the ones for the other calculi, and shows that com-
munication in COWS is neither purely synchronous nor purely asynchronous.

2 Behavioral Theory for SSCC

In this section we study the behavioral theory of SSCC (Stream-based Service
Centred Calculus [15]), and we apply it to prove the correctness of some program
transformations.

We recall that SSCC is a calculus for modelling service-oriented systems based
on the concepts of services, binary sessions, and streams. The (static) syntax of
SSCC has been defined in Chapter 2-1. We refer to this chapter also for an infor-
mal description of the operators, while presenting here the LTS semantics and
the behavioral theory. We need as auxiliary operators to define the semantics
also r � P for client-side session, r � P for service-side session, (νr)P for ses-
sion name restriction and stream P as f = v in Q for stream with stored values.
Processes are herein written in this extended (called run-time) syntax, and con-
sidered up to the structural congruence relation inductively defined by the rules
in Fig. 1. Note that structural congruence is included in bisimilarity (forthcoming
Lemma 2).

Operational Semantics. The semantics of SSCC is defined using an LTS in the
early style. This LTS is slightly different, but equivalent to its original presenta-
tion in [15]. We require processes to have no free process variables.

P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

(νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q) r � (νa)P ≡ (νa)(r � P )

stream (νa)P as f = v in Q ≡ (νa)(stream P as f = v in Q) if a /∈ fn(Q) ∪ {v}
stream P as f = v in (νa)Q ≡ (νa)(streamP as f = v in Q) if a /∈ fn(P ) ∪ {v}

(νn)(νm)P ≡ (νm)(νn)P (νa)0 ≡ 0 rec X.P ≡ P [rec X.P/X]

Fig. 1. Structural congruence



www.manaraa.com

192 I. Lanese, A. Ravara, and H.T. Vieira

Definition 1 (SSCC Labeled Transition System). The rules in Fig. 2, to-
gether with the symmetric version of rules L-par, L-par-close, and L-sess-

com-close, inductively define the LTS on processes.

The LTS uses μ as a metavariable for labels. The bound names in labels are r
in service definition activation and service invocation and a in extrusion labels
(conventionally, they are all in parenthesis). Label ↑ v denotes sending value v.
Dually, label ↓v is receiving value v. We use � v to denote one of ↑v or ↓v, and
we assume that when multiple � v appear in the same rule they are instantiated
in the same direction, and that �v denotes the opposite direction. We use similar
conventions for other labels.

Continuing with the labels, a⇐(r) and a⇒(r) denote respectively the request
and the activation of a service, where a is the name of the service, and r is the
name of the new session to be created. We use a⇔ (r) to denote one of a⇐ (r)
or a⇒ (r). Furthermore, label ⇑ v denotes the feeding of value v into a stream,
while label f ⇓v reads value v from stream f . When an input or an output label
crosses a session construct (rule L-sess-val), we add to the label the name of
the session and whether it is a server or a client session (for example, ↓ v may
become r � ↓v).

The label denoting a conversation step in a free session r is rτ , and if the
value passed in the session channel is private, it remains private in the resulting
process. A label τ is obtained only when r is restricted (rule L-sess-res). Thus
a τ action can be obtained in four cases: a communication inside a restricted
session, a service invocation, a feed or a read from a stream. Note also that
we have two contexts causing interaction: parallel composition and stream. Fi-
nally, bound actions, (a)μ, represent the extrusion of a in their respective free
counterparts μ.

Some processes, such as r � r � P , can be written using the run-time syntax,
but they are not reachable from processes in the static syntax. We consider these
processes ill-formed, and will not consider them anymore.

Bisimilarity. We study the usual notions of strong and weak bisimilarity. Both
are non-input congruences in the class of SSCC processes. One can get a congru-
ence by considering (strong or weak) full bisimilarity, i.e., by closing bisimilarity
with respect to service name substitutions (there is no reason to close with re-
spect to session or stream names, since no substitutions are performed on them).
Although the general strategy is the same as for the π-calculus, the proof tech-
niques themselves differ significantly. Herein we only present the main results.
Detailed proofs can be found in [8].

To define weak bisimilarity we introduce some abbreviations: let P
τ=⇒ Q

denote P ( τ−→)nQ (with n ≥ 0, i.e., zero or more transitions) and let P
α=⇒ Q

denote P
τ=⇒ α−→ τ=⇒ Q for α �= τ .

Definition 2 (Strong and Weak Bisimilarity). A symmetric binary relation
R on processes is a (strong) bisimulation if, for any processes P , Q such that
PRQ, if P

α−→ P ′ with bn(α)∩ fn(Q) = ∅, then there exists Q′ such that Q
α−→ Q′



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 193

v.P
↑v−→ P (x)P

↓v−→ P [v/x] feed v.P
⇑v−−→ P f(x).P

f⇓v−−→ P [v/x]
(L-send, L-receive, L-feed, L-read)

P
μ−→ P ′ μ �=⇑v bn(μ) ∩ (fn(Q) ∪ {w}) = ∅

stream P as f = w in Q
μ−→ stream P ′ as f = w inQ

(L-stream-pass-P)

Q
μ−→ Q′ μ �= f ⇓v bn(μ) ∩ (fn(P ) ∪ {w}) = ∅

stream P as f = w in Q
μ−→ stream P as f = w in Q′

(L-stream-pass-Q)

P
⇑v−−→ P ′

stream P as f = w in Q
τ−→ stream P ′ as f = v : : w in Q

(L-stream-feed)

Q
f⇓v−−→ Q′

stream P as f = w : : v in Q
τ−→ stream P as f = w in Q′

(L-stream-cons)

r /∈ fn(P )

a ⇐ P
a⇐(r)−−−−→ r � P

r /∈ fn(P )

a ⇒ P
a⇒(r)−−−−→ r � P

(L-call, L-def)

P
μ−→ P ′ bn(μ) ∩ fn(Q) = ∅

P |Q μ−→ P ′|Q
P

	v−−→ P ′

r �� P
r��	v−−−−→ r �� P ′

(L-par, L-sess-val)

P [rec X.P/X ] μ−→ P ′

rec X.P
μ−→ P ′

P
r��↑v−−−→ P ′ Q

r��↓v−−−→ Q′

stream P as f = w in Q
rτ−−→ stream P ′ as f = w in Q′

(L-rec, L-sess-com-stream)

P
a⇔(r)−−−−→ P ′ Q

a⇔(r)−−−−→ Q′

stream P as f = w in Q
τ−→ (νr)streamP ′ as f = w in Q′

(L-serv-com-stream)

P
r��↑v−−−→ P ′ Q

r��↓v−−−→ Q′

P |Q rτ−−→ P ′|Q′
P

a⇔(r)−−−−→ P ′ Q
a⇔(r)−−−−→ Q′

P |Q τ−→ (νr)(P ′|Q′)
(L-sess-com-par, L-serv-com-par)

P
μ−→ P ′ n /∈ n(μ)

(νn)P
μ−→ (νn)P ′

P
rτ−−→ P ′

(νr)P τ−→ (νr)P ′
P

μ−→ P ′ μ �=� v r /∈ bn(μ)

r �� P
μ−→ r �� P ′

(L-res,L-sess-res, L-sess-pass)

P
r��(v)↑v−−−−−→ P ′ Q

r��↓v−−−→ Q′ v /∈ fn(Q)
P |Q rτ−−→ (νv)(P ′|Q′)

P
μ−→ P ′ μ ∈ {↑a, r ��↑a,⇑a}

(νa)P
(a)μ−−−→ P ′

(L-par-close, L-extr)

P
r��(v)↑v−−−−−→ P ′ Q

r��↓v−−−→ Q′ v /∈ fn(Q) ∪ {w}
stream P as f = w inQ

rτ−−→ (νv)stream P ′ as f = w in Q′
(L-sess-com-close)

P
(v)⇑v−−−−→ P ′ v /∈ fn(Q) ∪ {w}

stream P as f = w inQ
τ−→ (νv)stream P ′ as f = v : : w in Q

(L-feed-close)

Fig. 2. SSCC labeled transition system



www.manaraa.com

194 I. Lanese, A. Ravara, and H.T. Vieira

and P ′ R Q′. (Strong) bisimilarity ∼ is the largest bisimulation. Two processes
P and Q are (strong) bisimilar if P ∼ Q.

Weak bisimilarity ≈ is like the strong version, but using weak transitions P
α=⇒

Q instead of strong transitions P
α−→ Q.

Also, a full strong (resp. weak) bisimulation is a strong (resp. weak) bisimula-
tion closed under service name substitutions, and we call full strong (resp. weak)
bisimilarity ∼f (resp. ≈f) the largest full strong (resp. weak) bisimulation.

Note that bisimilarity (respectively full bisimilarity) can be obtained as the
union of all bisimulations (respectively full bisimulations). Moreover, as desired,
structurally congruent processes (cf. Fig. 1) are strong bisimilar.

Lemma 1 (Harmony Lemma). Let P and Q be processes with P ≡ Q. If
P

α−→ P ′, then Q
α−→ Q′ with P ′ ≡ Q′, and vice-versa.

Lemma 2. Structurally congruent processes are full bisimilar.

As in the π-calculus, strong and weak full bisimilarity are congruences, i.e., they
are closed under arbitrary contexts.

Theorem 1. Strong and weak full bisimilarity are congruences.

Useful Axioms. Even if presenting a complete axiomatization for such a com-
plex calculus is out of the scope of this chapter, we present here some axioms
(equational laws correct with respect to strong/weak full bisimilarity) that cap-
ture key facts about the behavior of processes. Some of them are useful to prove
the correctness of the transformations presented in the following. To show the
axioms we need to define contexts.

An n-ary context is a process where n subterms have been replaced by symbols
•1, . . . , •n. The application C�P1, . . . , Pn� of context C�•1, . . . , •n� to processes
P1, . . . , Pn is the process obtained by replacing •i with Pi.

The correctness of the axioms below can be proved by considering as full
bisimulation all the instances of the equations together with the identity.

Session Garbage Collection

(νr)D�r � 0, r � 0�∼f D�0,0� where D does not bind r (1)

Stream Garbage Collection

stream0 as f inP ∼f P if f does not occur in P (2)

Session Independence

r �� Q | s �� P∼f r �� (s �� Q |P) if s �= r (3)

The same holds if the two sessions have opposite polarities.



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 195

Stream Independence

stream P as f in (stream P ′ as g in Q)∼f

stream P ′ as g in (stream P as f in Q) if f �= g (4)

Streams are Orthogonal to Sessions

r �� (feed v |P )∼f feed v | r �� P (5)

Stream Locality

stream P as f in (Q |Q′)∼f(stream P as f inQ) |Q′ if f /∈ fn(Q′) (6)

Parallel Composition Versus Streams

stream P as f in Q∼f P |Q if f /∈ fn(Q) and P does not contain feed (7)

Interestingly the Session Independence law is strongly dependent on the available
operators, and fails in similar calculi such as [5,4]. This captures the fact that in
SSCC session nesting is immaterial.

From Object-Oriented to Service-Oriented Models. We apply now the behavioral
theory developed so far to bridge the gap between traditional object-oriented and
Sensoria service-oriented models, so to allow the reuse of existing tools and
techniques. We detail a model transformation procedure from a common object-
oriented communication pattern into a session-based, service-oriented one, and
prove it correct with respect to weak full bisimilarity. Since we have also proved
that weak full bisimilarity is a congruence, the behavior of every composition
built exploiting these services remains unchanged when moving from the original
programs into their transformed versions.

UML Sequence Diagrams [2] (SDs) describe the exchange of messages among
the components in a complex system. We present here a typical SD and show
how it can be implemented in SSCC by exploiting suitable macros. We then show
how subsessions can be used to simplify the implementation.

Object-Oriented View. The SD on the left of Fig. 3 describes a common pattern
appearing in scenarios involving (at least) three partners. The description of the
communication pattern is as follows.

Object B receives from object A the value w and forwards it (or a value
computed from it) to object C. After receiving the value, object C answers
with a value w’. Object B replies with v and finally object C replies with
value v’. Then, object B forwards it to object A.

Note that “Object B receives from object A the value w” means that object A
invokes a method in object B passing the value w. We can imagine for instance
that A is the user of the credit portal in the financial case study (see Chapter
0-3), which invokes the credit portal itself (B). The credit portal then interacts
with the rating system (C), possibly exchanging different pieces of information.
The final answer is then sent back to the user.



www.manaraa.com

196 I. Lanese, A. Ravara, and H.T. Vieira

: A : B : C

�1: w

�2: w

� 3: w’

�4: v

� 5: v’

� 6: v’

: A

rA

: B

rB sB

: C

sC

�1: w

���
1.1: w

�2: w

� 3: w’

�4: v

� 5: v’

���
5.1: v’

� 6: v’

Fig. 3. Sequence diagram communication pattern: object-oriented and session-oriented
view

Session-Oriented View. We want to move to a scenario where components are
clients and servers of a service-oriented architecture, and where communication
happens via sessions. We refine the diagram by incorporating information about
the running sessions, in the diagram on the right of Fig. 3, where the slanted
arrows mean message passing between sessions. An instance of the credit portal B
(let us call these instances participants) has a session r running with an instance
of client A and another session s running with an instance of the rating system
service C. Since sessions involve two partners, a session r between instances of
A and B has two sides—called endpoints, rA at the instance of A and rB at the
instance of B.

In addition to the normal constructs in SSCC, to model object-oriented sys-
tems (that do not follow the laws of session communication), it is useful to have
two constructs enabling arbitrary message passing. These can be expressed by
exploiting fresh auxiliary services.

b ⇑ 〈v1, ..., vn〉.P � stream b ⇐ v1...vn.feed unit as f in f(v).P

b ⇓ (x1, ..., xn)P � stream b ⇒ (z1)...(zn).feed z1...feed zn as f

in f(x1)...f(xn).P

where name v and stream f are not used in P and unit is a value used for
synchronization.

The diagram on the right of Fig. 3 is directly implemented in SSCC as

SC � (νb, c) ( A | B | C )

where

A � b ⇐ w.(y)P, B � (νb1, b2) ( B1 | B2 ), and C � c⇒ (x)w′.(y)v′.S,

B1 � b ⇒ (x)b1 ⇑ x.b2 ⇓ (y)y.Q, and B2 � c ⇐ b1 ⇓ (x)x.(z)v.(y)b2 ⇑ y.R.

It is easy to check that the behavior of the process SC above reflects the one
described on the right of Fig. 3.



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 197

: A

rA

: E

rE

sE

: C

sC

�1: w

�2: w

� 3: w’

�4: v

� 5: v’

�	
5.1: v’

�6: v’

Fig. 4. Sequence diagram: using a subsession

An Optimization. When the credit portal B has the value sent by client A, it
may immediately send it to the rating system C, calling it (and thus opening
a subsession). One simply has to perform a “local” transformation on B. The
resulting diagram is in Fig. 4, and it is implemented in SSCC as process SC

′,
where we denote by E the new instance of B.

SC
′ � (νb, c) ( A | E | C ) where

E � b⇒ (x)(νb1)(c ⇐ x.(z)v.(y)b1 ⇑ y.R | b1 ⇓ (y)y.Q)

Naturally, one asks whether the transformation of SC into SC
′ is correct, not

changing the observable behavior of processes. Indeed, this is the case, and this
can be proved using the definition of full weak bisimilarity and the axioms pre-
sented before.

The correctness of the transformation, i.e., SC≈f SC
′, follows from closure

under contexts from the following equation.

(νc)(B |C) ≈f (νc)(E |C) (8)

We sketch the correctness proof, while referring to [9] for more details and for
other examples of transformations, e.g. replacing auxiliary services with stream-
based communications.

Proof (of Equation 8). The proof can be obtained by exhibiting a bisimulation
including the two processes. The two processes can mimic each other even if the
first one is nondeterministic, since the nondeterminism comes from τ steps, whose
order is not important, since the processes are confluent. Garbage collection
Equations 1 and 2 are used in the proof. After some steps, the two processes
have evolved to:

(νs)(r � Q[w/x][v′/y] | s � R[w/x][w′/z][v′/y] | s � S[w/x][v/y])

(νs)(r � (s � R[w/x][w′/z][v′/y]) | Q[w/x][v′/y] | s � S[w/x][v/y])

respectively. These processes can be proved equivalent using structural congru-
ence (which is included in full bisimilarity, according to Lemma 2), session in-
dependence (Equation 3) and closure under contexts.



www.manaraa.com

198 I. Lanese, A. Ravara, and H.T. Vieira

S, T ::= l :: a ⇒ P Service definition | l :: P Located process
| S|T Composition of systems | (νn)S New name

P, Q ::= 0 Empty process
| xw.P Intra-session output | x(y).P Intra-session input
| x!w.P Intra-location output | x?(y).P Intra-location input
| install[a ⇒ P ].Q Service installation | invoke a.P Service invocation
| mergep e.P Entry point | r � P Endpoint
| P |Q Parallel composition | (νn)P New name
| rec X.P Recursive process | X Recursive call

Fig. 5. Syntax of μse systems and processes

3 From Binary to Multiparty Sessions

In this section we apply the notions of bisimilarity from Definition 2 to μse, a
name passing calculus for programming dynamic multiparty sessions proposed
in [6]. Multiparty sessions extend the idea of sessions to multiparty communica-
tions, and have been recently object of deep study in the field of service-oriented
computing [3,7,14], since they provide a natural framework to describe the com-
plex interactions among services. The distinctive feature of μse is its ability to
dynamically create sessions and merging different existing sessions.

We describe now the syntax and the operational semantics of μse, so to allow
to apply bisimilarity in this setting. μse is a calculus featuring names for:

– multiparty sessions (ranged by r, s, . . . ),
– services (ranged by a, b, . . . ), able to enter sessions upon invocation,
– channels (ranged by x, y, . . . ), to route messages inside sessions,
– entry points (ranged by e, f, . . . ), allowing to merge running sessions,
– locations (ranged by l, . . . ), where services and sessions are located.

Channels, services and entry points are communicable values (ranged over by
v, w, . . . ) while sessions and locations cannot be communicated. We let n, m, . . .
range over all names but locations.

The syntax of μse is defined in Fig. 5. Systems (ranged over by S, T, . . .) are
parallel compositions of locations where services are published and processes
executed. A location where a service a is defined is meant to be the domain into
which all instances of a are executed.

A μse process can be the empty process, a process prefixed by an action, a
process running in a session (endpoint), the parallel composition of processes, a
process under a name restriction, a recursive process or a recursive invocation.

Processes (ranged over by P, Q, . . . ) communicate via channels according to
two modalities: intra-session and intra-location. Intra-session communications
are used to let different endpoints of the same session to interact regardless their
running locations. Conversely, intra-location communications allow endpoints



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 199

A|A′ ≡ A′|A A|0 ≡ A (A|A′)|A′′ ≡ A|(A′|A′′)

(νn)(A|A′′) ≡ A|(νn)A′′, if n �∈ fn(A)

(νn)(νm)A ≡ (νm)(νn)A (νn)A ≡ A, if n �∈ fn(A)

l :: P |l :: Q ≡ l :: (P |Q) l :: (νn)P ≡ (νn)(l :: P )

r � (νn)P ≡ (νn)(r � P ), if n �= r rec X.P ≡ P{rec X.P/X}

r
·= r ≡ 0 (νr)(r ·= s) ≡ 0 r

·= s|P ≡ r
·= s|P{r/s} r

·= s ≡ s
·= r

r � (s ·= t|P ) ≡ s
·= t|r � P l :: (r ·= s|P ) ≡ r

·= s|l :: P

Fig. 6. μse structural congruence

(of possibly different sessions) to communicate, provided that they are running
in the same location. This is used to model local communications and replaces
SSCC streams.

Processes can install new service definitions in their running locations. Service
invocations enable processes to activate new endpoints on the service location.
Service invocation requires only the service name, not its location, thus if many
services with the same name are available one of them is chosen nondeterminis-
tically. Finally, the prefix mergep e is a mechanism for merging existing sessions.

The operational semantics of μse requires a structural congruence relation
and an extended syntax, namely explicit substitutions r

·= s of sessions. Let
A,B range over systems (including explicit substitutions) and processes. The
structural congruence relation is defined in Fig. 6. This exploits the usual notions
of free and bound names: the occurrences of y and n are bound in x(y).P ,
x?(y).P , (νn)P and (νn)S. Bound names can be safely alpha renamed.

Structural congruence ≡ includes associativity, commutativity and identity
over 0 for parallel composition and rules for scope extrusion. Also, ≡ gives the
semantics of recursion and r

·= s in terms of substitutions. Note that any explicit
substitution r

·= s is persistent and can freely “float” in the term structure, unless
a restriction on r or s forbids its movements.

The operational semantics of μse is specified through an LTS defined on terms
up to structural congruence (thus lemmas corresponding to Lemmas 1 and 2 hold
by definition). We use α to range over labels. Bound variables occurring in labels
are in round parentheses.

Definition 3 (μse Labeled Transition System). The μse LTS is the least
relation generated by the rules in Fig. 7, closed under structural congruence.

The rules for prefixes simply execute them, moving the information to the tran-
sition label. As usual for early semantics, input prefixes guess the actual value
and immediately substitute it for the formal variable. Sessions are transparent to
most of the actions, while a session name is added to the label in case of session-
dependent actions (intra-session communications, invoke and merge). Only the



www.manaraa.com

200 I. Lanese, A. Ravara, and H.T. Vieira

xv.P
xv−→ P x!v.P

x!v−−→ P x(y).P xv−→ P{v/y} x?(y).P x?v−−→ P{v/y}

l :: a ⇒ P
r�a−−→ l :: r � P invoke a.P

⊥a−−→ P install[a ⇒ R].P
a[R]−−−→ P

mergep e.P
ep

−→ P

P
α−→ Q α ∈ {⊥a, xv, xv, ep}

r � P
r α−−→ r � Q

P
α−→ Q α /∈ {⊥a, xv, xv, ep}

r � P
α−→ r � Q

P
a[R]−−−→ Q

l :: P
τ−→ l :: Q | l :: a ⇒ R

P
α−→ Q α /∈ {a[R], x?(v), x!v}

l :: P
α−→ l :: Q

P
x!v−−→ P ′ Q

x?v−−→ Q′

P |Q τ−→ P ′|Q′
A α−→ A′ bn(α) ∩ fn(B) = ∅

A|B α−→ A′|B
A r xv−−−→ A′ B r xv−−−→ B′

A|B τ−→ A′|B′

A re+
−−→ A′ B se−−−→ B′
A|B τ−→ A′|B′|s ·= r

S
r�a−−→ S′ T

r⊥a−−→ T ′

S|T τ−→ S′|T ′

A α−→ A′ n /∈ n(α)
(νn)A α−→ (νn)A′

A α−→ A′ α ∈ {xw, x!w, r xw, r x!w}
(νw)A (w)α−−−→ A′

Fig. 7. μse operational semantics

name of the innermost session is added. Service definitions can produce sessions,
and the session name is guessed in the early style. Install requests are executed
when the level of locations is reached. Observe that locations are transparent
to all actions but install and intra-location communications. Also, most of the
synchronization rules can be applied both at the process and at the system level.
The only exceptions are (i) intra-location communication, which is meaningful
only at the process level, and (ii) service invocation, which can be stated only at
the system level since definitions are always at the top level. Finally, restriction
is dealt with using structural congruence, but the rule for extrusions is necessary
for interactions with the environment (and notably for bisimulation).

To prove equivalences of μse processes we use the notion of weak bisimilarity,
defined as for SSCC (see Definition 2), but using μse LTS. It is not easy to
prove that μse bisimilarity is a congruence, since service installation makes it a
(partially) higher order calculus, and proving congruence for higher-order calculi
is a hard problem. However, standard techniques can be used to show that
full bisimilarity is closed under parallel composition, which is the most used
composition operation.

As for SSCC, we show here a few axioms for reasoning on μse processes.

Session Garbage Collection

r � 0∼f 0 (9)



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 201

Session Independence

r � Q | s � P∼f r � (s � Q |P) (10)

Location Garbage Collection

l :: 0|A∼f A (11)

Intra-Session Communication is Orthogonal w.r.t. Locations

l :: xw∼f l′ :: xw (12)

Intra-Location Communication is Orthogonal w.r.t. Sessions

r � x!w∼f r′ � x!w (13)

The axioms concerning sessions are simpler than in SSCC since there is no need
to preserve the invariant that sessions have exactly two partners. Note that also
in μse session independence hold, i.e. session nesting is immaterial.

We show here how to use bisimilarity to analyze properties of services and
multiparty sessions, in particular to prove that an implementation of a service
is compliant (i.e., bisimilar) to a more abstract specification.

Let us consider the service CalculateRating from the credit request scenario.
We can write the specification in μse as:

l :: ∗CalculateRating⇒ P with P = data(user).some comp.ret rating (14)

The symbol ∗ preceding the service definition means that the service is persistent
(this can be programmed using recursion). Also, some comp in P denotes some
sequence of actions computing the actual rating, e.g. interacting with some local
database.

This service is deterministic: once invoked, it waits until receiving a value
in channel data, then performs some comp, and finally, it sends the rating on
channel ret. CalculateRating may be computationally expensive, so different re-
quests can be served using replicated services. The following implementation asks
another service Calci nondeterministically chosen from a pool Calc1, . . . , Calcn

to do the job:

l :: (νCalc1 . . .Calcn)
(
(νav)(

n∏
i=1

rec X.av!Calci.X |

∗ CalculateRating⇒ av?(u).invoke u) |
n∏

i=1

∗Calci ⇒ P
)

Instead of directly computing the rating, upon invocation the service receives
(through an intra-location communication on the private channel av) the name
of the “private” local service Calci that actually computes the rating. The proof
that this implementation is weak bisimilar to system (14) is a simple application



www.manaraa.com

202 I. Lanese, A. Ravara, and H.T. Vieira

of the behavioral theory developed so far. Note that, removing e.g., the restriction
on av breaks the bisimilarity, since the implementation of CalculateRating could
then interact with another channel av in the environment, while the specification
does not allow this interaction.

This implementation exploits multiparty sessions. In fact, the invoker and
services CalculateRating and Calci are three endpoints of the same session.
Note that Calci has been added dynamically by CalculateRating, however it can
interact directly also with the other endpoint. Programming the same behavior
in SSCC would require two binary sessions and some auxiliary communications.

Another way to create a ternary session is by using the merge primitive, as
shown below. For simplicity, we consider just one such session:

(νe)l :: CalculateRating⇒ rec Y.(merge+ e.install[CalculateRating⇒ Y ]) |
rec X.(νr)r � merge− e.(P |X).

In this case, the invocation in the specification is simulated by the invocation
in the implementation plus the merge. Note that e should be bound to avoid
interference, and that the merge has to be completed before CalculateRating
can be made available again. Similarly, r is restricted to avoid different recursive
calls to interfere. We prove now the correctness of the transformation, which
exploits the axioms presented before.

Proof (Correctness of the transformation). Upon invocation of CalculateRating,
system 14 becomes:

l :: ∗CalculateRating⇒ P | l :: r′ � P (15)

Its implementation can execute the same transition, and reduce via a sequence
of internal actions (merge and install) to:

(νe)l :: CalculateRating⇒ rec Y.(merge+ e.install[CalculateRating⇒ Y ]) |
l :: (νr′′)r′ � 0 | r′′ � (P |rec X.(νr)r � merge− e.(P |X)) | r′ ·= r′′

We can use Equation 9 to remove r′ �0 and structural congruence to apply and
remove the explicit substitution, obtaining:

(νe)l :: CalculateRating⇒ rec Y.(merge+ e.install[CalculateRating⇒ Y ]) |
l :: r′ � (P |rec X.(νr)r � merge− e.(P |X))

By unfolding recursion we get:

(νe)l :: CalculateRating⇒ rec Y.(merge+ e.install[CalculateRating⇒ Y ]) |
l :: r′ � (P |(νr)r � merge− e.(P |rec X.(νr)r � merge− e.(P |X)))

and using structural congruence and Equation 10 we get:

(νe)l :: CalculateRating⇒ rec Y.(merge+ e.install[CalculateRating⇒ Y ]) |
l :: r′ � P | (νr)r � merge− e.(P |rec X.(νr)r � merge− e.(P |X))



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 203

Using again structural congruence, and in particular folding again the recursion
we go back to the original system, with an additional r′ � P parallel compo-
nent. This is exactly what happens for the specification, thus one can use clo-
sure under parallel composition to prove by co-induction the correctness of the
transformation.

4 Dynamic Conversations

In this section we define the behavioral semantics of the Conversation Calculus
(CC) [22] (see also Chapter 2-1) and report results that: (1) corroborate our
syntactically chosen constructs at the semantic level; and (2) provide further
insight on the communication model of the CC. The operational semantics of
the core CC is defined by a labeled transition system, which definition relies on
the following notions of transition labels and actions.

Definition 4. Transition labels and actions are defined as follows:

σ ::= τ | ld!(a) | ld?(a) | this (Actions)
λ ::= c σ | σ | (νa)λ (Transition Labels)

An action τ denotes an internal communication, actions ld!(a) and ld?(a) repre-
sent communications with the environment, and this represents a conversation
identity access. To capture the observational semantics of processes, transition
labels need to register not only the action but also the conversation where the
action takes place. So, a transition label λ containing c σ is said to be located at
conversation c (or just located), otherwise is said to be unlocated. In (νa)λ the
distinguished occurrence of a is bound with scope λ (cf. the π-calculus bound
output actions). For a communication label λ we denote by λ the dual matching
label obtained by swapping inputs with outputs, such that, e.g., ld!(a) = ld?(a)
and ld?(a) = ld!(a). The this transition label represents a conversation identity
access. Processes can explicitly access the identity of the conversation in which
they are located (which is captured by a this label), and synchronizations be-
tween processes may also require such contextual information.

We may now define the labeled transition system. For the sake of presentation,
we split the presentation into two sets of rules, one (in Fig. 8) containing the
rules for the basic operators, which are essentially identical to the corresponding
ones in the π-calculus, and the other (in Fig. 9) grouping the rules specific to
the Conversation Calculus.

Definition 5 (CC Labeled Transition System). The rules in Fig. 8 and in
Fig. 9 inductively define the LTS on processes.

Transition rules presented in Fig. 8 should be fairly clear to a reader familiar
with mobile process calculi. We discuss the intuitions behind the rules shown
in Fig. 9. In rule (Here) an � directed message (to the enclosing conversation)
becomes � (in the current conversation), after passing through the conversation



www.manaraa.com

204 I. Lanese, A. Ravara, and H.T. Vieira

ld!(a).P
ld!(a)−→ P (Out) ld?(x).P

ld?(a)−→ P{a/x} (In)
αj .Pj

λ−→ Q j ∈ I

Σi∈I αi.Pi
λ−→ Q

(Sum)

P
λ−→ Q a ∈ out(λ)

(νa)P
(νa)λ−→ Q

(Open)
P

λ−→ Q a �∈ na(λ)

(νa)P λ−→ (νa)Q
(Res)

P
λ−→ Q bn(λ)# fn(R)

P | R
λ−→ Q | R

(Par-l)
P

λ−→ P ′ Q
λ−→ Q′

P | Q
τ−→ P ′ | Q′

(Comm)

P
(νa)λ−→ P ′ Q

λ−→ Q′ a �∈ fn(Q)
P | Q

τ−→ (νa)(P ′ | Q′)
(Close-l)

P{recX .P/X} λ−→ Q

recX .P
λ−→ Q

(Rec)

Fig. 8. CC LTS - Basic operators (π-calculus like)

access boundary. In rule (Loc) an unlocated � message (in the current conver-
sation) gets explicitly located at the conversation c in which it originates. In
rule (Through) an already located communication label transparently crosses
some other conversation boundary, and likewise for a τ label in rule (Tau). In
rule (This) a this label reads the current conversation identity, and originates
a c this label. A c this labeled transition may only progress inside the c con-
versation, as expressed by the rule (ThisLoc), where a this label matches the
enclosing conversation. In rules (ThisComm-r ) and (ThisClose-r ) an unlocated
communication matches a communication located at c, originating a c this label,
thus ensuring the interaction occurs in the given conversation c.

Building on the notion of observation over processes captured by the labeled
transition system of the CC, we characterize the CC semantic object by an obser-
vational equivalence, expressed in terms of standard notions of strong and weak
bisimilarity defined as for SSCC (cf. Definition 2). We prove the expected prop-
erties of strong and weak bisimilarity: they are equivalence relations and they
are preserved under a standard set of structural laws (cf. π-calculus structural
congruence [21]). Then we prove that strong bisimilarity and weak bisimilarity
are congruences.

Theorem 2. Strong bisimilarity and weak bisimilarity are congruences.

Next, we show other interesting behavioral equations, that confirm basic intu-
itions about our conversation-based communication model.

Given processes P and Q, the following axioms hold:

Conversation Split

n � [P ] | n � [Q] ∼ n � [P | Q] (16)

Conversation Nesting

m � [n � [o � [P ]]] ∼ n � [o � [P ]] (17)



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 205

P
λ�

−→ Q

c � [P ] λ�

−→ c � [Q]
(Here)

P
λ�

−→ Q

c � [P ] c·λ�

−→ c � [Q]
(Loc)

P
a λ�

−→ Q

c � [P ] a λ�

−→ c � [Q]
(Through)

P
τ−→ Q

c � [P ] τ−→ c � [Q]
(Tau)

this(x).P c this−→ P{c/x} (This)
P

c this−→ Q

c � [P ] τ−→ c � [Q]
(ThisLoc)

P
σ−→ P ′ Q

c σ−→ Q′

P | Q
c this−→ P ′ | Q′

(ThisComm-r)
P

σ−→ P ′ Q
(νa)c σ−→ Q′

P | Q
c this−→ (νa)(P ′ | Q′)

(ThisClose-r)

Fig. 9. CC LTS - Conversation operators

Output Nested Up — Output Here

n �
[
l�!(ñ).P

] ∼ l�!(ñ).n � [P ] (18)

Input Nested Up — Input Here

n �
[
l�?(x̃).P

] ∼ l�?(x̃).n � [P ] (n �∈ x̃) (19)

Output Nested Here

m �
[
n �

[
l�!(ñ).P

]] ∼ n �
[
l�!(ñ).m � [n � [P ]]

]
(20)

Input Nested Here

m �
[
n �

[
l�?(x̃).P

]] ∼ n �
[
l�?(x̃).m � [n � [P ]]

]
({m, n}# x̃) (21)

Equation 16 captures the notion of conversation context as a single medium
accessible through distinct pieces. Equation 17 expresses the fact that processes
may only interact in the conversation in which they are located and in the
enclosing one (via � communications). Notice however that there are processes
P and Q such that:

n � [m � [P ] | Q] �∼ m � [P ] | n � [Q] (22)

For instance, consider processes R1 and R2 defined as follows:

R1 � c �
[
b �

[
l�!(a)

] | l�?(x)
]

R2 � b �
[
l�!(a)

] | c �
[
l�?(x)

]



www.manaraa.com

206 I. Lanese, A. Ravara, and H.T. Vieira

Since R1 exhibits a τ transition and R2 does not, we have that R1 �∼ R2. The
inequation (22) contrasts with Equation 16: the relation between a conversation
and its caller must be preserved. Equations 18-19 illustrate the notion of enclos-
ing conversation: a � message prefix located in a nested conversation behaves the
same as a � message prefix in the current conversation. Equations 20-21 show
that a here (�) message prefix together with the respective conversation can be
pulled up to top level in the conversation nesting.

The behavioral laws shown above hint on the abstract spatial model of CC
processes, and pave the way for establishing a normal form result: we prove
that any CC process is behaviorally equivalent to a process in normal form—
considering the depth of a process is the number of enclosing conversation access
pieces, we say a process is in normal form if all its active communication prefixes
are of (at most) depth two (see [22]).

To conclude this section, we show an example derivation that uses Theo-
rem 2 and the equational laws above. We consider a system where a Client and
a FinancePortal exchange a login message in conversation CreditChat , each
party holding a distinct piece of the conversation. In Fig. 10 we show that such
system behaviorally coincides with a system where such message exchange takes
place in a single conversation piece. Such behavioral reconfigurations suggest an
alternative characterization of the operational semantics of the CC based on a
notion of reduction: we may describe the evolution of the basic representatives
of the behavioral equivalence classes, and then close the reduction relation under
such equivalence classes.

FinancePortal � [ CreditChat � [ login�?(uId).ServiceProtocol ] ]
|
Client � [ CreditChat � [ login�!(uId).ClientProtocol ] ]

∼ (Theorem 2 and Equation 21)

CreditChat � [ login�?(uId).FinancePortal � [ CreditChat � [ ServiceProtocol ] ] ]
|
Client � [ CreditChat � [ login�!(uId).ClientProtocol ] ]

∼ (Theorem 2 and Equation 20)

CreditChat � [ login�?(uId).FinancePortal � [ CreditChat � [ ServiceProtocol ] ] ]
|
CreditChat � [ login�!(uId).Client � [ CreditChat � [ ClientProtocol ] ] ]

∼ (Equation 16)

CreditChat � [ login�?(uId).FinancePortal � [ CreditChat � [ ServiceProtocol ] ]
|
login�!(uId).Client � [ CreditChat � [ ClientProtocol ] ] ]

Fig. 10. Credit request system behavioral reconfiguration



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 207

g + 0 ≡ g g1 + g2 ≡ g2 + g1 (g1 + g2) + g3 ≡g1 + (g2 + g3)

s | 0 ≡ s s1 | s2 ≡ s2 | s1 (s1 | s2) | s3 ≡s1 | (s2 | s3)

∗0 ≡ 0 ∗ s ≡ s |∗ s

{|0|} ≡ 0 {| {|s|} |} ≡ {|s|} {|[e] s|} ≡[e] {|s|}
[e]0 ≡ 0 [e1] [e2] s ≡ [e2] [e1] s s1 | [e] s2 ≡[e] (s1 | s2) if e /∈ fe(s1)∪fk(s2)

Fig. 11. COWS structural congruence

5 Behavioral Semantics for COWS

In this section, we present the operational semantics of COWS (Calculus for
Orchestration of Web-Services [16]), together with some bisimulation-based ob-
servational semantics. The syntax of COWS is presented in Chapter 2-1.

Operational Semantics. The operational semantics of COWS is defined using an
LTS in the ‘late’ style only for closed services, i.e. services without free variables
and killer labels (of course, closed services may contain free names). To simplify
the rules, we exploit a relation of structural congruence, written ≡. It is defined
as the least congruence relation induced by the equational laws shown in Fig. 11.

To define the labeled transition relation, we use a few auxiliary functions. As
a matter of notation, we shall use n to range over endpoints that do not contain
variables (e.g. p • o), and u to range over endpoints that may contain variables
(e.g. u • u′). Firstly, we use the function [[ ]] for evaluating closed expressions (i.e.
expressions without variables): it takes a closed expression and returns a value. It
is not explicitly defined since the exact syntax of expressions is deliberately not
specified. Secondly, we use the partial function M( , ) for performing pattern-
matching on semi-structured data and, thus, determining if a receive and an
invoke over the same endpoint can synchronize. Two tuples match if they have
the same number of fields and corresponding fields have matching values/vari-
ables. Variables match any value, and two values match only if they are identical.
When tuples w̄ and v̄ do match, M(w̄, v̄) returns a substitution for the variables
in w̄; otherwise, it is undefined. Here substitutions (ranged over by σ) are written
as collections of pairs of the form x �→ v. Application of substitution σ to s is
written s ·σ. This may require a preventive α-conversion. In fact, we identify ser-
vices up to the services’ equivalence classes induced by α-conversion, also when
this is not explicitly mentioned. We use ∅ to denote the empty substitution, |σ |
to denote the number of pairs in σ, and σ1!σ2 to denote the union of σ1 and σ2
when they have disjoint domains. Thirdly, we define a function, named halt( ),
that takes a service s as an argument and returns the service obtained by only
retaining the protected activities inside s. Function halt( ) is defined inductively
on the syntax of services. The most significant case is halt({|s|}) = {|s|}. In the
other cases, halt( ) returns 0, except for parallel composition, delimitation and
replication operators, for which it acts as an homomorphism. Finally, we use two
predicates: noKill(s, e) holds true if either e is not a killer label or e = k and
s cannot immediately perform a free activity kill(k); noConf(s, n, v̄, �), with �
natural number, holds true if s does not produce communication conflicts, i.e. s



www.manaraa.com

208 I. Lanese, A. Ravara, and H.T. Vieira

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−−→ 0

n?w̄.s
n� w̄−−−−−→ s

g
α−−−→ s

g + g′
α−−−→ s

s ≡ α−−−→≡ s′

s
α−−−→ s′

s
n� [m̄] v̄−−−−−−−→ s′ n ∈ v̄ n /∈ (n ∪ m̄)

[n] s
n� [n,m̄] v̄−−−−−−−−→ s′

s
σ�{x �→v}−−−−−−−−→ s′

[x] s
σ−−→ s′ ·{x �→ v}

s
n� [ȳ] w̄−−−−−−−→ s′ x ∈ w̄ x /∈ ȳ

[x] s
n� [x,ȳ] w̄−−−−−−−−→ s′

s
n σ�{x �→v} 
 v̄−−−−−−−−−−−→ s′

[x] s
nσ 
 v̄−−−−−→ s′ ·{x �→ v}

s1
n� v̄−−−−−→ s′1 s2

n� v̄−−−−−→ s′2

s1 | s2
∅−−→ s′1 | s′2

s
nσ 
 v̄−−−−−→ s′ n ∈ n

[n] s
σ−−→ [n] s′

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−−→s′2 M(w̄, v̄)=σ |σ |�1 noConf(s1 | s2, n, v̄, |σ |)
s1 | s2

nσ |σ| v̄−−−−−−→ s′1 | s′2

s1
α−−−→ s′1 α �= k, n σ � v̄

s1 | s2
α−−−→ s′1 | s2

s1
nσ 
 v̄−−−−−→ s′1 noConf(s2, n, v̄, �)

s1 | s2
nσ 
 v̄−−−−−→ s′1 | s2

kill(k)
k−−→ 0

s
α−−−→ s′ e /∈ (e(α) ∪ ce(α)) α �= k, † noKill(s, e)

[e] s
α−−−→ [e] s′

s
k−−→ s′

[k] s
†−−→ [k] s′

s
k−−→ s′ k �= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s1
k−−→ s′1

s1 | s2
k−−→ s′1 | halt(s2)

s
α−−−→ s′

{|s|} α−−−→ {|s′|}

Fig. 12. COWS operational semantics

cannot immediately perform a receive activity matching v̄ over the endpoint n

that generates a substitution with fewer pairs than �. Their inductive definitions
can be found in [16].

Definition 6 (COWS Labeled Transition System). The rules in Fig. 12
inductively define the LTS on processes. Labels α are generated by the following
grammar:

α ::= n � [n̄] v̄ | n � [x̄] w̄ | σ | n σ � v̄ | k | †

The meaning of labels is as follows: n � [n̄] v̄ and n � [x̄] w̄ denote execution of
invoke and receive activities over the endpoint n with arguments v̄ and w̄, re-
spectively, of which n̄ and x̄ are bound; σ denotes execution of a communication,
not subject to priority check, with generated substitution σ to be still applied;
n σ � v̄ denotes execution of a communication, subject to priority check, over n

with matching values v̄, generated substitution having � pairs, and substitution



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 209

σ to be still applied; k denotes execution of a request for terminating a term from
within the delimitation [k] , and † denotes taking place of forced termination. In
particular, the empty substitution ∅ and labels of the form n ∅ � v̄ denote compu-
tational steps corresponding to taking place of communication without pending
substitutions, while † denotes a computational step corresponding to taking place
of forced termination. We will use bu(α) to denote the set of names/variables
that occur bound in α, e(α) to denote the set of elements (i.e. names, vari-
ables and killer labels) occurring in α, except for α = n σ � v̄ for which we let
e(n σ � v̄) = e(σ), and ce(α) to denote the names composing the endpoint in case
α denotes execution of a communication.

Observational Semantics. We now define natural notions of barbed bisimilarities
for COWS and prove their coincidence with more manageable characterizations
in terms of (labeled) bisimilarities. We want to define a notion of barbed bisimi-
larity for the calculus along the line of [13,20]. To this aim, since communication
is asynchronous, we consider as basic observable only the output capabilities of
terms, like for asynchronous π-calculus [1]. The intuition is that an asynchronous
observer cannot directly observe the receipt of data that he has sent.

Definition 7 (Basic observable). Let s be a COWS closed term. Predicate

s ↓n holds true if there exist s′, n̄ and v̄ such that s
n� [n̄] v̄−−−−−−−→ s′.

Definition 8 (Barbed bisimilarity for COWS). A symmetric binary rela-
tion R on COWS closed terms is a barbed bisimulation if it is barb preserving,
and computation and context closed. Two closed terms s1 and s2 are barbed
bisimilar, written s1 " s2, if s1Rs2 for some barbed bisimulation R. " is called
barbed bisimilarity.

Context closure condition enables compositional reasoning, since it implies that
" is a congruence on COWS closed terms, but requires considering all possible
language contexts. To avoid this universal quantification, we provide a purely co-
inductive notion of bisimulation that only requires considering transitions of the
LTS defining the semantics of the terms under analysis. Because in COWS only
the output capability of names can be exported, we define a COWS bisimulation
as a family of relations indexed with sets of names corresponding to the names
that cannot be used by contexts (to test) for reception since they are dynamically
exported private names.

Definition 9 (Names-indexed family of relations). A names-indexed fam-
ily F of relations is a set of symmetric binary relations RN on COWS closed
terms, one for each set of names N , i.e. F = {RN }N .

To be a congruence, bisimilarity must explicitly take care of the terms resulting
from application of function halt( ), that gets the same effect as of plunging its
argument term within the context [k] (kill(k) | [[·]]).
Definition 10 (COWS bisimilarity). A names-indexed family of relations
{RN }N is a COWS bisimulation if, whenever s1RN s2 then the following two
conditions hold:



www.manaraa.com

210 I. Lanese, A. Ravara, and H.T. Vieira

a. halt(s1)RN halt(s2) and

b. if s1
α−−−→ s′1, where bu(α) are fresh, then:

1. if α = n � [x̄] w̄ then one of the following holds:

(a) ∃ s′2 : s2
n�[x̄] w̄−−−−−−→ s′2 and

∀ v̄ s.t.M(x̄, v̄) = σ and noConf(s2, n, w̄·σ, | x̄ |) : s′1·σRN s′2·σ
(b) | x̄ |=|w̄ | and ∃ s′2 : s2

∅−−→ s′2 and ∀ v̄ s.t. M(x̄, v̄) = σ and
noConf(s2, n, w̄·σ, | x̄ |) : s′1·σRN (s′2 | n!v̄) or s′1·σRN (s′2 |

{|n!v̄|})
2. if α = n ∅ � v̄ and � =| v̄ | then one of the following holds:

(a) ∃ s′2 : s2
n ∅ � v̄−−−−−→ s′2 and s′1RN s′2 (b) ∃ s′2 : s2

∅−−→ s′2
and s′1RN s′2

3. if α = n� [n̄] v̄ where n /∈ N then ∃ s′2 : s2
n�[n̄] v̄−−−−−−→ s′2 and s′1RN∪ n̄ s′2

4. if α = ∅, α = † or α = n ∅ � v̄ with � �=| v̄ |, then ∃ s′2 : s2
α−−−→ s′2 and

s′1RN s′2

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2
for some RN in a COWS bisimulation. They are COWS bisimilar, written
s1 ∼ s2, if they are ∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called
COWS bisimilarity.

This definition is more complex than Definition 2, since it has to account for
priority of COWS communication, kill, and asynchrony. Our main results prove
that COWS bisimilarity∼ is a congruence for COWS and is sound and complete
with respect to barbed bisimilarity.

Theorem 3 (Congruence). ∼ is a congruence for COWS closed terms.

Theorem 4 (Soundness and completeness of ∼ w.r.t. "). Given two
COWS closed terms s1 and s2, s1 ∼ s2 if and only if s1 " s2.

Our semantic theories extend in a standard way to the weak case so that results
of congruence and coincidence still hold. We refer the interested reader to the
extended version of [19] for the exact definitions and a full account of the proofs.

Examples. We show now that, differently from asynchronous π-calculus, in
COWS it is not true that receive activities are always unobservable. To illus-
trate this, we consider a tailored version of the input absorption law character-
izing asynchronous bisimulation in asynchronous π-calculus (i.e., the equation
a(b). āb + τ = τ presented in [1]):

[x] ( ∅ + n?〈x, v〉. n!〈x, v〉 ) = ∅ (23)

where, for the sake of presentation, we exploit the context ∅ + [[·]] � [m] (m!〈〉 |
m?〈〉 + [[·]]) and the term ∅ � [m] (m!〈〉 | m?〈〉). Communication along the private
endpoint m models the τ action of π-calculus, while activities n?〈x, v〉 and n!〈x, v〉



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 211

recall the π-calculus actions a(b) and āb, respectively. Intuitively, the equality
means that a service that emits the data it has received behaves as a service
that simply performs an unobservable action, which means that receive activities
cannot be observed. In COWS, however, the context C � [y, z] n?〈y, z〉. m!〈〉 |
n!〈v′, v〉 | [[·]] can tell the two terms above apart. In fact, we have

C[[∅]] n ∅ 2 〈v′,v〉−−−−−−−−→ m!〈〉 | ∅
where the term (m!〈〉 | ∅) satisfies the predicate ↓m. Instead, the other term cannot
properly reply because the receive n?〈x, v〉 has higher priority than n?〈y, z〉 when
synchronizing with the invocation n!〈v′, v〉. Thus, C[[[x] ( ∅ + n?〈x, v〉. n!〈x, v〉 )]]
can only evolve to terms that cannot immediately satisfy the predicate ↓m. From
this, we have

[x] ( ∅ + n?〈x, v〉. n!〈x, v〉 ) �" ∅
Indeed, in COWS receive activities that exercise a priority (i.e. receives whose
arguments contain some values) can be detected by an interacting observer.

Now, consider the term [x, x′] ( ∅+n?〈x, x′〉. n!〈x, x′〉 ). Since n?〈x, x′〉 does not
exercise any priority on parallel terms, we have that

[x, x′] ( ∅+ n?〈x, x′〉. n!〈x, x′〉 ) " ∅ C[[[x, x′] ( ∅+ n?〈x, x′〉. n!〈x, x′〉 )]] " C[[∅]]
Similarly, taken D � n?〈〉. m!〈〉 | n!〈〉 | [[·]], we have that

∅+ n?〈〉. n!〈〉 " ∅ D[[∅+ n?〈〉. n!〈〉]] " D[[∅]]
Therefore, communication in COWS is neither purely asynchronous nor purely
synchronous. Indeed, receives having the smallest priority (i.e. whose arguments
are, possible empty, tuples of variables) cannot be observed, while, by exploiting
proper contexts, the other receives can be detected.

6 Conclusion

In this chapter we have studied behavioral equivalences in the context of different
Sensoria calculi.

For the session-based calculi, SSCC, μse and CC, we have presented a few
axioms, and then applied them to prove the correctness of different kinds of
program transformations. Observing the behavioral identities characterized for
the three calculi one may find similarities. For instance, we may notice that,
in some sense, feeding streams, intra-site communication and communication
to the caller context are disconnected from the particular subsidiary session or
conversation—this is reflected in (5), (13) and (18). On the other hand, the
fact that interaction under a session or conversation is independent from the
location or caller context is reflected by (12) and (20). However, the presented
models also present quite clear distinctions in the behavioral identities shown.
For example, (3) and (10) contrast with (22): in CC the relation between caller
context and subsidiary conversation must, in general, be preserved, since pro-
cesses interacting in a subsidiary conversation may also continuously interact in



www.manaraa.com

212 I. Lanese, A. Ravara, and H.T. Vieira

their caller contexts. However, distinct sessions may be nested in μse and SSCC
without any consequence to the behavior of processes, as they either interact in
the session or interact under the location (μse)/feed streams (SSCC), that can
be accessed regardless of session nesting. Another distinction may be noticed at
the level of the split rule for CC systems shown in Equation 16, which may not
be reproduced in either SSCC or μse.

For the correlation-based calculus COWS instead, the priority mechanism
required by correlation has a strong impact on the classical behavioral theory.
In particular, we have shown that a particular notion of labeled bisimilarity is
needed to capture barbed bisimilarity, and that communication is neither purely
synchronous nor purely asynchronous.

Acknowledgments. The work reported herein is the result of a collaborative
effort of many researchers, not just of the authors. Special thanks to Rosario
Pugliese and Francesco Tiezzi, who wrote the section on COWS.

António Ravara was partially supported by the Security and Quantum Infor-
mation Group, Instituto de Telecomunicações, Portugal.

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. Theoretical Computer Science 195(2), 291–324 (1998)

2. Ambler, S.W.: The Object Primer: Agile Model-Driven Development with UML
2.0. Cambridge University Press, Cambridge (2004)

3. Bonelli, E., Compagnoni, A.: Multipoint session types for a distributed calculus. In:
Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256. Springer,
Heidelberg (2008)

4. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

5. Boreale, M., et al.: SCC: a Service Centered Calculus. In: Bravetti, M., Núñez,
M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer,
Heidelberg (2006)

6. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty sessions in SOC. In:
Wang, A.H., Tennenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp.
67–82. Springer, Heidelberg (2008)

7. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

8. Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconcelos, V.T.: Bisimula-
tions in SSCC. DI/FCUL TR 07–37, Department of Informatics, Faculty of Sci-
ences, University of Lisbon (2007)

9. Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconcelos, V.T.: Behavioural
theory at work: Program transformations in a service-centred calculus. In: Barthe,
G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 59–77. Springer,
Heidelberg (2008)

10. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)



www.manaraa.com

Behavioral Theory for Session-Oriented Calculi 213

11. van Glabbeek, R.J.: The linear time – branching time spectrum I; the semantics of
concrete, sequential processes. In: Handbook of Process Algebra, ch. 1, pp. 3–99.
Elsevier, Amsterdam (2001), http://boole.stanford.edu/pub/spectrum1.ps.gz

12. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

13. Honda, K., Yoshida, N.: On reduction-based process semantics. Theoretical Com-
puter Science 151(2), 437–486 (1995)

14. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. of POPL 2008, pp. 273–284. ACM Press, New York (2008)

15. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: Proc. of SEFM 2007, pp. 305–
314. IEEE Computer Society Press, Los Alamitos (2007)

16. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services.
In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidel-
berg (2007), http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf

17. Milner, R.: Communication and Concurrency. Prentice Hall, Englewood Cliffs
(1989)

18. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

19. Pugliese, R., Tiezzi, F., Yoshida, N.: On observing dynamic prioritised actions in
soc. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas,
W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 558–570. Springer, Heidelberg (2009),
http://rap.dsi.unifi.it/cows/papers/bis4cows-full.pdf

20. Sangiorgi, D., Walker, D.: On barbed equivalences in pi-calculus. In: Larsen, K.G.,
Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 292–304. Springer, Hei-
delberg (2001)

21. Sangiorgi, D., Walker, D.: Pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press, Cambridge (2001)

22. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-
oriented computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008)

http://boole.stanford.edu/pub/spectrum1.ps.gz
http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf
http://rap.dsi.unifi.it/cows/papers/bis4cows-full.pdf


www.manaraa.com

Static Analysis Techniques for Session-Oriented
Calculi�

Lucia Acciai1, Chiara Bodei2, Michele Boreale1,
Roberto Bruni2, and Hugo Torres Vieira3

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy
{lacciai,boreale}@dsi.unifi.it

2 Dipartimento di Informatica, Università di Pisa, Italy
{chiara,bruni}@di.unipi.it

3 CITI/Departamento de Informática, FCT Universidade Nova de Lisboa, Portugal
htv@fct.unl.pt

Abstract. In the Sensoria project, core calculi have been adopted as a linguistic
means to model and analyze service-oriented applications. The present chapter
reports about the static analysis techniques developed for the Sensoria session-
oriented core calculi CaSPiS and CC. In particular, it presents a type system for
client progress and control flow analysis in CaSPiS and type systems for con-
versation fidelity and progress in CC. The chapter gives an overview of the these
techniques, summarizes the main results and presents the analysis of a common
example taken from the Sensoria financial case-study: the credit request scenario.

1 Introduction

In Chapter 2-1 the core calculi for service specification and analysis developed within
Sensoria have been introduced. These calculi are classified according to the approach
adopted to maintain the link between the caller and the callee. We focus here on session-
oriented calculi, where a private channel is implicitly instantiated upon service invoca-
tion between the caller and the callee. Specifically, we report on the static analysis
techniques developed within the project for CaSPiS and CC. Recall that in CaSPiS
sessions are binary, whereas in CC sessions, also called conversations, may dynami-
cally involve multiple parties.

As far as CaSPiS is concerned, we provide contributions towards developing tech-
niques for safe client-service interaction and preventing misuses at the so-called appli-
cation logic level.

We first introduce a type system providing guarantees of client progress [1]. This
system ensures that, in a well-typed CaSPiS process and in absence of divergence, any
client invoking a service is guaranteed not to deadlock in a conversation with a service.
The type system builds upon behavioral types techniques [11], as the behavior of a
CaSPiS process is abstracted by means of a simpler ccs-like term. A key point, though,
is that types account only for flows of I/O value-types, ignoring the rest. In particular,
it is not necessary to equip the language of types with constructs to describe sessions.
Indeed, considering the tree describing the nesting of sessions, a service invocation can

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 214–231, 2011.
© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 215

produce effects only at the parent level. It is then sufficient to associate to each process
a two-level type taking into account just the current-level interactions and the upper-
level effects. In order to guarantee progress of the invoker, the system relies on a notion
of compliance between the client and the service protocols, which is essential to avoid
deadlocks.

The second contribution is a Control Flow Analysis for CaSPiS [3] that can detect
and prevent certain misuses at the application logic level. The presence of bugs at this
level, called application or business logic flaws, may often lead to undesired behavior
or to security attacks. This Control Flow Analysis system statically approximates the
behavior of CaSPiS processes, in terms of the possible service and communication syn-
chronizations. More precisely, what the analysis predicts includes everything that may
happen, while what the analysis does not predict corresponds to something that cannot
happen. The session mechanism is particularly valuable for the kind of analysis we use,
because it guarantees that sibling sessions established between different instances of
the same service and the corresponding clients do not interfere one with the other by
leaking information, with two main consequences: first, the analysis can focus on each
client-server conversation separately and second, it can focus on the application logic.

We also propose analysis techniques for systems specified in CC, addressing con-
versation fidelity and progress [8]. Conversation fidelity captures the fact that all partic-
ipants in a multiparty conversation follow the protocols of interaction, while progress
– differently from client progress discussed above – guarantees absence of deadlocks
in the whole system. We introduce two separate but complementary techniques: to dis-
cipline multiparty conversations we introduce conversation types, a novel and flexible
type structure, able to uniformly describe both the internal and the interface behavior
of systems, referred respectively as choreographies and contracts in web-services ter-
minology. To guarantee deadlock freedom we introduce a progress proof system that
relies on a notion of ordering of events and, crucially, propagation of orderings in com-
munications.

Structure of the chapter. The chapter is organized in three main sections. Section 2
introduces a type system guaranteeing client progress in CaSPiS; it discusses the main
results and proves that client progress is guaranteed in the considered scenario. A simple
variation of the scenario is also considered in order to show how the system rules out
processes not guaranteeing the client progress property. Section 3 introduces a Control
Flow Analysis preventing business logic flaws in CaSPiS, proves that the proposed
analysis technique enjoys the subject reduction property and, in order to show how
logic flaws are detected, applies this technique to (a variation of) the running example.
Section 4 introduces the type system for conversation fidelity and the progress proof
system in CC, together with their main properties. Both proposals are then applied to
the running example in order to prove that it enjoys conversation fidelity and progress.
Finally, Section 5 concludes the chapter.

2 A Type System for Client Progress in CaSPiS

In this section we introduce a type system providing guarantees of client progress. There
are three key aspects involved in its design. A first aspect concerns abstraction: types



www.manaraa.com

216 L. Acciai et al.

focus on flows of I/O value-types and ignore the rest (actual values, service calls, . . . ).
Specifically, akin to [11], types take the form of ccs-like terms describing I/O flows of
processes. In fact, a tiny fragment of ccs, with no synchronization and restriction, is
employed, where the role of atomic actions is played by basic types. A second aspect
concerns compliance of client protocols with service protocols, which is essential to
avoid deadlocks. In the type system, the operational abstractions provided by types are
employed to effectively check client-service compliance. To this purpose, types are re-
quired to account for process I/O behavior quite precisely. Indeed, approximation might
easily result into ignoring potential client-service deadlocks. A final aspect concerns the
nesting of sessions. A session at a lower level can exercise effects on the upper level,
say the level of any enclosing session. To describe this phenomenon, the system keeps
track of the behavior both at the current level and at the level of a (fictitious) enclosing
session, along the lines of those in [7,12,13]. This results in type judgments of the form
P : [S]T, where S is the current-level type and T is the upper-level effect of P. Note
that the distinction between types and effects we make here is somehow reminiscent of
the type-and-effects systems of [15], with the difference that our effects are very simple
(sequences of outputs) and are exercised on an upper level of activity rather than on a
shared memory.

2.1 Language Fragment

We consider here a sub-calculus of the close-free fragment of CaSPiS [6], that we call
CaSPiS−, where return prefixes have always an empty continuation and service pro-
tocols do not return any value. From the technical point of view, both limitations are
necessary in order to guarantee a two-way operational correspondence between pro-
cesses and the corresponding types (see [1] for the details). From the practical point of
view, the latter limitation means that, once a session is started, for the service there will
be no “feedback” of sort as to what is going on inside the session. This is somehow
consistent with the idea that services should be stateless entities. Hence, terms of the
form r � Q, where Q is a service protocol, cannot produce any visible effect and they
might be executed anywhere in the system, not necessarily on the service side. Indeed,
under these restrictions, it turns out to be technically convenient to slightly modify the
operational semantics so that Q, the service protocol, and P, the client protocol, are
both executed at the side of the invoking client. The resulting session will be denoted
by [P|||Q]. Note that session names, which in the full language are used to locate the
two session endpoints, become redundant, as the endpoints now share the same loca-
tion. Hence session names are discarded right away. To sum up, the set P of CaSPiS−
processes is generated by the following grammar (where F and V are respectively the
patterns and values defined in [6] and u can be either a name or a variable)

π ::= (F)
∣∣∣ 〈V〉 P ::=

∑
i∈I πi.Pi

∣∣∣ 〈V〉↑ ∣∣∣ s.P ∣∣∣ u.P ∣∣∣ [P|||Q]
∣∣∣ P > Q

∣∣∣ P|Q ∣∣∣ (νs)P
∣∣∣ !P .

Both the structural congruence and the labeled transition relation defined in [6] can be
modified as expected to accommodate these changes. In particular, some operational
rules must be replaced by the homonymous rules shown in Fig. 1. Notice that upon a
synchronization of a service call with the corresponding service definition, the service



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 217

(Def)
s.P

s〈P〉−−→ 0
(Call)

s.P
s(Q)−−→ [P|||Q]

(S-Ret) P
(νv̂)〈v〉↑−−−−−→ P′

[P|||Q]
(νv̂)〈v〉−−−−→ [P′|||Q]

(Sync) P
(νñ)s〈R〉−−−−−→ P′ Q

s(R)−−→ Q′

P|||Q τ−→ (νñ)(P′|||Q′)

Fig. 1. Labeled semantics

protocol R is sent to the invoker and executed on its side, (S-Sync). Returns are enabled
only on the client side of sessions, (S-Ret).

2.2 Proving the Client Progress Property

The client progress property will be defined in terms of an error predicate. Informally,
an error occurs when the client protocol of an active session tries to send a value to (or
receive from) the service side, but the session as a whole is blocked. This is formalized
by the predicate→ERR defined below. In the definition, we rely on the standard notion
of contexts, C[·],C′[·], . . .. We say a context is static if its hole is not under the scope of
a dynamic operator (input and output prefixes, replication, service definitions and invo-
cations and the right-hand side of a pipeline). In essence, active subterms in a process
P are those surrounded by a static context.

Definition 1 (error). P →ERR if and only if whenever P ≡ C[[Q|||R]], with C[·] static,

and Q
η−→, with η ::= (v)

∣∣∣ (νv̂)〈v〉, then [Q|||R] 	η
′
−→, with η′ ::= τ

∣∣∣ s(P′).

Note that “pending” returns are not taken into account in this definition. Indeed, a return
is seen as an output at the upper level, (S-Ret), and the error, if any, is detected in the
parent session, if it exists.

A process guarantees client progress if it is error-free at run-time.

Definition 2 (client progress). Let P ∈ P. We say P guarantees client progress if and
only if whenever P→∗ P′ then P′ 	→ERR.

The above definition of error may seem too liberal, as absence of error does not actually

guarantee progress of the session if [Q|||R]
s(P′)−−−→ and service s is not available. In fact,

we are interested in processes where such situations do not arise: we call these processes
available.

Definition 3 (available process). We let available be the largest predicate on processes
satisfying the following conditions. If P is available then (i) whenever P ≡ (νŝ)C[s.P′],

for some static C[·], and C[0] →∗ Q then Q →∗ (νñ)s〈R〉−−−−−→ for some ñ and R; and (ii)
whenever P→ Q′ then Q′ is available.

Here, clause (i) guarantees that the system (without interacting with service invocation
s.Q) can always reduce into a state where service s is ready to be invoked and clause
(ii) guarantees that availability is preserved by reductions.



www.manaraa.com

218 L. Acciai et al.

(t-Out) Γ � P : [S]T Γ � u : b
Γ � 〈u〉.P : [!b.S]T (t-Call) Γ � u : V Γ � P : [S]T S ∝ V

Γ � u.P : [T]0

(t-Ret) Γ � u : b
Γ � 〈u〉↑ : [0]!b

(t-Pipe)

Γ � P : [S]T Γ � Q : [
∑

i∈I?bi.Ui]V
out(S) ⊆ ⋃i∈I{bi} NoSum(S)

Γ � P > Q : [S�
∑

i∈I?bi.Ui](T|S @ V)

Fig. 2. Rules of the type system

Types. Types are essentially a fragment of ccs corresponding to bpp processes [9]. We
presuppose a set Bt of base types, b, b′, . . . which include name sorts S,S′, . . .. More-
over, we presuppose a generic base-typing relation, mapping base values and service
names to base types, written v : b, with the obvious proviso that service names are
mapped to sorts and base values are mapped to the remaining base types. The set T of
types is defined by the grammar below.

α ::=!b
∣∣∣ ?b
∣∣∣ τ T,S,U,V ::=

∑
i∈I αi.Ti

∣∣∣T |T ∣∣∣ !T
Notice that, like in [7,12], we need not nested session types in our system, because in
order to check session safety it is sufficient to check local, in-session communications.
In what follows we abbreviate with 0 the empty summation type.

The operational semantics of types can be found in [1]. It is worth to recall that input
and output prefixes, ?b and !b, cannot synchronize with each other – we only have
interleaving in this fragment of ccs.

The basic requirement for ensuring client progress is type compliance between client
and service protocols involved in sessions. In the following, we indicate with λ the
coaction of λ: ?b =!b and !b =?b. This notation is extended to sets of actions as
expected. Moreover, we indicate with I(S) the set of initial actions S can perform:

I(S) = {λ � τ | ∃S′ : S
λ−→ S′}. Type compliance is defined co-inductively and guar-

antees that, given two compliant types S (the client’s protocol) and T (the service’s
protocol), at any stage of a computation either S is stuck or there is at least one (weak)
action from S matched by a (weak) coaction from T.

Definition 4 (type compliance). Let be S,T ∈ T . Type compliance is the largest rela-
tion on types such that whenever S is compliant with T, written S ∝ T, it holds that

– either I(S) = ∅ and S
τ−→/

– or (a) either S
τ−→, or T

τ−→, or I(S) ∩ I(T) � ∅; and (b) the following holds true:
1. for each S′ such that S

τ−→ S′ it holds that S′ ∝ T;
2. for each T ′ such that T

τ−→ T ′ it holds that S ∝ T ′;

3. for each S′ and T ′ such that S
λ−→ S′ and T

λ−→ T ′ it holds that S′ ∝ T ′.

Type system and results. The type system is along the lines of those in [7,12]; the
most interesting rules are reported in Fig. 2 (the missing ones can be found in [1]). We
presuppose a mapping ob from sorts {S,S′, . . .} to types T , with the intended meaning
that if ob(S) = T then names of sort S represent services whose abstract protocol is T.
We take s : T as an abbreviation of s : S and ob(S) = T for some S. A context Γ is



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 219

a finite partial mapping from types to variables. For u a service name, a base value or
a variable, we take Γ � u : b (resp. Γ � u : T) to mean either that u = v : b (resp.
u = s : T) or u = x ∈ dom(Γ) and Γ(x) = b (resp. Γ(x) = T). In the process syntax, we
attach type annotations to input variables as expected. Type judgments are of the form
Γ � P : [S]T, where Γ is a context, P is a possibly open process with fv(P) ⊆ dom(Γ)
and S and T are types. Informally, S and T represent respectively the in-session, or
internal, and the external types of P. The first one describes the actions P can perform
at the current session level (see (t-Out)), while the second one represents the outputs
P can perform at the parent level (see (t-Ret)). Notice how, in (t-Call), the premises
ensure compliance between client and service internal types. Rule (t-Pipe) deserves
some explanations. We impose some limitations on the types of the pipeline operands.
First, the right-hand process is a summation of input-prefixed processes. Second, we
make sure that the left-hand type does not contain any summation. Third, we make
sure, through out(S) ⊆ ⋃i∈I bi, that each (type of) output on left-hand side of a pipeline
can be matched by (the type of) an input on the other one. Formally, out(S) corresponds
to the set of all bs that occur in output prefixes (!b) in S. The auxiliary functions� and
@ are used to build respectively the internal and the external type of P > Q starting
from the types of P and Q. In essence, both S�U and S @ V spawn a new copy of type
U and V, respectively, in correspondence of each output prefix in S. The main difference
is that in @ inputs and silent prefixes in S are discarded, while in � they are preserved.
Both � and @ are defined by induction on the structure of types, the case of output
prefixes is described below, definitions for the omitted cases can be found in [1].

!b.S�
∑

i∈I αi.Ui =
∑

i∈I τ.(Ui|S�∑i∈I αi.Ui) !b.S @ U = U|(S @ U)

The first step towards proving that well-typed processes guarantee client progress is
establishing the usual subject reduction property (Proposition 1). Then, we prove a type
safety result (Theorem 1), stating that a well typed process cannot immediately generate
an error. These are sufficient to conclude that in well-typed and available processes
sessions never stuck, unless the client has terminated its protocol, Corollary 1. The
proofs follow the lines of those in [1] and are omitted.

Proposition 1 (subject reduction). Suppose ∅ � P : [S]T. Then whenever P
τ−→ P′

then either ∅ � P′ : [S]T or S
τ−→ S′ and ∅ � P′ : [S′]T.

Theorem 1 (type safety). Suppose P is well typed. Then P 	→ERR.

Corollary 1 (client progress). Suppose P is well typed. Then P guarantees client
progress.

2.3 Client Progress in the Credit Request Scenario

We reconsider the CaSPiS specification of the Credit Request Scenario (see Chapter
0-3) introduced in Chapter 2-1. Here we add typing annotations for input variables and
ignore termination handling, which is not dealt with by the type system. So, termina-
tion handlers are discarded and close actions are replaced by the empty process. E.g.,
CreditPortal becomes



www.manaraa.com

220 L. Acciai et al.

CreditPortal
�
= !CrReq.(?id : id)select (?logged : bool) from CheckUser(id)

inif logged then 〈“Valid”〉Creation(id)
else 〈excpt(“InvalidLogin”)〉

We assume that values of the form excpt(“string”) are of base type exception. More-
over, we assume that each name has associated a homonymous sort, e.g. creditD :
creditD. Finally, we assume that each call to an auxiliary service in the system is
well typed and returns either boolean values or strings as expected. Suppose now
CrReq : TCrReq, where:

TCrReq
�
= ?id.

(
τ.!exception
+ τ.!string.?creditD.

(
τ.!exception
+ τ.!string.?bals.!string.?secs.

(τ.!(offer).(?bool+?bool) + τ.Seval + τ.Seval)
))

Seval

�
= τ.!(offer).(?bool+?bool) + τ.!(decline).(?bool+?bool) .

Then, the whole system Sys is well typed, indeed the client protocol has type

UClPr

�
=!id.
(
?exception+?string+?string.!creditD.(

?exception+?string+?string.!bals.?string.!secs.

(?(offer).!(bool) +

?(decline).(τ.!bool + τ.!bool) )
))

and it is easy to check that UClPr ∝ TCrReq. Therefore, client progress is guaran-
teed. Notice that service CrReq is persistent therefore, assuming that all auxiliary ser-
vices are persistent too, Sys (see Chapter 2-1) is available and this guarantees that
CreditRequester, the invoker, will never block.

Consider now another client, CreditRequester′ below, that does not expect an excep-
tion after sending its credentials:

CreditRequester′
�
= CrReq〈id〉((“Valid”)CR + (“Valid”)

)
.

Clearly, if we replace the previous client with this one, the system will not be well
typed. Indeed, the client protocol in CreditRequester′ is well typed under

UClPr′
�
=!id.(?string+?string.!creditD. . . .)

but UClPr′ 	∝ TCrReq.

3 From Discovering Type Errors to Preventing Business Logic
Flaws

The type system we have seen in Section 2 gives important guarantees about the overall
compatibility of interaction protocols between callers and callees, but cannot prevent
application logic flaws.

We have investigated this issue, in [3], by adapting the techniques used in the field
of network security (see e.g., [5,4]) to that of services. In particular, we have provided a



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 221

Control Flow Analysis of CaSPiS, that is shown able to detect some possible misuses
and to help prevent them, by taking appropriate counteractions. The analysis statically
approximates the behavior of CaSPiS processes, in terms of the possible service and
communication synchronizations. More precisely, what the analysis predicts includes
everything that may happen, while what the analysis does not predict corresponds to
something that cannot happen. The model of attacker we are interested in is a bit dif-
ferent from the classical Dolev-Yao one: the malicious customer is an insider or, more
precisely, an accredited user of a service that has no control of the communication chan-
nels, but that does not follow the intended rules of the application protocol. The analysis
implicitly considers the possible behavior of such an attacker.

3.1 Language Fragment

For the sake of brevity, we focus here on a simplified version of the close-free fragment
of CaSPiS, where the pipeline construct is rendered as P > (?x̃)Q: it spawns a fresh
instance Q[ṽ/x̃] of Q on any value ṽ produced by P. Note that the variables x̃ to be bound
after pipeline synchronization are included in a special input (?x̃), called pipeline input
preceding the right branch process. Moreover, we employ sessions polarities to mark a
clear distinction between the two sides involved: r− �P and r+ �Q. To distinguish among
different occurrences of the same service, we annotate each of them with a different
index, as in s@k. The synchronization on the service s, on the occurrences s@k and s@m,
results then in a session, identified by rp

s@m:k, where p is the polarity. Similarly, we
distinguish each pipeline operator with a different label l, as in >l and we identify the
left branch with a label l0 and the right branch with l1. The variables x̃ affected by the
pipeline input in the right branch of the pipeline, are also identified by the label l1, as in
P >l (?x̃l1 )Q. Note that these annotations do not affect the semantics, whatsoever.

3.2 The Control Flow Analysis

The analysis over-approximates all the possible behaviors of a CaSPiS process, in
terms of communication and service synchronizations. The analysis uses the notion
of enclosing scope σ, recording the current scope due to services, sessions or pipelines.
The result of analyzing a process P is a pair (I,R), called estimate for P. The first com-
ponent I gives information on the contents of a scope. The second component R gives
information about the set of values to which names can be bound.

A proposed estimate (I,R) is correct, if it satisfies the judgements defined by the
axioms and rules in the upper (lower, respectively) part of Fig. 3.

First, we check that (I,R) describes the initial process. This is done in the upper part
of Fig. 3, where the clauses amount to a structural traversal of process syntax (we have
omitted rules for parallel composition, restriction and replication, on which the analysis
is just propagated to the arguments).

The clause for service definition checks that whenever a service s@k is defined in
s@k.P, then the relative hierarchy position with respect to the enclosing scope must be
reflected in I, i.e. s@k ∈ I(σ). Furthermore, when inspecting the content P, the fact that
the new enclosing scope is s@k is recorded, as reflected by the judgement I,R |=s@k P.
Similarly for service invocation x@k: the only difference is that when x is a variable,



www.manaraa.com

222 L. Acciai et al.

I,R |=σ s@k.P iff s@k ∈ I(σ) ∧ I,R |=s@k P
I,R |=σ x@k.P iff ∀s@m ∈ R(x) : s@k ∈ I(σ) ∧ I,R |=s@k P
I,R |=σ rp

s@m:k � P iff rp
s@m:k ∈ I(σ) ∧ I,R |=rp

s@m:k P

I,R |=σ Σi∈IπiPi iff ∀i ∈ I : I,R |=σ πiPi

I,R |=σ (?x̃).P iff (?x̃) ∈ I(σ) ∧ I,R |=σ P
I,R |=σ 〈x̃〉.P iff ∀ṽ ∈ R(x̃) 〈ṽ〉 ∈ I(σ) ∧ I,R |=σ P
I,R |=σ 〈x̃〉↑.P iff ∀ṽ ∈ R(x) 〈ṽ〉↑ ∈ I(σ) ∧ I,R |=σ P
I,R |=σ P >l (?x̃l1 )Q iff l0, l1,I(l0),I(l1) ∈ I(σ) ∧ I,R |=l0 P ∧ I,R |=l1 (?x̃l)Q
I,R |=l0 〈x̃〉.P iff ∀ṽ ∈ R(x̃) 〈ṽ〉l0 ∈ I(l0) ∧ I,R |=l0 P

I,R |=l1 (?x̃l1 ).P iff (?x̃l) ∈ I(l1) ∧ I,R |=l1 P

(S ervice S ynch) s@m ∈ I(σ) ∧ s@k ∈ I(σ′)
⇒ r+s@m:k ∈ I(σ) ∧ I(s@m) ⊆ I(r+s@m:k) ∧

r−s@m:k ∈ I(σ′) ∧ I(s@k) ⊆ I(r−s@m:k)
(I/O S ynch) 〈ṽ〉 ∈ I(rp

s@m:k) ∧ (?x̃) ∈ I(rp
s@m:k)⇒ ṽ ∈ R(x̃)

(Ret S ynch) 〈ṽ〉↑ ∈ I(rp
s@m:k) ∧ rp

@m:k ∈ I(rp′
s′@n:q) ∧ (?x̃) ∈ I(rp′

s′@n:q)
⇒ ṽ ∈ R(x̃)

(Pipe I/O S ynch) 〈ṽ〉l0 ∈ I(l0) ∧ (?x̃l1 ) ∈ I(l1)⇒ ṽ ∈ R(x̃)
(Pipe Ret S ynch) 〈ṽ〉↑ ∈ I(rp

s@m:k) ∧ rp
s@m:k ∈ I(l0)

∧ (?x̃l1 ) ∈ I(l1)⇒ ṽ ∈ R(x̃)

Fig. 3. Analysis for CaSPiS processes

the analysis checks for every actual value s that can be bound to x that s@k ∈ I(σ)
and I,R |=s@k P. The clauses for input, output and return check that the corresponding
prefixes are included in I(σ) and that the analysis of the continuation processes hold as
well. There is a special rule for pipeline input prefix, that allows us to distinguish it from
the standard input one. Note that the current scope has the same identifier carried by the
variables. Similarly, there is a rule for output prefixes occurring inside the scope of a left
branch of a pipeline. The corresponding possible outputs are annotated with the label
l0. The rule for session, modeled as the one on service definition and invocation, just
checks that the relative hierarchy position of the session identifier rp

s@m:k with respect
to the enclosing scope must be reflected in I, i.e. rp

s@m:k ∈ I(σ). It is used in analyzing
the possible continuations of the initial process.

The clause for pipeline deserves a specific comment. It checks that whenever a
pipeline >l is met, then the analysis of the left and the right branches is kept distinct
by the introduction of two sub-indexes l0 for the left one and l1 for the right one. This
allows us to predict possible communication over the two sides of the same pipeline.
Furthermore, the analysis contents of the two scopes must be included in the enclosing
scope identified by σ. This allows us to predict also the communications due to I/O
synchronizations, involving prefixes occurring inside the scope of a pipeline.

In the second phase, we check that (I,R) also takes into account the dynamics of
the process under consideration, i.e. the synchronizations τ due to communications,
services and pipelines. This is expressed by the closure conditions in the lower part of
Fig. 3 that mimic the semantics, by statically modeling the semantic preconditions and



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 223

the consequences of the possible actions. More precisely, the precondition checks, in
terms of I, for the possible presence of the redexes necessary for an action to be per-
formed. The conclusion imposes the additional requirements on I and on R, necessary
to give a valid prediction of the analyzed action. In the clause for Service Synch, we have
to make sure that the precondition requirements are satisfied, i.e. that: (i) there exists
an occurrence of service definition: s@k ∈ I(σ); (ii) there exists an occurrence of the
corresponding invocation s@m ∈ I(σ′). If the precondition requirements are satisfied,
then the conclusions of the clause express the consequences of performing the service
synchronization. In this case, we have that I must reflect that there may exist a session
identified by r+s@m:k inside σ and by r−s@m:k inside σ′ , such that the contents (scopes,
prefixes) of s@m:k and of s@m may also be inside I(r+s@m:k) and I(r−s@m:k), respectively.
Similarly, in the clause for I/O S ynch, if the following preconditions are satisfied: (i)
there exists an occurrence of output in I(rp

s@m:k); (ii) there exists an occurrence of the

corresponding input in the sibling session I(rp
s@m:k), then the values sent can be bound

to the corresponding input variables. In other words a possible communication is pre-
dicted here. Note that the rule correctly does not consider outputs in the form 〈ṽ〉l0 ,
because they possibly occur inside a left branch of a pipeline and therefore they are not
available for I/O synchronizations. The other rules are analogous.

Our analysis is correct with respect to the given semantics, i.e. a valid estimate enjoys
the following subject reduction property.

Theorem 2 (Subject Reduction). If P
τ→ Q and I,R |=σ P then also I,R |=σ Q.

In the following, we refer to the version of CaSPiS that includes pattern matching into
the input construct. Furthermore, we need to consider the possible presence of the ma-
licious customer, that is an accredited customer of a service that has no control of the
communication channels, apart from the one established by the sessions in which he/she
is involved. Nevertheless, our attacker does not necessarily follow the intended rules of
the application protocol and can try to use the functions of the service in an unintended
way, e.g., by sending messages in the right format, but with contents different from the
expected ones. More precisely, he/she has a knowledge made of all the public infor-
mation and increased by the messages received from the service: the attacker can use
his/her knowledge to produce messages to be sent to the server. The presented analy-
sis is part of a more complex analysis, that implicitly considers the possible behavior
of such an attacker. The complete analysis takes care of the malicious customer pres-
ence, by statically approximating its possible knowledge, represented as a new analysis
componentK . Intuitively, the clauses acting on K implicitly take the attacker possible
actions into account. The component K contains all the free names, all the messages
that the customer can receive, and all the messages that can be computed from them,
e.g., if v and v′ belong to K , then also the tuple (v, v′) belongs to K and, vice versa, if
(v, v′) belongs to K , then also v and v′ belong to K . Furthermore, all the messages in
K can be sent by the customer.

3.3 Control Flow Analysis of the Scenario

For brevity, we refer to a quite simplified version of the Credit Request Scenario, leaving
aside authentication through the credit portal and approval by supervisor. We also omit



www.manaraa.com

224 L. Acciai et al.

Prtl ≡ CrReq.(?xusr , ?xcred , ?xbals, ?xsecs)
(Upd.〈xusr , xbals, xsecs〉(?xack)〈go〉↑ >l (Dcsn(xusr , xcred) >l′ Offer))

Dcsn(u, c) ≡ (?xgo)Rate.〈u, c〉((AAA, ?xoffer)〈true, xoffer〉↑ + (BBB, ?xrisk)Clerk(xusr , xrisk))
Clerk(u, r) ≡ ReqCk.〈u, r〉(?wresponse, ?woffer)〈wresponse,woffer〉↑ >l′′

(?uresponse , ?uoffer)〈uresponse, uoffer〉↑
Offer ≡ (?zresponse , ?zoffer)〈zresponse , zoffer〉((true, ?zcred) + (false, ?zdecline))

CR(usr) ≡ CrReq.(νcred, bals, secs)〈usr, cred, bals, secs〉
(true, ?yoffer)〈eval(yoffer , cred)〉

I(∗) � CrReq, CrReq, r+CrReq, r−CrReq
I(CrReq) � (?xusr , ?xcred , ?xbals, ?xsecs), l0, l1,I(l0),I(l1)
I(r+CrReq) � r−Upd , r

−
Rate, r

−
ReqCk

R(xusr) � usr,R(xcred) � cred,R(xbals) � bals,R(xsecs) � secs
I(l0) � Upd
I(Upd) � 〈usr, bals, secs〉, (?xack), 〈go〉↑
I(l1) � l′0, l

′
1,I(l′0),I(l′1)

I(l′0) � (?xgo), Rate
I(Rate) � 〈usr, cred〉((AAA, ?xoffer), 〈true, offer〉↑,I(l′′0 ) � ReqCk
I(l′′1 ) � (?uresponse , ?uoffer)〈response, offer〉↑(BBB, ?xrisk), ReqCk, l′′0 , l

′′
1 ,I(l′′0 ),I(l′′1 )

I(ReqCk) � 〈usr, risk〉, (?wresponse, ?woffer), 〈response, offer〉↑
I(l′1) � (?zresponse , ?zoffer), 〈response, offer〉, (true, ?zcred), (false, ?zdecline)
I(CrReq) � 〈usr, cred, bals, secs〉, (true, ?yoffer), 〈offer, cred〉, 〈offer, cred′〉, 〈false, decline〉

Fig. 4. Specification of our scenario and some entries of its analysis

some service counterparts, whose specification is trivial. In this particular toy example,
the application logic flaw has been introduced on purpose, in order to illustrate our
methodology. Still, we think it is representative of analogous flaws, reported in the
literature, as the price modification one [14], handled in [3].

The introduced application logic flaw is related to the handling of requested amount
of credit, here not considered for the outcome of the clerk approval request. Note that, as
in the original specification, the evaluation of the clerk is not dependent on the requested
amount of credit.

The scenario specification and some of the main entries of the analysis are reported
in Fig.4, where ∗ identifies the ideal outermost scope in which the system top-level ser-
vice scopes are. We assume eval(o, c) either evaluates to (false, decline) (the conditions
offered by the bank are not convenient) or to (true, c) where c is the amount for which
the credit is requested. The analysis directly considers the resulting values for eval.

Note that the variable ?zcredit in Offer may be bound to any value the costumer sends,
in particular to any credit value cred′, possibly higher than cred. This is reflected by the
analysis, because if cred′ ∈ K , we also have that 〈offer, cred′〉 belongs to I(CrReq).
This application flaw depends on the fact that there is no pattern matching on the values
received; more generally, no control on this part of input is made. To avoid this problem,
we can modify the specification of Offer, by assuming it expects to receive a specific
value c on the critical input, in our example the value cred initially bound to xcred:

Offer′(c) ≡ (?zresponse, ?zoffer)〈zresponse, zoffer〉((true, c) + (false, decline)) .



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 225

4 Conversation Types

In the previous sections we have focused our analysis on the interaction between two
parties, typically a client and a server. However, service-oriented applications often
rely on collaborations between several partners, usually established dynamically and
without centralized control. A central concern in the development of service-oriented
systems is thus the design of interaction protocols that allow for the decentralized and
dynamic collaboration between several parties in a reliable way. Within the Sensoria
project we have developed a novel type-based approach that copes with such challeng-
ing scenarios involving dynamically established multiparty collaborations [8].

In the remainder of this section we discuss the analysis techniques introduced
in [8] that support the verification of key properties, namely conversation fidelity and
progress, addressing scenarios where multiple parties interact in a conversation, even
when some of them are dynamically called in to participate, and where parties inter-
leave their participation in several of such collaborations, even in the dynamically estab-
lished ones. Such challenging scenarios are of interest as they can be found in realistic
service-oriented applications, and fall out of scope of previous approaches—namely the
works on multiparty session types [10,2]. Our techniques, although independent, may
be viewed as complementary. In fact, it is their combined use that allows us to prove
the progress property.

4.1 Analyzing Multiparty Protocols with Conversation Types

In [8] we introduced a type theory for analyzing concurrent multiparty interactions as
found in service-oriented computing based on the notion of conversation (see Chapter
2-1). A conversation is a structured, not centrally coordinated, possibly concurrent, set
of interactions between several participants. The notion of conversation builds on the
fundamental concept of session, but generalizes it along directions. In particular, con-
versation types discipline interactions in conversations while accounting for dynamical
join and leave of an unanticipated number of participants.

Our type system combines techniques from linear, behavioral, session and spatial
types (see [8] for references): the type structure features prefix M.B, parallel composi-
tion B1 | B2 (to represent concurrent behavior), and also choice and branch types that
capture alternative behavior: the former characterizes processes that can perform one
of the Mi.Bi choices, and the latter characterizes processes that can perform either one
of the Mi.Bi branches. Messages M describe external (receive ? / send !) exchanges in
two views (d): with the enclosing (�) and current conversations (�). They also describe
internal message exchanges (τ). The type language is shown in Fig. 5. Notice that con-
versation types mix, at the same level in the type language, internal/global specifications
(τ message exchanges) with interface/local specifications (output ! and input ? types).

Key technical ingredients in our approach to conversation types are the amalgama-
tion of global types and of local types (in the general sense of [10]) in the same type
language, and the definition of a merge relation ensuring, by construction, that par-
ticipants typed by the projected views of a type will behave well under composition.
Merge subsumes duality, in the sense that for each τ-free B there are types B, B′ such
that B � B = τ(B′), so dyadic sessions are special cases of conversations. But merge



www.manaraa.com

226 L. Acciai et al.

B ::= B1 | B2

∣∣∣ 0
∣∣∣ recX.B ∣∣∣ X ∣∣∣ �i∈I{Mi.Bi}

∣∣∣ �i∈I{Mi.Bi} (Behavioral)

M ::= p ld([B]) (Message) p ::= !
∣∣∣ ? ∣∣∣ τ (Polarity)

L ::= n : [B]
∣∣∣ L1 | L2

∣∣∣ 0 (Located) T ::= L | B (Process)

Fig. 5. Conversation types syntax

∀i∈I(Bi = B−i � B+i )

�i∈I{τ l�i (C).Bi} = �i∈I{! l�i (Ci).B+i } � �i∈I {? l�i (Ci).B−i }
(Plain)

M1 # M2.B2 B′1 | B′2 = B1 � M2.B2

M1.B′1 | B′2 = M1.B1 � M2.B2
(Shuffle)

B1 # B2

B1 | B2 = B1 � B2
(Apart)

Fig. 6. Behavioral type merge relation selected rules

of types allows for extra flexibility on the manipulation of projections of conversation
types, in an open-ended way. In particular, our approach allows fragments of a con-
versation type (e.g., a choreography) to be dynamically distributed among participants,
while statically ensuring that interactions follow the prescribed discipline.

Building on the capability to mix local and global specifications, we are able to de-
scribe, via the merge relation, arbitrary decompositions of the protocol in the roles of
one or more parties. This allows, in particular, for a single participant to be initially
typed with a fragment of the protocol that will be dynamically delegated away, which is
crucial to support conversation join. We write B = B1 � B2 to say that B is a particular
(in general not unique) behavioral combination of the types B1 and B2. The merge of
two independent types (measured up to apartness # which determines if the types have
distinct message alphabets) yields the independent composition of the two types. How-
ever, when the types specify behaviors that may synchronize, then the merge relation
introduces an internal message exchange τ in the type to represent such synchroniza-
tion potential. Thus, the merge of two behaviors is defined not only in terms of spatial
separation, but also, and crucially, in terms of merging behavioral “traces”. Fig. 6 shows
a selection of the merge relation rules.

We may then characterize the behavior of CC systems by means of conversation
types. Our type system singles out CC processes that enjoy some safety properties,
namely that are free from a certain kind of runtime errors, and also that their processes,
at runtime, follow the protocols prescribed by the types. The behavioral types capture
the protocols of interaction in a single conversation. Since processes, in general, may
interact in several conversations, characterizing a CC system involves describing the
several protocols the process has in each conversation. Then, the typing judgment: P ::
B | n : [Bn] | m : [Bm] | o : [Bo] | . . . specifies that the behavior of process P in
conversations n, m, . . . is captured by behavioral types Bn, Bm, . . ., respectively. Notice
that, since CC processes may interact in the current and enclosing conversations, the
typing judgment considers an unlocated behavioral type B. Such a typing judgement
P :: T intuitively says that if process P is placed in a context where a process that
behaves like T is expected then we obtain a safe system.



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 227

P :: T1 Q :: T2

P | Q :: T1 � T2
(Par)

P :: L | B
ld!(n).P :: (L � n : C) | �{! ld(C).B; B̃} (Output)

P :: T | a : [B] (closed(B))
(νa)P :: T

(Res)
P :: L | B

n � [P] :: (L � n : [�B]) | loc(�B)
(Piece)

Fig. 7. Selected typing rules

We show a selection of the rules of our type system in Fig. 7. Rule (Par) says that the
composition is well typed under the merge of the types of the branches. Recall the merge
explains the composition of two processes by synchronizing behavioral traces. Rule
(Res) types the name restriction by checking if the behavioral type of the restricted con-
versation is closed, in such case eliding it in the conclusion of the rule. Closed behav-
ioral types characterize processes that have matching receives for all sends—roughly,
a closed type is defined exclusively on messages of polarity τ. The type associated
to a process only describes the behaviors in the visible conversations, and the closed
condition avoids hiding a conversation where there are unmatched communications.

The premise of rule (Output) specifies that the continuation process P defines some
located behavior L and some unlocated behavior B. Then, the output prefix is typed
by the merge of the delegated conversation fragment n : C with the located behavior
L, along with a choice type that includes the output action specified in the prefix with
respective continuation. Notice that the conversation fragment piece that is delegated
away is actually a separate � view of conversation n, which means that the type being
sent may actually be some separate part of the type of the conversation. This mechanism
is crucial to allow external partners to join in on ongoing conversations in a disciplined
way. The behavioral interface of the output prefixed process is a choice type, as the
process can choose the specified action from any set of choices that contains it.

We may now state our type safety results. To describe how typings are preserved
under process reduction we introduce a notion of type reduction which is a reflexive
relation obtained by the closure under static contexts of rule τ ld(C).B → B: hence,
synchronizations in the process are explained by τ message types. We may then pre-
cisely characterize the preservation of typing by means of type reduction.

Theorem 3 (Subject Reduction). Let process P be such that P :: T. If P → Q then
there is T → T ′ such that Q :: T ′.

Subject reduction thus guarantees that well-typedness is invariant under process reduc-
tion. Moreover, each reduction in a process is explained by a reduction in the type.
Reflexivity in the type reduction relation is required since it allows us to abstract away
from message synchronizations that occur at the level of restricted conversations.

Our type safety result asserts that certain error processes are unreachable from well-
typed processes. Error processes are configurations where there is an active race on a
(linear) message, which means two processes are willing to send or waiting to receive
the same message. Thus, a process is not an error only if for each possible immediate
interaction in a message there is at most a single sender and a single receiver. We prove
well-typed systems are error free, and thus are error free throughout their evolution.

Proposition 2. If P is a well-typed process then P is not an error process.



www.manaraa.com

228 L. Acciai et al.

Corollary 2 (Type Safety). Let P be a well-typed process. If there is Q such that P
∗→

Q, then Q is not an error process.

Our type safety result ensures that, in any reduction sequence arising from a well-typed
process, for each message ready to communicate there is always at most a unique in-
put/output outstanding synchronization. Subject reduction also entails that any message
exchange in the process must be explained by a τM prefix in the related conversation
type, implying conversation fidelity: all conversations follow the prescribed protocols.

4.2 Proving Progress of Conversations

In this section we present the progress proof system, introduced in [8], which allows us
to verify that systems enjoy a progress property. While the conversation type system al-
lows us to guarantee that conversations follow the prescribed protocols, it is not enough
to guarantee that the systems do not get stuck, due to, e.g., communication dependen-
cies between distinct conversations. As most traditional deadlock detection methods
(see [8] for references), we build on the construction of a well-founded ordering on
events. Roughly, we must check that the events specified in the continuation of a prefix
are of greater rank with respect to the event relative to the prefix itself.

The challenge is how to statically account for the orderings of events on conversa-
tions which will only be dynamically instantiated. To solve this problem we attach to
our events a notion of prescribed ordering: the ordering that captures the event order-
ing expected by the receiving process, that the emitted name will have to comply to. In
such way, we are able to statically determine the orderings followed by the processes
at “runtime”, through propagation of orderings in the analysis of message exchanges
that carry conversation identifiers. Technically, we proceed by developing a notion of
event and of event ordering that allow us to verify that CC processes can be ordered in
a well-founded way, including when conversation references are passed around.

Definition 5 (Event orderings and Events). We say relation Γ between events is an
event ordering if it is a well-founded partial order of events. We denote by (x)Γ an event
ordering parameterized by x. Events, noted e, are defined as e, e1, . . . ::= n.l.(x)Γ.

Event orderings capture the overall ordering of events. Parameterized event orderings
are used to capture the prescribed ordering of conversation fragments that are passed in
messages. Events describe a message exchange by identifying the name of the conver-
sation, the label of the message, and the parameterized event ordering.

We may then characterize the event ordering in CC systems by means of a proof
system that associates CC systems to event orderings. The proof system is presented by
means of judgments of the form Γ �� P, which state that the communications of process
P follow a well determined order, given by event ordering Γ, where � keeps track of the
identities of the current and enclosing conversations of P.

We show the rule that orders the output prefix process:

(�(d).l.(x)Γ′ ⊥Γ) �� P Γ′{x←n} ⊆ (�(d).l.(x)Γ′ ⊥Γ)
Γ �� ld!(n).P

(Output)



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 229

In rule (Output), we take the event associated to the prefix (�(d).l.(x)Γ′ where �(d) iden-
tifies the conversation, l is the message label and (x)Γ′ specifies the prescribed ordering
for the conversation reference passed in the message) and verify that the continuation is
ordered by events greater than �(d).l.(x)Γ′. Also, and crucially, we check that the name
being passed in the output complies with the ordering prescribed in the event (x)Γ′ by
verifying that such prescribed ordering, where the variable x is replaced by the name to
be sent n, is contained in the ordering of events greater than �(d).l.(x)Γ′. In such way,
we ensure the overall ordering is still respected after the name passing.

We may now present our progress results. First, we prove orderings are preserved
under process reduction. Then, we present our main progress result, where we exclude
processes that are stuck. We distinguish stuck processes from finished processes, which,
intuitively, can be viewed as collections of service definitions, where there are no pend-
ing service calls, neither linear protocols to be fulfilled. We then consider finished pro-
cesses to be in a stable state, despite the fact they have no reductions.

Theorem 4 (Preservation of Event Ordering). Let process P be such that Γ �� P. If
P→ Q then Γ �� Q.

Theorem 5 (Progress). Let P be a process such that P :: T, where closed(T ), and

Γ �� P. If P
∗→ Q then either Q is a finished process or there is Q→ Q′.

Theorem 5 thus ensures that in systems that get past our rules, services are always avail-
able upon request and protocols involving interleaving conversations never get stuck.

4.3 Typing the Credit Request Scenario

In this section we show the typing for the credit request scenario CC implementation
given in Chapter 2-1. The CC code for the credit request, the CreditRequestSystem,
presents a challenging scenario for analysis techniques as it involves collaborations
between multiple parties established in a dynamic way and where parties interleave their
participation in several conversations, including ones to which they have dynamically
gained access to. The typing judgment for the entire system is shown in Fig. 8, where we
focus on the typing of the Finance Portal conversation, along with the definitions of the
abbreviations introduced for the service types (e.g., acsT for AuthCreditServiceType).

The typing of the FinancePortal conversation captures the interactions in services
CreditRequest, ReviewApp and AuthCredit, along with the messages requestApp
and requestEval which are exchanged between the service instances, each identify-
ing in the argument type the conversation fragment delegated in the communications.
For instance, the (first) argument type of messages requestEval and requestApp is
�{! approved�(); ! denied�()}, which captures the client conversation fragment dele-
gated from the CreditRequest instance to the ReviewApp service instance, and from
the ReviewApp service instance to the AuthCredit service instance, respectively, al-
lowing for the reply to the client to originate in the other service instances.

The conversation types for each service interaction are obtained by merging service
provider and service user behaviors. For instance, the interaction between the client and



www.manaraa.com

230 L. Acciai et al.

CreditRequestSystem ::

FinancePortal : [

τ CreditRequest([crsT]) | τ ReviewApp([rasT]) | τ AuthCredit([acsT])

| τ requestApp([�{! approved�(); ! denied�()}], idT, dataT)

| τ requestEval([�{!approved�(); !denied�()}], idT, dataT) ]

| Bank : [ τ RateCalc([rcsT]) | . . . ]
| Client : [ . . . ] | Clerk : [ . . . ] | Manager : [ . . . ]

crsT � ? login�(idT).? request�(dataT).τ userData�(dataT).
τ rateValue�(rateT).�{!approved�() ; !denied�()}

rasT � ? login�(idT).! show�(idT, dataT).�{? pass�() ; ? deny�()}
acsT � ? login�(idT).! show�(idT, dataT).�{? accept�() ; ?reject�()}
rcsT � ? userData�(dataT).!rateValue�(rateT)

Fig. 8. Typing the credit request scenario CC Implementation

the finance portal is captured by the merge of the CreditRequest service type (crsT)
with the client role in the service conversation:

τ login�(idT).τ request�(dataT).τ userData�(dataT).
τ rateValue�(rateT).�{τ approved�() ; τ denied�()}

=

? login�(idT).? request�(dataT).τ userData�(dataT).
τ rateValue�(rateT).�{! approved�() ; ! denied�()}

�
! login�(idT).! request�(dataT).�{? approved�() ; ? denied�()}

Notice that the merge yields a closed type: hence, all communications are matched.
Notice also that the CreditRequest service type (crsT) still refers some internal com-
munications (τ message types in messages userData and rateValue). This is crucial
to support the dynamic join of the RateCalc service to the CreditRequest service
conversation, as it allows for the CreditRequest code to further along delegate a conver-
sation fragment to RateCalc, while ensuring that the overall protocol is followed.

We may also show that the events in the CreditRequestSystem are well ordered, and
thus ensure that the CreditRequestSystem enjoys some fundamental properties.

Corollary 3. The CreditRequestSystem enjoys conversation fidelity and progress.

5 Conclusion

We have reported on the static analysis techniques developed for CaSPiS and CC, two
session oriented calculi developed within the Sensoria project [1,3,8]. Each technique
aims at guaranteeing a specific property one would expect from service-oriented ap-
plications. Our models and techniques may be complementary used and combined in
order to provide provide as many guarantees as possible on the correctness of services’
behavior.



www.manaraa.com

Static Analysis Techniques for Session-Oriented Calculi 231

The most relevant related works have been discussed throughout the chapter. More
extensive discussions on related techniques and possible extensions can be found in the
original papers introducing the approaches reported here [1,3,8].

References

1. Acciai, L., Boreale, M.: A type system for client progress in a service-oriented calculus. In:
Degano, P., De Nicola, R., Bevilacqua, V. (eds.) CGM 2008. LNCS, vol. 5065, pp. 642–658.
Springer, Heidelberg (2008)

2. Bettini, L., Coppo, M., D’Antoni, L., De Luca, M., Dezani-Ciancaglini, M., Yoshida,
N.: Global Progress in Dynamically Interleaved Multiparty Sessions. In: van Breugel, F.,
Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg
(2008)

3. Bodei, C., Brodo, L., Bruni, R.: Static detection of logic flaws in service-oriented applica-
tions. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 70–87.
Springer, Heidelberg (2009)

4. Bodei, C., Brodo, L., Degano, P., Gao, H.: Detecting and preventing type flaws at static time.
Journal of Computer Security 18(2), 229–264 (2010)

5. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation of security
protocols. Journal of Computer Security 13(3), 347–390 (2005)

6. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for structured ser-
vice programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
19–38. Springer, Heidelberg (2008)

7. Bruni, R., Mezzina, L.G.: Types and deadlock freedom in a calculus of services, sessions and
pipelines. In: Meseguer, J., Rosu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 100–115.
Springer, Heidelberg (2008)

8. Caires, L., Vieira, H.: Conversation Types. In: Castagna, G. (ed.) ESOP 2009. LNCS,
vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

9. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for basic
parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 143–157. Springer,
Heidelberg (1993)

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: Necula,
G.C., Wadler, P. (eds.) POPL 2008, pp. 273–284. ACM Press, New York (2008)

11. Igarashi, A., Kobayashi, N.: A Generic Type System for the π-Calculus. Theoretical Com-
puter Science 311(1-3), 121–163 (2004)

12. Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining orchestration and conver-
sation in service-oriented computing. In: SEFM, pp. 305–314. IEEE Computer Society, Los
Alamitos (2007)

13. Mezzina, L.: Typing Services. Phd thesis in computer science, IMT Institute for Advanced
Studies, Lucca (2009)

14. Neohapsis Archives. Price modification possible in CyberOffice Shopping Cart,
http://archives.neohapsis.com/archives/bugtraq/2000-10/0011.html

15. Talpin, J.-P., Jouvelot, P.: The type and effect discipline. Inf. Comput. 111(2), 245–296 (1994)

http://archives.neohapsis.com/archives/bugtraq/2000-10/0011.html


www.manaraa.com

Call-by-Contract for Service
Discovery, Orchestration and Recovery�

Massimo Bartoletti1, Pierpaolo Degano2,
Gian Luigi Ferrari2, and Roberto Zunino3

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
bart@unica.it

2 Dipartimento di Informatica, Università di Pisa, Italy
degano@di.unipi.it, giangi@di.unipi.it

3 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Italy
zunino@disi.unitn.it

Abstract. We present a framework for designing and composing ser-
vices in a “call-by-contract” fashion, i.e. according to their behavior.
We discuss how to correctly plan service compositions in some relevant
classes of services and behavioral properties. To this aim, we propose
both a core functional calculus for services, and a graphical design lan-
guage. The core calculus features primitives for selecting and invoking
services that respect given behavioral requirements, typically safety prop-
erties on the service execution history. A type and effect system over-
approximates the actual run-time behavior of services. A further static
analysis step finds the viable plans that drive the selection of those ser-
vices matching the behavioral requirements on demand.

1 Introduction

The so-called Service-oriented Architectures provide state-of-the-art software
engineering methods supporting the design of open-ended, heterogenous dis-
tributed applications. Service-orientation enables an evolutionary design style
where applications are built by gluing together suitable software units called
services. Services can be published, bound, and invoked by other services us-
ing standard internet-based protocols. Moreover applications can dynamically
replace the services they use with other services. Finally, services are executed
on heterogeneous systems and no assumptions can be taken on their running
platforms. The Web service protocol stack (WSDL, UDDI, SOAP, WSBPEL) is
the best illustrative example of this approach. Web services have been extremely
valuable to highlight the key innovative features of service-orientation. However,
experience has singled out several limiting factors of the service protocol stack,
mainly because of the purely “syntactic” nature of standards. This has lead to
the idea of extending the Web service stack with higher level, “semantic” func-
tionalities. For instance, the design and exploitation of service ontologies is an
attempt to address these concerns.
� This work has been partially sponsored by the project Sensoria , IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 232–261, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 233

A key issue of the service approach is given by its compositional nature.
Services are pluggable entities obtained by combining existing elementary or
complex services. Composite services in turn offer themselves as new services.
The activities underlying the assembling of services requires coordinating the
behavior and managing the interactions of the the component services. Two dif-
ferent approaches are usually adopted to assemble services: orchestration and
choreography. In the first, an intermediate entity, namely the orchestrator, ar-
ranges service activities according to the business process. The service choreog-
raphy, instead, involves all parties and their associated interactions providing a
global view of the system. Relevant standard technologies are the Business Pro-
cess Execution Language (BPEL) [38], for the orchestration, and Web Service
Choreography Description Language (WS-CDL) [43], for the choreography.

This chapter focuses on the problem of properly selecting and configuring ser-
vices so to guarantee that their orchestration enjoys some desirable properties.
These properties may involve functional aspects, and also non-functional as-
pects, like e.g. security, availability, performance, transactionality, etc. [39]. This
poses significant theoretical and technical challenges. In particular, the ability to
orchestrate services while guaranteeing certain properties requires a novel view
of the interplay between local vs. global properties of services. For instance,
the components of a service may locally enjoy a non-functional property (e.g. a
security property) while their orchestration globally does not.

In this chapter we survey a semantics-based framework for modelling and
orchestrating services in the presence of both functional and non-functional con-
straints. The formal foundation of our work is λreq [9,10,15]. This is a core
calculus that extends the λ-calculus with primitive constructs to describe and
invoke services in a call-by-contract fashion. Services are modeled as functions
with side effects. These side effects represent the actions of accessing resources,
and they are logged into histories. A run-time monitor may inspect histories,
and forbids those executions that would violate the prescribed policies.

Unlike standard discovery mechanisms that match syntactic signatures only,
ours also implements a matchmaking algorithm based on service behavior. This
algorithm exploits static analysis techniques to resolve the call-by-contract in-
volved in a service orchestration. The published interface of a service takes the
form of an annotated type, which represents both the signature of the service (i.e.
its input-output information à la WSDL) and a suitable semantic abstraction of
the service behavior. In our call-by-contract selection, the client is required to
know neither the service name nor its location. Operationally, the service reg-
istry is searched for a service with a functional type (the signature) matching the
request type; also, the semantic abstraction (the annotation) must respect the
non-functional constraints imposed by the request. Our orchestration machinery
constructs a plan for the execution of services, i.e. a binding between requests
and service locations, that are only known to the orchestrator, which guarantees
that the properties on demand are always satisfied.

We envisage the impact of our approach on the service protocol stack as
follows. First, it requires extending services description languages: besides the



www.manaraa.com

234 M. Bartoletti et al.

standard WSDL attributes, service description should include semantic infor-
mation about the behavior. Moreover, call-by-contract adds a further layer to
the standard service protocol stack: the planning layer. This layer provides the
orchestrator with the plans guaranteeing that the orchestrated services always
respect the required properties. Hence, before starting the execution of the or-
chestration, the orchestrator engine collects the relevant service plans by inquir-
ing the planning layer. These plans enable the orchestration engine to resolve
all the requests in the initiator service, as well as those in the invoked services.
Additionally, re-planning can be done at run-time, according to some strategies
that will be discussed later on. Summing up, our approach therefore extends the
standard notion of orchestrator, by making it to coordinate the composition of
services so to ensure the correct execution of call-by-contract invocations.

1.1 Service Interfaces and Contracts

In our approach, the interface of a service is an annotated functional type, of the
form τ1

H−→ τ2. When supplied with an argument of type τ1, the service evaluates
to something of type τ2. The annotation H is a history expression, a sort of
context-free grammar that abstractly describes the possible run-time histories of
the service. Thus, H will be exploited to guide the selection of those services that
respect the requested properties about security or other non-functional aspects.
Since service interfaces are crucial in the implementation of the call-by-contract
primitive, they have to be certified by a trusted party, which guarantees that
the abstract behavior is a sound over-approximation of the actual behavior.

A contract ϕ is a regular property of execution histories. We express contracts
as languages accepted by finite state automata. To select a service matching a
given contract ϕ, and with functional type τ1 → τ2, a client issues a request of the
form req (τ1

ϕ−→ τ2). The call-by-contract mechanism ensures that the selected
service, with interface τ1

H−→ τ2, will always respect the contract ϕ, i.e. that all
the histories represented by H are recognized by the automaton defining ϕ.

Since service interactions may be complex, it might be the case that a local
choice for a service is unsafe in a broader, “global” context. For instance, choosing
a low-security e-mail provider might prevent you from using a home-banking
service that exchanges confidential data through e-mail. In this case, you should
have planned the selection of the e-mail and bank services so to ensure their
compatibility. To cope with this kind of issues, we define a static machinery that
determines the viable plans for selecting services that respect all the contracts,
both locally and globally. A plan resolves a call-by-contract into a standard
service call, and it is formalized as a mapping from requests to services.

1.2 Planning Service Composition

Our planning technique acts as a trusted orchestrator of services. It provides
a client with the viable plans guaranteeing that the invoked services always
respect the required properties. In our framework the only trusted entity is the



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 235

orchestrator, and neither clients nor services need to be such. In particular, the
orchestrator infers the functional and behavioral type of each service, and it is
responsible for certifying the service code and for publishing its interface. We
also assume that, whenever a service wants to change its code, it resubmits the
code to the orchestrator, so to obtain a new certification. When an application is
injected in the network, the orchestrator provides it with a viable plan (if any),
constructed by composing and analysing the certified interfaces of the available
services. The trustworthiness of the orchestrator relies upon formal grounds,
i.e. the soundness of our type and effect system, and the correctness of the
subsequent static analysis and model-checking phases that infer viable plans.

As noted above, finding viable plans is not a trivial task, because the effect of
selecting a given service for a request is not always confined to the execution of
that service. Since each service selection may affect the whole execution, we can-
not simply devise a viable plan by selecting services that satisfy the constraints
imposed by the requests, only. We have then devised a two-stage construction for
extracting viable plans from a history expression. Let H be the history expres-
sion inferred for a client. A first transformation of H , called linearization, lifts
all the service choices to the top-level of H . This isolates from H the possible
plans, that will be considered one by one in the second stage: model-checking
for validity. Projecting the history expression H on a given plan π gives rise to
another history expression H ′, where all the service choices have been resolved
according to π. Validity of H ′ guarantees that the chosen plan π will drive ex-
ecutions that never go wrong at run-time (thus making run-time monitoring
unneeded). To verify the validity of H ′, we first smoothly transform it into Basic
Process Algebra (BPA) process. We then model-check this process with a finite
state automaton that recognizes validity. At the end, only some (sub-)history
expressions within H will be certified, and the plans singling them out are those
leading to runs obeying the policies in force. The correctness of all these steps
(type safety, linearization, model-checking) has been formally proved in [10].

1.3 Contributions

We briefly summarize the key features of our approach.

1. Taxonomy of behavioral aspects. We discuss some design choices that af-
fect behavioral composition of services. These choices address rather general
properties of systems: whether services maintain a state across invocations;
whether they trust each other; whether they can pass back and forth mo-
bile code; and whether different threads may share part of their state or
not. Each of these choices deeply impacts the expressivity of the enforceable
properties, as well as the compositionality of planning techniques.

2. Design Methodology. We present a formal, UML-like modelling language for
designing services. Besides the usual workflow operators, we can express
activities subject to non-functional constraints. The awareness of these con-
straints from the early stages of development is crucial to all the subsequent



www.manaraa.com

236 M. Bartoletti et al.

phases of software production. Our diagrams have a formal operational se-
mantics, that specifies the dynamic behavior of services. Also, they can be
statically analysed, to infer the contracts satisfied by a service. Our design
methodology allows for a fine-grained characterization of the design choices
that affect to the non-functional properties of interest.

3. Core calculus for services. We present an extension of the λ-calculus, with
primitives for selecting and invoking services that respect given require-
ments. Service invocation is implemented in a call-by-contract fashion, i.e.
you choose a service for its behavior, neither for its name nor for the loca-
tion hosting it. The policies we consider are arbitrary safety properties on
execution histories; policies can have a local scope.

4. Planning. We outlined above the three-step static analysis: typing, lineariza-
tion and model-checking. These steps are completely mechanizable, so mak-
ing call-by-contract composition feasible. Studying the output of the model-
checker may highlight design flaws, suggesting how to revise the contracts
and the services.

5. Recovering strategies. We identify several cases where designers need to take a
decision before proceeding with the execution. For instance, when a planned
service disappears unexpectedly, one can choose to replan, so to adapt to
the new network configuration. Different tactics are possible, depending on
the boundary conditions and on past experience.

1.4 Our Work within the Context

Our work contributes to a research theme that has been intensively investigated.
Below we briefly survey related work and refer the reader to the relevant sections
of our recent papers for a more detailed discussion.

Our local policies were first introduced in [7], where a block of code B could
be sandboxed by a policy ϕ, so to require that ϕ must hold through the execu-
tion of B. The definition of policies has since then been revised several times,
so to make them more expressive. In the original formulation, policies could
only inspect sequences of actions, neglecting resources. In [12,15] policies can
be parametrized over a single resource, and resources can be dynamically cre-
ated; [13] deals with the general case of an arbitrary number of parameters; [3]
adds guards to constrain state transitions in policy automata. Our LocUsT model
checker [44] implements the verification techniques for resource usage described
in the papers cited above; it supports all the extensions studied in the theory.
Recent extensions allowing for a more precise analisys are in [21].

In the papers cited above, policies were exploited to define static enforcement
mechanisms. Actually, dynamic monitoring is in order when static verification
happens to fail. In [4], the security mechanism of Java is extended with our
policies. In this case, a policy may monitor each sequence of method invocations.
In [5] we also proposed a way of instrumenting code so to insert checks when
compliance to a policy cannot be established at static time.

The theory underlying our call-by-contract invocation mechanism was orig-
inally introduced in [6]. There, a type and effect system and a model-checker



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 237

were exploited to define a call-by-contract orchestrator. In [9] the orchestrator
was enhanced, by making it output a set of possible plans that safely drive ser-
vice compositions. In [11] the planning problem was further explored, by devising
several strategies to adopt when services become unavailable. In [14] a design
methodology was proposed for services, based on our call-by-contract technique.

Process calculi techniques have been used to study the foundation of services.
The main goal of some of these proposals, e.g. [23,17,26,31,20,19] is to formalize
various aspects of standards for the description, execution, orchestration and
choreography of services. A whole chapter of this book (Chapter 2-1: Core Calculi
for Service-Oriented Computing) is devoted to the core calculi introduced within
the Sensoria project. As a matter of fact, our λreq builds over the standard
service infrastructure the above calculi formalize. Indeed, our call-by-contract
supersedes standard invocation mechanisms and allows for verified planning.
Another approach to planning has been proposed in [32], where the problem of
achieving a given composition is expressed as a constraint satisfaction problem.

From a technical point of view, the work of Skalka and Smith [36] is the closest
to this paper. We share with them the use of a type and effect system and that
of model checking validity of effects. In [36], a static approach to history-based
access control is proposed. The λ-calculus is enriched with access events and local
checks on the past event history. Local checks make validity a regular property, so
regularization is unneeded. The programming model and the type system of [36]
allow for access events parametrized by constants, and for let-polymorphism. We
have omitted these features for simplicity, but they can be easily recovered by
using similar techniques.

A related line of research addresses the issue of modelling and analysing re-
source usage. Igarashi and Kobayashi [28] introduce a type systems to check
whether a program accesses resources according to a user-defined policy. A main
limitation of this approach is that they do not provide a verification procedure
to check resource usages. Our model is less general than the framework of [28],
however a generalization of the techniques presented here provides a static ver-
ification machinery to verify resource usage policies [15].

Increasing attention has been devoted to express service contracts as behav-
ioral (or session) types. These synthetize the essential aspects of the interaction
behavior of services, while allowing for efficient static verification of properties of
composed systems. Session types [27] have been exploited to formalize compati-
bility of components [40] and to describe adaptation of web services [18]. Security
issues have been recently considered in terms of session types, e.g. in [16], which
proves the decidability of type-checking in an extension of the π-calculus with
session types and correspondence assertions [42].

2 A Taxonomy of Behavioral Aspects in Web Services

Service composition heavily depends on which information about a service is
made public, on how to choose those services that match the user requirements,
and on their actual run-time behavior. Security makes service composition even



www.manaraa.com

238 M. Bartoletti et al.

harder. Services may be offered by different providers, which only partially trust
each other. On the one hand, providers have to guarantee that the delivered
service respects a given security policy, in any interaction with the operational
environment, and regardless of who actually called the service. On the other
hand, clients may want to protect their sensitive data from the services invoked.

In the history-based approach to security, the run-time permissions depend on
a suitable abstraction of the history of all the pieces of code (possibly partially)
executed so far. This approach has been receiving major attention, at both levels
of foundations [2,24,36] and of language design/implementation [1,22].

The observations of critical activities, e.g. reading and writing files, accessing
resources, are called events. Sequences of events are called histories. The class of
policies we consider is that of safety properties of histories, i.e. properties that are
expressible through finite state automata. The typical run-time mechanisms for
enforcing history-based policies are reference monitors, which observe program
executions and abort them whenever about to violate the given policy. Reference
monitors enforce exactly the class of safety properties [35].

Since histories are the main ingredient of our model, our taxonomy focusses
on how histories are handled and manipulated by services.

Stateless / stateful services. A stateless service does not preserve its state (i.e. its
history) across distinct invocations. Instead, a stateful service keeps the histories
of all the past invocations. Stateful services allow for more expressive policies,
e.g. they can bound the number of invocations on a per-client basis.

Local / global histories. Local histories only record the events generated by a
service on its own site. Instead, a global history may span over multiple services.
Local histories are the most prudent choice when services do not trust other
services, in particular the histories they generate. In this case, a service only
trusts its own history — but it cannot constrain the past history of its callers,
e.g. to prevent that its client has visited a malicious site. Global histories instead
require some trust relation among services: if a service A trusts B, then the
history of A may comprise that of B, and so A may check policies on the behavior
of B.

First order / higher order service requests. A request type can be viewed as a
functional type taking the the type τ as input and yielding a result of type τ ′.
A request type is first order when both τ and τ ′ are base types (Int , Bool , ...).
Instead, if τ or τ ′ are functional types, the request is higher order. In particular,
if the parameter (of type τ) is a function, then the client passes some code to be
possibly executed by the requested service. Symmetrically, if τ ′ is a function type,
then the service returns back some code to the caller. Mobility of code impacts
the way histories are generated, and demands for particular mechanisms to en-
force behavioral policies on the site where the code is run. A typical protection
mechanism is sandboxing, that consists in wrapping code within an execution
monitor enforcing the given policy. When there is no mobile code, more efficient
mechanisms can be devised, e.g. local checks on critical operations.



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 239

Dependent / independent threads. In a network of services, several threads may
run concurrently and compete for services. Independent threads keep histories
separated, while dependent threads may share parts of their histories. Therefore,
dependent threads may influence each other when using the same service, while
independent threads cannot. For instance, consider a one-shot service that can
be invoked only one time. If threads are independent, the one-shot service has
no way to enforce single use. It can only check that no thread uses it more
than once, because each thread keeps its own history. Dependent threads are
necessary to correctly implement the one-shot service.

3 A Call-by-Contract Design Methodology for Services

In this section, we discuss the main ingredients of our design methodology. We
present the methodology exploiting a graphical notation that abstracts from all
low level details and focusses only on the key issues. Our notation is related to
other graphical design languages for services (e.g. BPMN [29], UML4SOA [30]).
Indeed, we envision that our methodology can be incorporated into these lan-
guages as well. The main motivation behind using our abstract notation is that
our focus here is not on the overall structure of the service architecture, but on
how to design the skeleton structure of the service orchestration, taking into ac-
count the specific policies and the service contracts on demand. We refer to [14]
for a comphensive presentation of the methodology.

The basic entity is that of services. A service is represented as a box containing
its code (Fig. 1). The four corners of the box are decorated with information
about the service interface and behavior. The label � : τ indicates the location �
where the service is made available, and its certified published interface τ . We
assume that each published service has a distinct location �. The other labels
instead are used to represent the state of a service at run-time.

The label η = α1 · · ·αk is an abstraction of the service execution history. We
are concerned with the sequence of relevant events αi happened sometimes in the
past, in the spirit of history-based security [1]. The label (m, Φ) is a pair, where
the first element is a flag m representing the on/off status of the execution
monitor, and the second element is the sequence ϕ1 · · ·ϕk of active policies.
When the flag is on, the monitor checks that the service history η adheres to the
policy ϕi (written η |= ϕi) for each i ∈ 1..k.

service location � + interface τ

orchestration plan

event history

service code

monitor flag m + sequence Φ of active policies

� : τ

π

(m, Φ)

η

B
η

� : τ π

(m,Φ)

B

Fig. 1. Execution state of a service



www.manaraa.com

240 M. Bartoletti et al.

The block B inside the box is an abstraction of the service code. Formally, it is
a sort of control flow graph [34] with nodes modelling activities, blocks enclosing
sets of nodes, and arrows modelling intra-procedural flow.

Nodes can be of two kinds, i.e. events or requests. Events α, β, . . . abstract
from critical operations. An event can be parametrized, e.g. αw(foo) for writing
the file foo, sgn(�) for a certificate signed by �, etc. A service request has the
form reqrτ . The label r uniquely identifies the request; the type τ is defined as:

τ ::= b | τ
ϕ−→ τ

where b is a base type (Int ,Bool , . . .). The annotation ϕ on the arrow is the
query pattern (or “contract”) to be matched by the invoked service. Indeed, the
property ϕ acts as a contract the called service has to respect. For instance, the
request type τ

ϕ−→ τ ′ matches services with functional type τ −→ τ ′, and whose
behavior respects the policy ϕ.

The label π is the plan used for resolving future service choices. A plan for-
malises how a call-by-contract reqrτ is transformed into a standard service call,
and takes the form of a function from request identifiers r to service locations �.

Definition 1. Syntax of plans

π, π′ ::= 0 empty
r[�] service choice
π | π′ composition

The plan 0 is empty; the plan r[�] associates the service published at site � with
the request labelled r. Composition | on plans is associative, commutative and
idempotent, and its identity is the empty plan 0. We require here plans to have a
single choice for each request, i.e. r[�] | r[�′] implies � = �′. More general notions
of plans are possible, we refer to [8] for the details.

Blocks can be of two kinds: (i) safety blocks ϕ[B] enforce the policy ϕ on B,
i.e. the history must respect ϕ at each step of the evaluation of B; (ii) planning
blocks {B} construct a plan for the execution of B (see Section 6 for a discussion
on some planning strategies). Blocks can be nested, and they determine the scope
of policies (hence called local policies [7]) and of planning.

3.1 A Car Repair Scenario

To illustrate some of the features and design facilities of our framework, we
consider the Sensoria car repair scenario [41], where a car may break and then
request assistance from a tow-truck and a garage. We assume a car equipped
with a diagnostic system that continuously reports on the status of the vehicle.
When a major failure occurs, the in-car emergency service is invoked to select the
appropriate tow-truck and garage services. The selection may take into account



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 241

suitable policies, e.g. the tow-truck should be close enough to reach both the
location where the car is stuck and the chosen garage.

The system is composed of three kinds of services: the car-emergency ser-
vice, that tries to arrange for a car tow-trucking and repair, the tow-truck

service, that picks the damaged car to a garage, and the garage service, that
repairs the car. We assume that all the involved services trust each other’s his-
tory, and so we assume a shared global history, with independent threads. We
also design all the services to be stateful, so that, e.g. the driver can personalize
the choice of garages, according to past experiences.

We start by modelling the car-emergency service handling the car faults.
This service is invoked by the embedded diagnosis system, each time a fault is
reported. The actual kind of fault, and the geographic location where the car
is stuck, are passed as parameters — named flt and loc. The diagram of the
car-emergency service is displayed on the left-hand side of Fig. 2.

⎧⎪⎪⎨⎪⎪⎩
reqrT

1
ϕL(loc)−−−−−→ 1

reqrG
1

ϕF (flt)−−−−−→ 1

⎫⎪⎪⎬⎪⎪⎭

[yes]

[no]

αBL

ϕBL

Fault × Location −→ Bool

αBL

sgn(x)

sgn(x)
q3 αBL

sgn(x̄)

sgn(x)αBL

∗

sgn(x̄)

sgn(x̄)

q0 q1

q2

repair ok ?

Fig. 2. The car-emergency service and the black-listing policy ϕBL

The outer policy ϕBL (black-list) has the role of enforcing a sort of “quality
of service” constraint. The car-emergency service records in its history the
list of all the garages used in past repair requests. When the selected garage �G

completes repairing a car, it appends to the history its own signature sgn(�G).
When the user is not satisfied with the quality (or the bill!) of the garage,
the garage is black-listed (event αBL). The policy ϕBL ensures that a black-
listed garage (marked by a signature sgn(�G) followed by a black-listing tag
αBL) cannot be selected for future emergencies. The black-listing policy ϕBL is
formally defined by the usage automaton [12] in Fig. 2, right-hand side. Note
that some labels in ϕBL are parametric: sgn(x) and sgn(x̄) stands respectively
for “the signature of garage x” and “a signature of any garage different from x”,
where x can be replaced by an arbitrary garage identifier. If, starting from the



www.manaraa.com

242 M. Bartoletti et al.

state q0, a garage signature sgn(x) is immediately followed by a black-listing tag
αBL, then you reach the state q2. From q2, an attempt to generate again sgn(x)
will result in a transition to the non-accepting sink state q3. For instance, the
history sgn(�1)sgn(�2)αBL · · · sgn(�2) violates the policy ϕBL.

The crucial part of the design is the planning block. It contains two requests:
rT (for the tow-truck) and rG (for the garage), to be planned together. The
contract ϕL(loc) requires that the tow-truck is able to serve the location loc
where the car is broken down. The contract ϕF (flt) selects the garages that can
repair the kind of faults flt . In the requests we simply use the void type 1 for the
inputs and outputs of the garage and tow-truck services, hence neglecting them.

The planning block has the role of determining the orchestration plan for
both the requests. In this case, it makes little sense to continue executing with
an incomplete plan or with sandboxing: you should perhaps look for a car rental
service, if either the tow-truck or the garage are unavailable. Therefore, a mean-
ingful planning strategy is trying to find a couple of services matching both rT

and rG, and wait until both the services are available.

REPn

REP1

ZIPk

ZIP1

sgn(�G)

�G : 1
REP1···REPn·sgn(�G)−−−−−−−−−−−−−−−−→ 1�T : 1

ZIP1···ZIPk−−−−−−−−→ 1

[no][yes]

available trucks ?

ϕGZ

Fig. 3. The tow-truck (left) and garage (right) services

The diagram of the tow-truck service is displayed in Fig. 3, on the left.
The service will first expose the list of geographic locations ZIP1, . . . , ZIPk it
can reach. Each zip code ZIPi is modeled as an event. The contract ϕT (loc)
imposed by the car-emergency service ensures that the location loc is covered
by the truck service. Formally, ϕT (loc) checks if the zip code loc is contained in
the interface of the tow-truck service (we omit the automaton for ϕT (loc) here).
Then, the tow-truck may perform some internal activities (irrelevant in our
model), possibly invoking other internal services. The exposed interface is of the
form 1 ZIP1···ZIPk−−−−−−−→ 1, where 1 is the void type.



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 243

The garage service (Fig. 3, right) exposes the kinds of faults REP1, . . . ,
REPn the garage can repair, e.g. tyres, engine, etc. The request contract ϕG(flt)
ensures that the garage can repair the kind of fault flt experienced by the car.
The garage service may perform some internal bookkeeping activities to handle
the request (not shown in the figure), possibly using internal services from its
local repository. After the car repair has been completed, the garage �G signs
a receipt, through the event sgn(�G). This signature can be used by the car-

emergency service to implement its black-listing policy.
The garage service exploits the policy ϕGZ (for Garage-Zip) to ensure that

the tow-truck can reach the garage address. If the garage is located in the area
identified by ZIPG, the policy ϕGZ checks that the tow-truck has exposed the
event ZIPG among the locations it can reach. When both the contract ϕT (loc)
and the policy ϕGZ are satisfied, we have the guarantee that the tow-truck can
pick the car and deposit it at the garage.

sgn(LU)αBL (on, ϕBL)

ZIPLU

ZIPSI

ZIPPI

ZIPPI

ZIPF L

REPtyres

REPbattery

REPengine

REPtyres


CAR(Pisa, Tyres)

[yes]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
reqrT

1
ϕL(ZIPPI )−−−−−−−−−→ 1

reqrG
1

ϕF (REPtyres)−−−−−−−−−−→ 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
ϕBL

repair ok ?

[no] [no]

ϕGZ (F L) ϕGZ (LU)

available trucks ? available trucks ?

�F L �LU

�T2�T1

[yes] [yes]

αBL

[no]

sgn(�F L) sgn(�LU )

Fig. 4. The car-emergency client (�CAR), two tow-truck services (�T1, �T2), and two
garages (�F L, �LU )

In Fig. 4, we show a system composed by one car �CAR, two tow-truck

services �T1 and �T2, and two garage services �FL and �LU . The car has expe-
rienced a flat tyre accident in Pisa (ZIPPI), and it has black-listed the garage in
Lucca, as recorded in the history sgn(LU)αBL. The tow-truck service �T1 can
reach Florence and Pisa, while �T2 covers three zones: Pisa, Siena and Lucca.



www.manaraa.com

244 M. Bartoletti et al.

The garage �FL is located in Florence, and it can repair tyres and batteries; the
garage �LU is in Lucca, and repairs engines and tyres.

We now discuss all the possible orchestrations:

– the plan rT [�T1] | rG[�LU ] is not viable, because it violates the policy
ϕGZ(LU). Indeed, the tow-truck can serve Florence and Pisa, but the garage
is in Lucca.

– similarly, the plan rT [�T2] | rG[�FL] violates ϕGZ(FL).
– the plan rT [�T2] | rG[�LU ] is not viable, because it violates the black-listing

policy ϕBL. Indeed, it would give rise to a history sgn(LU)αBL · · · sgn(LU),
not accepted by the automaton in Fig. 2.

– finally, the plan rT [�T1] | rG[�FL] is viable. The tow-truck can reach both the
car, located in Pisa, and the garage in Florence, which is not black-listed.

4 A Core Calculus for Services

In this section we review λreq , in a version with stateless services, local histories,
non parameterized events, higher-order requests, and independent threads. We
refer to [10,14] for a more detailed presentation.

4.1 Services

A service is modeled as an expression in a λ-calculus enriched with primitives for
events and service requests. Events are rendered as side-effects in the calculus.
Roughly speaking, λreq services e implement the specification of blocks B in the
graphical notation. Note that λreq augments the features of the design language
with recursion (instead of loops), parameter passing and higher-order functions.

The abstract syntax of services follows. To enhance readability, our calculus
comprises conditional expressions and named abstractions (the variable z in e′ =
λzx. e stands for e′ itself within e, so allowing for explicit recursion). We assume
as given the language for guards in conditionals, and we omit its definition here.

Definition 2. Syntax of services

e, e′ ::= x variable
α event
if b then e else e conditional
λzx. e abstraction
e e′ application
ϕ[e] safety framing
{e} planning
reqrτ service request
wait � wait reply
N/A unavailable



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 245

The values v of our calculus are the variables, the abstractions, and the requests.
We write ∗ for a distinguished value, and λ. e for λx. e, for x not free in e. We
also write e; e′ for (λ. e′) e, and let x = e in e′ for (λx. e′) e. Without loss of
generality, we assume that framings include at least one event, possibly dummy.

The stand-alone evaluation of a service is much alike the call-by-value seman-
tics of the λ-calculus; additionally, it enforces all the policies within their fram-
ings. Since here services are considered in isolation, the semantics of requests
is deferred to Section 4.2. The configurations are triples η, m, e. A transition
η, m, e → η′, m′, e′ means that, starting from a history η and a monitor flag m,
the service e evolves to e′, extends η to η′, and sets the flag to m′. We assume
as given a total function B that evaluates the guards in conditionals.

Definition 3. Service semantics (stand-alone)

η, m, (λzx. e)v → η, m, e{v/x, λzx. e/z}
η, m, α→ ηα, m, ∗
η, m, if b then ett else eff → η, m, eB(b)

η, m, C(e)→ η′, m′, C(e′) if η, m, e→ η′, m′, e′ and m′ = off ∨ η′ |= Φ(C)
η, m, C(ϕ[v])→ η, m, C(v) if m = off ∨ η |= ϕ

where C is an evaluation context with a hole •, of the following form:

C ::= • | C e | v C | ϕ[C]

and Φ(C) is the set of active policies of C, defined as follows:

Φ(C e) = Φ(v C) = Φ(C) Φ(ϕ[C]) = {ϕ} ∪ Φ(C)

The first rule implements β-reduction (as usual {v/x} denotes substitution).
The evaluation of an event α consists in appending α to the current history, and
producing the no-operation value ∗. A conditional if b then ett else eff evaluates
to ett (resp. eff ) if b evaluates to true (resp. false). The form of contexts implies
call-by-value evaluation; as usual, functions are not reduced within their bodies.
To evaluate a redex enclosed in a set of active policies Φ(C), the history η′ must
obey each ϕ ∈ Φ(C), when the execution monitor is on. A value can leave the
scope of a framing ϕ if the current history satisfies ϕ. When the monitor is on
and the history is not going to respect an active policy ϕ, evaluation gets stuck.

4.2 Networks

A service e is plugged into a network by publishing it at a site �, together with
its interface τ . Hereafter, �〈e : τ〉 denotes such a published service. Labels � can



www.manaraa.com

246 M. Bartoletti et al.

be seen as Uniform Resource Identifiers, and they are only known by the orches-
trator. We assume that each site publishes a single service, and that interfaces
are certified, i.e. they are inferred by the type system presented later. As usual,
we assume that services cannot invoke each other circularly. A client is a special
published service �〈e : 1〉, where 1 is the unit type. A network is a set of clients
and published services.

The state of a published service �〈e : τ〉 is denoted by:

�〈e : τ〉 : π � η, m, e′

where π is the plan used by the current instantiation of the service, η is the his-
tory generated so far, m is the monitor flag, and e′ models the code in execution.
When unambiguous, we simply write � for �〈e : τ〉 in states.

The syntax and the operational semantics of networks follows; the operator ‖
is associative and commutative. Given a network {�i〈ei : τi〉}i∈1..k, a network
configuration N has the form:

{�i : πi � ηi, mi, e
′
i}i∈1..k = �1 : π1 � η1, m1, e

′
1 ‖ · · · ‖ �k : πk � ηk, mk, e′k.

To trigger a computation of the network, we single out a set of clients, and fix
the plans πi for each of them. We name these clients initiators. We associate the
empty plan to the other services. Then, for all i ∈ 1..k, the initial configuration
has ηi = ε, mi = off , and e′i = ∗ if �i is a service, while e′i = ei if �i is an
initiator.

We now comment on the semantic rules of networks in Definition 4. A tran-
sition of a stand-alone service is localized at site � (rule Sta), regardless of a
plan π. The rule Net specifies the asynchronous behavior of the network: a tran-
sition of a sub-network becomes a transition of the whole network. Rule Pub

inserts a new service in the network, by publishing its interface τ , certified by
the type and effect system. The rules Down/Up make an idle service unavail-
able/available. The rules Req and Ret model successful requests and replies. A
request r, resolved by the current plan with the service �′, can be served if the
service is available, i.e. it is in the state �′ : 0�ε, ∗. In this case, a new activation
of the service starts: e is applied to the received argument v, under the plan π′,
received as well from the invoker. The special event σ signals that the service
has started. The invoker waits until �′ has produced a value. When this happens,
the service becomes idle again. Since we follow here the stateless approach, we
clear the history of a service at each activation (indeed, statefullness could be
easily obtained by maintaining the history η′ at �′ in the last rule). Rule Unres

triggers the construction of a new plan, in case of an unresolved choice. The
rules Pln and Fail apply a planning/failing strategy to obtain a plan in case
of a planned expression {e} and of a chosen service which has become unavail-
able. Several safe strategies are possible, also exploiting the static semantics of
networks. We will present some possible strategies in Sect. 6 and 7.

Finally, note that each service has a single instance in network configurations.
We could easily model replication of services, by creating a new instance for each
request. This change would have no practical impact on our results.



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 247

Definition 4. Network semantics

[Sta]

η, m, e → η′, m′, e′

� : π � η, m, e → � : π � η′, m′, e′

[Net]

N1 → N ′1

N1 ‖N2 → N ′1 ‖N2

[Pub] N → N ‖ �〈e : τ 〉 : 0 � ε, off , ∗ if � fresh and �
 e : τ

[Down] �〈e : τ 〉 : 0 � ε,m, ∗ → �〈e : τ 〉 : 0 � ε, m,N/A

[Up] �〈e : τ 〉 : 0 � ε,m, N/A → �〈e : τ 〉 : 0 � ε, m, ∗

[Req] � : (r[�′] | π) � η, m, C(reqrρ v) ‖ �′〈e : τ 〉 : 0 � ε,m′, ∗ →
� : (r[�′] | π) � η, m,C(wait �′) ‖ �′〈e : τ 〉 : (r[�′] | π) � σ, m, e v

[Ret] � : π � η, m, C(wait �′) ‖ �′ : π′ � η′, m′, v → � : π � η, m′, C(v) ‖ �′ : 0 � ε, m′, ∗

[Unres] � : (r[?] | π) � η, m,C(reqrρ v) → � : (r[?] | π) � η, m, C({reqrρ v})

[Pln] � : π � η, m,C({e}) → � : π′ � η, m′, C(e) if (π′, m′) = plan(π, m, e)

[Fail]
� : (r[�′] | π) � η, m, C(reqrρ v) ‖ �′〈e : τ 〉 : 0 � ε,m′′, N/A →
� : π′ � η, m′, C(reqrρ v) ‖ �′〈e : τ 〉 : 0 � ε, m′′, N/A

if (π′, m′) = fail(r[�′] | π, m, reqrρ)

The auxiliary functions plan and fail will be discussed in Sect. 6.

5 Static Semantics

In this section we define a static analysis for our core calculus. The analysis takes
the form of a type and effect system [25,33,37] where the effects, called history
expressions, represent all the possible behavior of services, while the types extend
those of the λ-calculus.

5.1 History Expressions

The syntax of types and history expressions is in Definition 5. History expressions
are a sort of context-free grammars. They include the empty history ε, events
α, H ·H ′ for sequentialization of code, H + H ′ for conditionals and branching,
security blocks ϕ[H ], recursion μh.H (where μ binds the occurrences of the
variable h in H), localization � : H , and planned selection {π1 �H1 · · ·πk �Hk}.

A history expression represents a set of histories η, possibly carrying security
annotations in the form ϕ[η]. The denotational semantics of a history expression



www.manaraa.com

248 M. Bartoletti et al.

Definition 5. History expressions

H, H ′ ::= history expressions
ε empty
h variable
α access event
H ·H ′ sequence
H + H ′ choice
ϕ[H ] security block
μh.H recursion
� : H localization
{π1 � H1 · · ·πk � Hk} planned selection

is a set, written (�i : Hi)i∈I . The intended meaning is that the behavior of the
service at location �i is approximated by the set of histories Hi (I is a finite
set of indexes). The stateless semantics 〈〈H〉〉π of a closed history expression H
depends on the given evaluation plan π, and is defined in two steps. In the first,
we define the stateful semantics �H�π

θ (in an environment θ binding variables),
i.e. a semantics in which services keep track of the histories generated by all
the past invocations. A simple transformation then yields 〈〈H〉〉π , in which each
invocation is instead independent of the previous ones, i.e. it always starts with
the empty history. We now briefly comment some peculiar semantic rules.

The meaning of an event α is the pair (? : {!, α!, α}), where the dummy
location ? will be bound to the actual location by the rule for � : H . The three
histories !, α!, α represent the three possible states of a computation: in !, the
event α has still to be generated; in α!, the event has been generated and the
computation may still proceed; in α, the computation has terminated. In general,
we write η! to denote a non-maximal history, i.e. a history which operationally
corresponds to a non-terminated computation. While non-maximal histories have
to be considered for a smooth semantic treatment, for simplicity we shall always
neglect them in our examples.

The semantics of a recursion μh. H is the usual fixed point construction. For
instance, the semantics of μh. (γ + α · h · β) comprises all the maximal histories
of the form αnγβn, for n ≥ 0 (i.e. γ, αγβ, ααγββ, . . .).

The history expression � : H localizes the behavior H to the site �. For in-
stance, � : α·(�′ : α′)·β denotes both αβ occurring at location �, and α′ occurring
at location �′.

A planned selection abstracts from the behavior of service requests. Given a
plan π, a planned selection {π1 � H1 · · ·πk � Hk} chooses those Hi such that π
includes πi. For instance, the history expression H = {r[�1] � H1, r[�2] � H2} is
associated with a request reqrτ that can be resolved into either �1 or �2. The
histories denoted by H depend on the given plan π: if π chooses �1 (resp. �2) for
r, then H denotes one of the histories represented by H1 (resp. H2). If π does
not choose either �1 or �2, then H denotes no histories.



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 249

Definition 6. Semantics of history expressions

〈〈H〉〉π = { � : { 〈〈η〉〉 | η ∈ H} | � : H ∈ �H�π
∅ }, 〈〈η〉〉 =

{
η if σ �∈ η

〈〈η0〉〉 ∪ 〈〈η1〉〉 if η = η0 σ η1

�ε�π
θ = (? : {!, ε}) �α�π

θ = (? : {!, α!, α}) �� : H�π
θ = �H�π

θ {�/?}

�ϕ[H ]�π
θ = ϕ[�H�π

θ ] �H · H ′�π
θ = �H�π

θ � �H ′�π
θ �H + H ′�π

θ = �H�π
θ ⊕ �H ′�π

θ

�h�π
θ = θ(h) �μh.H�π

θ =
⋃

n>0 fn({�i : {!}}i) where f(X) = �H�π
θ{X/h}

�{π1 � H1 · · ·πk � Hk}�π
ρ =

⊕
i∈1..k �{πi � Hi}�π

ρ �{0 � H}�π
ρ = �H�π

ρ

�{π0 |π1 � H}�π
ρ = �{π0 � H}�π

ρ ⊕ �{π1 � H}�π
ρ

�{r[�] � H}�π
ρ =

{
�H�π

ρ if π = r[�] | π′

(? : ⊥) otherwise

The auxiliary operators ' and ⊕ are introduced in Def. 7. The sequentializa-
tion ' of (�i : Hi)i∈I and (�j : H′

j)j∈J comprises �i : HiH′
j for all i = j, as well

as �i : Hi and �j : H′
j for all i �∈ J and j �∈ I. As an example, (�0 : {α0}, �1 :

{α1, β1}) ' (�1 : {γ1}, �2 : {α2}) = (�0 : {α0}, �1 : {α1γ1, β1γ1}, �2 : {α2}). The
choice ⊕ is pretty the same, except that union replaces language concatenation.
For example, (�0 : {α0})⊕ (�0 : {β0}, �1 : {β1}) = (�0 : {α0, β0}, �1 : {β1}).

Example 1. Consider the history expression:

H = �0 : α0 · {r[�1] � �1 : σ · α1, r[�2] � �2 : σ · α2} · β0

The maximal histores of the stateful semantics of H under plan π = r[�1] are:

�α0 · {r[�1] � �1 : σ · α1, r[�2] � �2 : σ · α2} · β0�
π{�0/?} = (�0 : {α0β0}, �1 : {σα1})

In this case, the stateless semantics just removes the event σ, i.e.:

〈〈H〉〉π = (�0 : {α0β0}, �1 : {α1}) )*

Example 2. Consider the following history expression. It represents a service �0
that recursively generates α0 and raises a request r (to be served by �1 only).

H = �0 : (μh. β0 + α0 · {r[�1] � �1 : σ · α1} · h)

The maximal histories of the stateless semantics 〈〈H〉〉π under plan π = r[�1] are:

(�0 : {β0, α0β0, α0α0β0, . . .}, �1 : {α1}) )*



www.manaraa.com

250 M. Bartoletti et al.

Definition 7. Auxiliary operators � and ⊕

xH =

{
{x η | η ∈ H} if x �= !
{x} if x = !

(a1 · · · an)H = a1 · · · (anH) HH′ = { ηH′ | η ∈ H}

{�i : Hi}I � (? : ⊥) = (? : ⊥) = (? : ⊥) � {�i : Hi}I

{�i : Hi}I ⊕ (? : ⊥) = (? : ⊥) = (? : ⊥) ⊕ {�i : Hi}I

{�i : Hi}I � {�j : H′j}J = {�i : HiH′i}I∩J ∪ {�i : Hi}I\J ∪ {�j : H′j}J\I

{�i : Hi}I ⊕ {�j : H′j}J = {�i : Hi ∪H′i}I∩J ∪ {�i : Hi ∪ {ε}}I\J ∪ {�j : H′j ∪ {ε}}J\I

5.2 Validity

We now define when histories are valid, i.e. they arise from viable computations
that do not violate any security constraint. Consider η0 = αwαrϕ[αw], where ϕ
requires that no write αw occurs after a read αr. Then, η0 is not valid according
to our intended meaning, because the rightmost αw occurs within a framing
enforcing ϕ, and αwαrαw does not obey ϕ. A valid history η must obey all the
policies within their scopes, determined by the framing events in η.

We formally define validity through the notion of safe set. Intuitively, a safe
set contains all the prefixes of a history that should be checked against a policy.
Consider again η0 = αwαrϕ[αw]. The prefix αw is not to be checked, since no
policy is active after αw is performed. Instead, upon entering ϕ we need to check
the past, i.e. the prefix αwαr, so we include it in the safe set. Of course, the next
αw is performed when the policy is still active, so we include αwαrαw in the safe
set as well. Concluding, the safe set of η0 above is ϕ[{αwαr, αwαrαw}]. For each
safe set ϕ[H], validity requires that all the histories in H obey ϕ.

Some notation is now needed. Let η
 be the history obtained from η by erasing
all the markers of security blocks ϕ[. . .], and let η∂ be the set of all the prefixes
of η, including the empty history ε. For example, if η0 = αwαrϕ[αw], then
(η 


0 )∂ = {ε, αw, αwαr, αwαrαw}. Then, the safe set S(η) and validity of histories
and of history expressions are defined as in Def. 8.

Note that validity of a history expression is parametric with the given evalua-
tion plan π, and it is defined location-wise on its semantics. If the plan contains
unresolved choices for requests mentioned in H , then H is not π-valid.

Example 3. The safe sets of the history expression H = ϕ[α0 · {r[�1]�α1, r[�2]�
ϕ′[α2]}] · α3, with respect to plans r[�1] and r[�2], are:

S(〈〈H〉〉r[�1]) = { ϕ[{ε, α0, α0α1}] }
S(〈〈H〉〉r[�2]) = { ϕ[{ε, α0, α0α2}], ϕ′[{α0, α0α2}] }



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 251

Definition 8. Safe sets and validity

The safe sets S(η) of a history η are defined as:

S(ε) = ∅ S(η α) = S(η) S(η0 ϕ[η1]) = S(η0 η1) ∪ ϕ[η

0 (η


1)∂ ]

A history η is valid (|= η in symbols) when:

ϕ[H] ∈ S(η) =⇒ ∀η′ ∈ H : η′ |= ϕ

A history expression H is π-valid when:

∀� : ∀η ∈ 〈〈H〉〉π@ � : |= η where @ is defined as (�i : Hi)i∈I@ �j = Hj

Let ϕ require “never α3”, and let ϕ′ require “never α2”. Then, H is r[�1]-valid,
because the histories ε, α0, and α0α1 obey ϕ. Instead, H is not r[�2]-valid,
because the history α0α2 in the safe set ϕ′[{α0, α0α2}] does not obey ϕ′. )*

5.3 A Type and Effect System for Services

We now introduce a type and effect system for our calculus, building upon [6,10].
Types and type environments, ranged over by τ and Γ , are mostly standard and
are defined in the following table. The history expression H in the functional
type τ

H−→ τ ′ describes the latent effect associated with an abstraction, i.e. one
of the histories represented by H is generated when a value is applied to an
abstraction with that type.

For notational convenience, we assume that the request type ρ in reqrρ is

a special type. E.g. we use 1
ϕ[ε]−−→ (1

ϕ′[ε]−−−→ 1) for the request type of a service
obeying ϕ and returning a function subject to the policy ϕ′. Additionally, we put
some restrictions on request types. First, only functional types are allowed: this

Definition 9. Types and Type Environments

τ, τ ′ ::= 1 | τ H−→ τ ′ types

Γ ::= ∅ | Γ ; x : τ (x �∈ dom(Γ )) type environments

Γ, H + e : τ type judgements

Γ, H +� e : τ localized type judgements



www.manaraa.com

252 M. Bartoletti et al.

models services being considered as remote procedures (instead, initiators have
type 1, so they cannot be invoked). Second, no constraints should be imposed
over ρ0 in a request type ρ0

ϕ−→ ρ1, i.e. in ρ0 there are no annotations. This is
because the constraints on the selected service should not affect its argument.

Types, type environments and typing judgements are defined in Def. 9. A
typing judgment Γ, H + e : τ means that the service e evaluates to a value of
type τ , and produces a history denoted by the effect H . The localized typing
judgment Γ, H +� e : τ is defined as the least relation closed under the typing
rules in Def. 10, and we write Γ, (� : H) + e : τ when the service e at � is typed
by Γ, H +� e : τ . We only comment the most peculiar rules. The rule [T-Loc]

allows to drop the localization from a typing judgement, by suitably tagging
the history expression. The effects in the rule [T-App] are concatenated accord-
ing to the evaluation order of the call-by-value semantics (function, argument,
latent effect). In rule [T-Abs], the actual effect of an abstraction is the empty
history expression, while the latent effect is equal to the actual effect of the func-
tion body. Note that [T-Abs] constraints the premise to equate the actual and
latent effects, up to associativity, commutativity, idempotency and zero of +,
associativity and zero of · , α-conversion, and elimination of vacuous μ-binders.
Our type system does not assign any type to wait expressions: indeed, waits
are only needed in configurations, and not in service code.

We stipulated that the services provided by the network have certified types.
Consequently, the typing relation is parametrized by the set W of services �〈e : τ〉
such that ∅, ε +� e : τ . We assume W to be fixed, and we write +� instead of
+�,W . To enforce non-circular service composition, we require W to be partially
ordered by ≺, where � ≺ �′ if � can invoke �′; initiators are obviously the least
elements of ≺, and they are not related to each other. Note that the up-wards
cone of ≺ of an initiator represents the (partial) knowledge it has of the network.

Example 4. Consider the following λreq expression:

e = if b then λzx. α else λzx. α′

Let τ = 1, and Γ = {z : τ
α+α′−−−→ τ ; x : τ}. Then, the following typing derivation

is possible:

Γ, α + α : τ

Γ, α + α′ + α : τ

∅, ε + λzx. α : τ
α+α′−−−→ τ

Γ, α′ + α′ : τ

Γ, α′ + α + α′ : τ

∅, ε + λzx. α′ : τ
α′+α−−−→ τ

∅, ε + if b then λzx. α else λzx. α′ : τ
α+α′
−−−→ τ

Note that we can equate the history expressions α +α′ and α′ +α, because + is
commutative. The typing derivation above shows the use of the weakening rule
to unify the latent effects on arrow types. Let now:

e′ = λwx. if b′ then ∗ elsew(e x)



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 253

Definition 10. Typing services

Γ, ε �
 x : Γ (x) [T-Var] Γ, α �
 α : 1 [T-Ev]

Γ, H �
 e : τ Γ, H �
 e′ : τ

Γ, H �
 if b then e else e′ : τ
[T-If]

Γ ;x : τ ; z : τ
H−→ τ ′, H �
 e : τ ′

Γ, ε �
 λzx. e : τ
H−→ τ ′

[T-Abs]

Γ, H �
 e : τ
H′′
−−→ τ ′ Γ, H ′ �
 e′ : τ

Γ, H ·H ′ · H ′′ �
 e e′ : τ ′
[T-App]

Γ, H �
 e : τ

Γ, ϕ[H ] �
 ϕ[e] : τ
[T-Sec]

Γ, H �
 e : τ

Γ, H �
 {e} : τ
[T-Pln] Γ, ε �
 ∗ : 1 [T-Unit]

τ = �{ ρ 	r[
′] τ ′ | ∅, ε �
′ e : τ ′ � ≺ �′〈e : τ ′〉 ρ ≈ τ ′ }
Γ, ε �
 reqrρ : τ

[T-Req]

Γ, H �
 e : τ

Γ, H + H ′ �
 e : τ
[T-Wkn]

Γ, H �
 e : τ

Γ, � : H � e : τ
if e is published at � [T-Loc]

Let Γ = {w : τ
H−→ τ, x : τ}, where H is left undefined. Then, recalling that

ε ·H ′ = H ′ = H ′ · ε for any history expression H ′, we have:

Γ, ε + ∗ : τ

Γ, ε + w : τ
H−→ τ

Γ, ε + e : τ
α+α′−−−→ τ Γ, ε + x : τ

Γ, α + α′ + e x : τ

Γ, (α + α′) ·H + w(e x) : τ

Γ, ϕ[(α + α′) ·H ] + ϕ[w(e x)] : τ

Γ, ε + ϕ[(α + α′) ·H ] + if b′ then ∗ elseϕ[w(e x)] : τ

To apply the typing rule for abstractions, the constraint H = ε + ϕ[(α + α′) ·H ]

must be solved. Let H = μh. ε + ϕ[(α + α′) · h]. It is easy to prove that:

�H� = �ε + ϕ[(α + α′) · h]�{�H�/h} = {ε} ∪ ϕ[(α + α′) · �H�]

We have then found a solution to the constraint above, so we can conclude that:

∅, ε + e′ : τ
μh. ε+ϕ[(α+α′)·h]−−−−−−−−−−−−→ τ )*

A service invocation reqrρ has an empty actual effect, and a functional type
τ , whose latent effect is a planned selection that picks from the network those
services known by � and matching the request type ρ.



www.manaraa.com

254 M. Bartoletti et al.

To give a type to requests, the auxiliary operators ≈, 	 and � are introduced
with the help of a running example. We write ρ ≈ τ , and say ρ, τ compatible,
whenever, omitting the annotations on the arrows, ρ and τ are equal.

Let ρ = (τ −→ τ) ϕ−→ (τ −→ τ), with τ = 1, be the request type in reqrρ,

and consider two services �i〈ei : τi〉 with τi = (τ hi−→ τ) αi·hi−−−→ (τ
βi−→ τ), for

i ∈ 1..2. We have that τ1 ≈ ρ ≈ τ2, i.e. both services are compatible with the
request r.

The operator 	r[�] combines a request type ρ and a type τ , if compatible. The
request type ρ is composed with the service types τ1 and τ2 as follows:

τ̂1 = (τ h1−→ τ)
{r[�1]��1:ϕ[σ·α1·h1]}−−−−−−−−−−−−−−→ (τ

{r[�1]�β1}−−−−−−−→ τ)

τ̂2 = (τ h2−→ τ)
{r[�2]��2:ϕ[σ·α2·h2]}−−−−−−−−−−−−−−→ (τ

{r[�2]�β2}−−−−−−−→ τ)

where τ̂1 = ρ 	r[�1] τ1 and τ̂2 = ρ 	r[�2] τ2.
The top-level arrow carries a planned selection {r[�] � � : ϕ[σ ·H ]}, meaning

that, if the service at � is chosen for r, then it generates (at location �, and
prefixed by σ) the behavior H , subject to the policy ϕ. Note that the service at
�1 returns a function whose (latent) effect {r[�1] � β1} means that β1 occurs in
the location where the function will be actually applied.

Finally, the operator � unifies the types obtained by combining the request
type with the service types. To conclude our running example, we now unify the
combination of the request type ρ with the service types, obtaining:

τ ′ = (τ h−→ τ)
{r[�1]��1:ϕ[σ·α1·h], r[�2]��2:ϕ[σ·α2·h]}−−−−−−−−−−−−−−−−−−−−−−−−−→ (τ

{r[�1]�β1, r[�2]�β2}−−−−−−−−−−−−−→ τ)

5.4 Type Safety

We now discuss the main properties of our type and effect system. We shall
restrict our attention to the case where (i) services never become unavailable,
and (ii) planning is only performed at start-up of execution, i.e. there is no
dynamic replanning.

A first result is a theorem stating that our type and effect system correctly
over-approximates the actual run-time histories. The formal statement is in [11].
Here we illustrate type correctness through an example.

Example 5. Consider an initiator e0 = α0; (reqrρ)∗ at site �0, with ρ = 1 → 1,
and a single service e1 = λ. α1; ϕ[if b thenα2 elseα3] at site �1, with ϕ requiring
“never α3”. Assume that the guard b always evaluates to true, and that the
execution monitor is off (we therefore omit it from configurations). Then, under
the plan π0 = r[�1], we have the following computation:



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 255

�0 : π0 � ε, e0 ‖ �1 : 0 � ε, ∗
→ �0 : π0 � α0, reqrρ ∗ ‖ �1 : 0 � ε, ∗
→ �0 : π0 � α0, wait �1 ‖ �1 : 0 � σ, e1∗
→ �0 : π0 � α0, wait �1 ‖ �1 : 0 � σα1, ϕ[if · · · ]
→ �0 : π0 � α0, wait �1 ‖ �1 : 0 � σα1, ϕ[α2]
→ �0 : π0 � α0, wait �1 ‖ �1 : 0 � σα1α2, ϕ[∗]
→ �0 : π0 � α0, wait �1 ‖ �1 : 0 � σα1α2, ∗
→ �0 : π0 � α0, ∗ ‖ �1 : 0 � ε, ∗

The history expression H0 extracted from e0 is:

�0 : α0 · {r[�1] � �1 : σ · α1 · ϕ[α2 + α3]}

Then, the run-time histories generated at �1 are contained in (σ〈〈H0〉〉π0@�1)
∂ ⊇
{ε, σ, σα1, σα1α2, σα1α3}, as predicted by the type correctness theorem. )*
We now state the type safety property. We say that a plan π is viable for e at
� when the evolution of e within a network, under plan π, does not go wrong
at �, i.e. it never reaches a configuration whose state at � is stuck. A state
� : π � η, e is not stuck if either e = v, or e = (reqrρ)v, or e = wait �′, or
� : π � η, e → � : π � η′, e′.

Theorem 1 (Type Safety). Let {�i〈ei : τi〉}i∈I be a network of services, typed
as ∅, Hi + ei : τi. If Hi is πi-valid, then πi is viable for ei at �i.

6 Planning

Once extracted a history expression H from a service e through the type and
effect system, we have to analyse H to find viable plans for executing e. Each
service selection may potentially affect the whole execution of a program, as
shown in Example 6 below. So, we cannot simply devise a viable plan by selecting
services that satisfy the constraints imposed by the requests, only.

The first step of our planning technique, called linearization, consists in lift-
ing all the service choices r[�] to the top-level of H . This semantic-preserving
transformation results in effects of the form {π1 � H1 · · ·πn � Hn}, where each
Hi is free of further planned selection. Its intuitive meaning is that, under the
plan πi, the effect of the overall service composition e is Hi.

Example 6. Let e = (λx. (reqr2
ρ2)x) ((reqr1

ρ1)∗) be an initiator, located at �0,
and let ρ1 = τ −→ (τ −→ τ) and ρ2 = (τ −→ τ)

ϕ−→ τ , where τ = 1 and the contract
ϕ requires “never γ after β”. Intuitively, the service selected upon the request r1



www.manaraa.com

256 M. Bartoletti et al.

returns a function, which is then passed as an argument to the service selected
upon r2. Assume the network comprises exactly the following four services:

�1〈e�1 : τ
α−→ (τ

β−→ τ)〉 �2〈e�2 : (τ h−→ τ)
h·γ−−→ τ〉

�′1〈e�′1 : τ
α′−→ (τ

β′
−→ τ)〉 �′2〈e�′2 : (τ h−→ τ)

ϕ′[h]−−−→ τ〉

where ϕ′ requires “never β′”. Since the request type ρ1 matches the types of e�1

and e�′1 , both these services can be selected for the request r1. Similarly, both
e�2 and e�′2 can be chosen for r2. Therefore, we have to consider four possible
plans when evaluating the history expression H of e:

H ={r1[�1] � �1 : σ · α, r1[�′1] � �′1 : σ · α′} ·
{r2[�2] � �2 : ϕ[σ · {r1[�1] � β, r1[�′1] � β′} · γ],
r2[�′2] � �′2 : ϕ[σ · ϕ′[{r1[�1] � β, r1[�′1] � β′}]]}

Consider first H under the plan π1 = r1[�1] | r2[�2], yielding 〈〈H〉〉π1 = (�0 : ∅, �1 :
{α}, �2 : {ϕ[βγ]}). Then, H is not π1-valid, because the policy ϕ is violated at
�2. Consider now π2 = r1[�′1] | r2[�′2], yielding 〈〈H〉〉π2 = (�0 : ∅, �′1 : {α′}, �2 :
{ϕ[ϕ′[β′]]}). Then, H is not π2-valid, because the policy ϕ′ is violated. Instead,
the remaining two plans, r1[�1] | r2[�′2] and r1[�′1] | r2[�2] are viable for e. )*

As shown above, the tree-shaped structure of planned selections makes it diffi-
cult to determine the plans π under which a history expression is valid. Things
become easier if we “linearize” such a tree structure into a set of history expres-
sions, forming an equivalent planned selection {π1 � H1 · · ·πk � Hk}, where no
Hi has further selections. E.g., the linearization of H in Example 6 is:

{r1[�1] | r2[�2] � �1 : σ · α · (�2 : ϕ[σ · β · γ]),
r1[�1] | r2[�′2] � �1 : σ · α · (�′2 : ϕ[σ · ϕ′[β]]),
r1[�′1] | r2[�2] � �′1 : σ · α′ · (�2 : ϕ[σ · β′ · γ]),
r1[�′1] | r2[�′2] � �′1 : σ · α′ · (�′2 : ϕ[σ · ϕ′[β′]])}

Finally, we verify the validity of history expressions that, like the Hi produced
by linearization, have no planned selections. Our technique is based on model
checking Basic Process Algebras (BPAs) with Finite State Automata (FSA).
This task is accomplished by our LocUsT model checker [44].

Summing up, we extract from an expression e a history expression H , we
linearize it into {π1 � H1 · · ·πk � Hk}, and if some Hi is valid, then we can
deduce that H is πi-valid. Type-safety ensures that the plan πi safely drives the
execution of e, without resorting to any run-time monitor. To verify the validity
of an history expressions that, like the Hi above, has no planned selections,
we regularize Hi to remove redundant framings, we transform Hi into a BPA
BPA(Hi), and we model-check BPA(Hi) against the policies on demand.



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 257

7 Recovery

We now focus on the case where services may become unavailable, and planning
may be performed at run-time. In [14], we devised four main classes of strategies:

Greyfriars Bobby. Follow loyally a former plan. If a service becomes un-
available, just wait until it comes back again. This strategy is always safe,
although it might obviously block the execution for an arbitrarily long time
— possibly forever.
Patch. Try to reuse as much as possible the current plan. Replace the un-
available services with available ones, possibly newly discovered. The new
services must be verified for compatibility with the rest of the plan.
Sandbox. Try to proceed with the execution monitor turned on. The new
plan only respects a weak form of compatibility on types ignoring the ef-
fect H , but it does not guarantee that contracts and security policies are
always respected. Turning on the execution monitor ensures that there will
not be security violations, but execution might get stuck later on, because
of attempted insecure actions.
Replan. Try to reconstruct the whole plan, possibly exploiting newly discov-
ered services. If a viable plan is found, then you may proceed running with
the execution monitor turned off. A complete plan guarantees that contracts
and security policies will be always respected, provided than none of the
services mentioned in the plan disappear.

To keep our presentation short, we only consider below the Greyfriars Bobby
strategy. We complete in Def. 11 the definition of the Pln and Fail rules of the
operational semantics of networks, by implementing the functions plan and fail .

Suppose one wants to replan an expression e, when the current plan is π and
the current state of the monitor flag is m. Our strategy constructs a new plan π′

which is coherent with π on the choices already taken in the past. We first update
the global history expression (i.e. that used to compute the starting plan) with
all the information about the newly discovered services, possibly discarding the
services now unavailable. The result of this step is then model checked for viable
plans. If a viable plan is found, then it is substituted for the old plan, and the
execution proceeds with the execution monitor turned off. If no viable plan is
found, the service repository is searched for services that fulfill the “syntactical”
requirements of requests, i.e. for each reqrρ to replan, the contract type ρ is
compatible with the type of the chosen service. The execution then continues
with the so-constructed plan π′, but the monitor is now turned on, because there
is no guarantee that the selected services will obey the imposed constraints. If
there are no services in the repository that obey this weaker condition, we try
to proceed with an incomplete plan π̄|π? with unresolved choices (written r[?]),
keeping the execution monitor on, and planning “on demand” future requests.

Example 7. Consider the following initiator service at location �0:

e0 = ϕ[(let f = reqr1 −→ (1 −→ 1) in f ∗); {let g = reqr′1 −→ (1 −→ 1) in g ∗}]



www.manaraa.com

258 M. Bartoletti et al.

Definition 11. Planning and recovering strategies

Let π̄ be the sub-plan of π containing all the already resolved choices.
Let H be the history expression of the initiator of the computation.
Let L be the set of newly-discovered available services.
Let HL be the update of H with the information about the services in L.
Let π′ = π̄ | π′′ be a plan coherent with π on the already resolved choices.

Then:

plan(π, m, e) =

⎧⎪⎨⎪⎩
(π′, off ) if HL is π′-valid
(π′, on) if ∀reqrρ ∈ e : r[�′] ∈ π′ ∧ �′ : τ =⇒ ρ ≈ τ

(π̄ | π?, on) otherwise, where π? maps each r �∈ π̄ to ?

fail (π, m, e) = (π, m) (Greyfriars Bobby)

The service obtains a function f through the first request r, applies it. Then it
asks for a plan to get a second function g through r′ and apply it. The policy
ϕ requires that neither αα nor ββ are performed at �0. Suppose the network
repository consists just of the following two services, located at �1 and �2:

�1〈λx.λy. α : 1 −→ (1 α−→ 1)〉 �2〈λx.λy. β : 1 −→ (1
β−→ 1〉

The history expression of the initiator service is:

H = �0 : ϕ[{r[�1] � α, r[�2] � β} · {r′[�1] � α, r′[�2] � β}]
Assume that the execution starts with the viable plan π = r[�1] | r′[�2], which
would generate the history αβ at �0, so obeying the policy ϕ.

�0 : π � ε, off , e0 ‖ �1 � ε, λx.λy. α ‖ �2 � ε, λx.λy. β

→∗ �0 : π � α, off , {let g = reqr′1 −→ (1 −→ 1) in g ∗}
‖ �1 � ε, λx.λy. α ‖ �2 � ε, λx.λy. β

Just after the function f has been applied, the service at �2 becomes unavailable:

→∗ �0 : π � α, off , {let g = reqr′1 −→ (1 −→ 1) in g ∗}
‖ �1 � ε, λx.λy. α ‖ �2 � ε, N/A

Assume now that a new service is discovered at �3, with type 1 −→ (1
β−→ 1):

→∗ �0 : π � α, off , {let g = reqr′1 −→ (1 −→ 1) in g ∗}
‖ �1 � ε, λx.λy. α ‖ �2 � ε, N/A ‖ �3 � ε, λx.λy. β

The planning strategy determines that the plan π′ = r[�1] | r′[�3] is viable, and
so the execution can safely proceed with π′ and with the monitor turned off.



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 259

Observe that the plan π′′ = r[�3] | r′[�1] is also viable, but it changes the choice
already made for the request r. Using π′′ instead of π′ would lead to a violation
of the policy ϕ, because of the history αα generated at �0. )*
It is possible to extend the type safety result in the more general case that also
the rules Pln, Fail and Unres can be applied. As before, as long as none of the
selected services disappear and the initial plan is complete, we have the same
static guarantees: starting from a viable plan will drive secure computations that
never go wrong, so making the execution monitor unneeded. The same property
also holds when the dynamic plan obtained through the rule Pln is a complete
one, and the monitor is off.

Instead, when the new plan is not complete, we get a weaker property. The
execution monitor guarantees that security will never be violated, but now there
is no liveness guarantee: the execution may get stuck because of an attempted
unsecure action, or because we are unable to find a suitable service for an unre-
solved request.

8 Conclusions

We have described a formal framework for designing service-oriented applica-
tions, featuring a graphical modelling language, a core calculus with a call-by-
contract invocation mechanism, as well as a system verification machinery, de-
ployed as a Sensoria tool described in Chapter 4-3 (Tools and Verification). All
the above items contribute to achieving static guarantees about planning, and
graceful degradation when services disappear.

As usual, a prototype can help in the design phase, because one can perform
early tests on the system, e.g. by providing as input selected data, one can ob-
serve whether the outputs are indeed the intended ones. The call-by-contract
mechanism makes this standard testing practice even more effective, e.g. one
can perform a request with a given policy ϕ and observe the resulting plans.
The system must then consider all the services that satisfy ϕ, and the observed
effect is similar to running a class of tests. For instance, a designer of an on-
line bookshop can specify a policy such as “order a book without paying” and
then inspect the generated plans: the presence of viable plans could point out
an unwanted behavior, e.g. due to an unpredicted interaction between different
special offers. As a matter of facts, standard testing techniques are yet not so-
phisticated enough to spot such kind of bugs. Thus, a designer may find the
λreq prototype useful to check the system, since unintended plans provide him
with a clear description of the unwanted interactions between services.

References

1. Abadi, M., Fournet, C.: Access control based on execution history. In: Proc. 10th
Annual Network and Distributed System Security Symposium (2003)

2. Banerjee, A., Naumann, D.A.: History-based access control and secure information
flow. In: Workshop on Construction and Analysis of Safe, Secure and Interoperable
Smart Cards, CASSIS (2004)



www.manaraa.com

260 M. Bartoletti et al.

3. Bartoletti, M.: Usage automata. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS
2009. LNCS, vol. 5511, pp. 52–69. Springer, Heidelberg (2009)

4. Bartoletti, M., Costa, G., Degano, P., Martinelli, F., Zunino, R.: Securing Java
with local policies. Journal of Object Technology 8(4) (2009)

5. Bartoletti, M., Degano, P., Ferrari, G.L.: Checking risky events is enough for local
policies. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS, vol. 3701,
pp. 97–112. Springer, Heidelberg (2005)

6. Bartoletti, M., Degano, P., Ferrari, G.L.: Enforcing secure service composition. In:
Proc. 18th Computer Security Foundations Workshop (CSFW) (2005)

7. Bartoletti, M., Degano, P., Ferrari, G.L.: History-based access control with lo-
cal policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332.
Springer, Heidelberg (2005)

8. Bartoletti, M., Degano, P., Ferrari, G.L.: Plans for service composition. In: Work-
shop on Issues in the Theory of Security (WITS) (2006)

9. Bartoletti, M., Degano, P., Ferrari, G.L.: Types and effects for secure service or-
chestration. In: Proc. 19th Computer Security Foundations Workshop (CSFW)
(2006)

10. Bartoletti, M., Degano, P., Ferrari, G.L.: Planning and verifying service composi-
tion. Journal of Computer Security 17(5) (2009)

11. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Secure service orchestra-
tion. In: Aldini, A., Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 4677, pp. 24–74.
Springer, Heidelberg (2007)

12. Bartoletti, M., Degano, P., Ferrari, G.-L., Zunino, R.: Types and effects for resource
usage analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47.
Springer, Heidelberg (2007)

13. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 19–35.
Springer, Heidelberg (2009)

14. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Semantics-based design for
secure web services. IEEE Trans. Software Eng. 34(1), 33–49 (2008)

15. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

16. Bonelli, E., Compagnoni, A., Gunter, E.: Typechecking safe process synchronization.
In: Proc. Foundations of Global Ubiquitous Computing. ENTCS, vol. 138(1) (2005)

17. Boreale, M., et al.: SCC: A service centered calculus. In: Bravetti, M., Núñez,
M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer,
Heidelberg (2006)

18. Brogi, A., Canal, C., Pimentel, E.: Behavioural types and component adaptation.
In: Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 42–56. Springer, Heidelberg (2004)

19. Buscemi, M.G., Montanari, U.: CC-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007)

20. Carbone, M., Honda, K., Yoshida, N.: Structured global programming for commu-
nicating behaviour. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17.
Springer, Heidelberg (2007)

21. Costa, G., Degano, P., Martinelli, F.: Secure service composition with symbolic
effects. In: Proc. SEEFM. IEEE Computer Society, Los Alamitos (2009)

22. Edjlali, G., Acharya, A., Chaudhary, V.: History-based access control for mobile
code. In: Ryan, M. (ed.) Secure Internet Programming. LNCS, vol. 1603. Springer,
Heidelberg (1999)



www.manaraa.com

Call-by-Contract for Service Discovery, Orchestration and Recovery 261

23. Ferrari, G.L., Guanciale, R., Strollo, D.: JSCL: A middleware for service coordina-
tion. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 46–60. Springer, Heidelberg (2006)

24. Fong, P.W.: Access control by tracking shallow execution history. In: IEEE Sym-
posium on Security and Privacy (2004)

25. Gifford, D.K., Lucassen, J.M.: Integrating functional and imperative programming.
In: ACM Conference on LISP and Functional Programming (1986)

26. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

27. Honda, K., Vansconcelos, V., Kubo, M.: Language primitives and type discipline for
structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998.
LNCS, vol. 1381, p. 122. Springer, Heidelberg (1998)

28. Igarashi, A., Kobayashi, N.: Resource usage analysis. In: Proc. 29th ACMSIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL) (2002)

29. Object Management Group. Business Process Management Initiative. Business
Process Modeling Notation. OMG (2009), http://www.bpmn.org

30. Koch, N., Mayer, P., Foster, H., Montangero, C., Varro, D., Gonczy, L.: UML
extensions for service-oriented systems. In: Wirsing, M., Hölzl, M. (eds.) Sensoria.
LNCS, vol. 6582, pp. 35–60. Springer, Heidelberg (2011)

31. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

32. Lazovik, A., Aiello, M., Gennari, R.: Encoding requests to web service compositions
as constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 782–786.
Springer, Heidelberg (2005)

33. Nielson, F., Nielson, H.R.: Type and effect systems. In: Olderog, E.-R., Steffen, B.
(eds.) Correct System Design. LNCS, vol. 1710, p. 114. Springer, Heidelberg (1999)

34. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999)

35. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and System Security (TISSEC) 3(1) (2000)

36. Skalka, C., Smith, S.: History effects and verification. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, pp. 107–128. Springer, Heidelberg (2004)

37. Talpin, J.P., Jouvelot, P.: The type and effect discipline. Information and Compu-
tation 2(111) (1994)

38. OASIS TC. Business process execution language for web services version 2.0,
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html

39. Toma, I., Foxvog, D.: Non-functional properties in Web Services. WSMO Deliver-
able (2006)

40. Vallecillo, A., Vansconcelos, V., Ravara, A.: Typing the behaviours of objects and
components using session types. In: Proc. of FOCLASA (2002)

41. Wirsing, M., et al.: Semantic-based development of service-oriented systems. In:
Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,
vol. 4229, pp. 24–45. Springer, Heidelberg (2006)

42. Woo, T.Y.C., Lam, S.S.: A semantic model for authentication protocols. In: IEEE
Symposium on Security and Privacy (1993)

43. Web services choreography description language. W3C Candidate Recommenda-
tion (November 9, 2005), http://www.w3.org/TR/ws-cdl-10/

44. Zunino, R.: LocUsT: a tool for checking usage policies. Technical Report TR-08-07,
Dip. Informatica, Univ. Pisa (2008)

http://www.bpmn.org
http://docs.oasis-open.org/wsbpel/2.0/CS01/wsbpel-v2.0-CS01.html
http://www.w3.org/TR/ws-cdl-10/


www.manaraa.com

CC-Pi: A Constraint Language for
Service Negotiation and Composition�

Maria Grazia Buscemi1 and Ugo Montanari2

1 IMT Lucca Institute for Advanced Studies, Italy
m.buscemi@imtlucca.it

2 Dipartimento di Informatica, University of Pisa, Italy
ugo@di.unipi.it

Abstract. We overview the cc-pi calculus, a model for specifying QoS
negotiations in service composition that also allows to study mechanisms
for resource allocation and for joining different QoS parameters. Our
language combines a synchronous channel-based communication mecha-
nism with a set of primitives for constraint handling. We also illustrated
a variant of the calculus in which the standard non-deterministic choice
is replaced by a prioritised guarded choice that follows a static form of
priority favouring its left over its right argument. We show how both
versions of the calculus work by considering two case studies of the Sen-

soria Project taken from the Telecommunication and Finance domains.
Specifically, we apply the original cc-pi calculus for specifying Telco QoS
policies and for enforcing them at execution time, and we formalise in
the prioritised cc-pi a QoS-aware negotiation of a credit request service.

1 Introduction

Service Oriented Computing offers a promising solution for providing applica-
tions in open dynamic environments, namely systems in which services may ap-
pear and disappear unpredictably and run-time changes like those on resource
availability frequently take place. The features of such systems call for a mecha-
nism of service composition that is not only concerned with integrating business
applications but also dynamically handles service selection. Services may expose
both functional properties (i.e. what they do) and non-functional properties (i.e.
the way they are supplied). Non-functional properties focus on the Quality of
Service (QoS) and typically include performance, availability, and cost. QoS
parameters play an important role in service composition and, specifically, in
dynamic discovery and binding. Indeed, a service requester may have minimal
QoS requirements below which a service is not considered useful. Moreover, mul-
tiple services that meet the functional requirements of a requester can still be
differentiated according to their non-functional properties.

A QoS contract is a contract, usually between a service requester and a service
provider, that records non-funtional properties about a service. The QoS values

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 262–281, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 263

appearing in a contract can be negotiated among the contracting parties prior to
service binding. If the QoS negotiation succeeds, the two parties can conclude a
contract. In the simplest case, one of the two parties exposes a contract template
that the other party can fill in with values in a given range. However, in general
the two parties may need a real negotiation in which they place arbitrary complex
policies. Moreover, if the parties fail to reach an agreement, they may decide to
increase their QoS offers or to weaken their requirements.

In this chapter we present a simple calculus, called cc-pi calculus, for modeling
processes able to specify QoS requirements and to conclude QoS contracts. Our
approach combines basic features of name-passing calculi and of concurrent con-
straint programming. Name-passing calculi, such as the pi-calculus [12], are a key
paradigm of computation whose interaction mechanism may dynamically change
the communication topology. Since the introduction of name-passing calculi, the
notion of names has been recognised as crucial in theories of mobile systems. The
name-passing calculus we start with is the explicit fusion calculus [20], a variant
of the pi-calculus [12] whose input prefix is not binder. As a consequence, the syn-
chronisation mechanism yields explicit fusions, i.e. simple constraints expressing
name equalities, instead of binding formal names to actual names. For example,
consider two processes u〈v〉.P and u〈x〉.Q, that are ready to make an output and
an input on u, respectively (note that neither v nor x are bound). The interac-
tion between these processes results in placing the explicit fusion of v and x in
parallel rather than applying the substitution [v/x]. This fusion will also affect
any further process R running in parallel: R |u〈v〉.P |u〈x〉.Q → R |P |Q |x = v.
The restriction operator (x) can be used to limit the scope of a fusion, e.g.:
R | (x)(u〈v〉.P |u〈x〉.Q) → R |(x)(P |Q |x = v).

The cc-pi calculus extends the explicit fusion calculus by generalising explicit
fusions like x = v to named constraints and by adding primitives for handling
such constraints. While the informal concept of constraint is widely used in a
variety of different fields, a very general, formal notion of constraint system
has been introduced in the concurrent constraint programming paradigm [18].
Concurrent constraint programming is a simple and powerful computing model
based on a shared store of constraints that provides partial information about
possible values that variables can take. Concurrent agents can act on this store by
performing either a tell action (for adding a constraint, if the resulting store
is consistent) or an ask action (for checking if a constraint is entailed by the
store). As computation proceeds, more and more information are accumulated,
thus the store is monotonically refined.

Unlike classical concurrent constraint programming, our calculus features a
retract construct, whose effect is to erase a previously told constraint, thus al-
lowing to model the allocation and deallocation of the same resource. A further
novelty of the cc-pi calculus is that its constraint system relies on the notion of
c-semiring [3]. Roughly, a c-semiring consists of a set equipped with two binary
operations, the sum + and the product ×, such that + is associative, commu-
tative and idempotent, × is associative and commutative and × distributes over
+. The sum a + b chooses the worst constraint better than a and b, while the



www.manaraa.com

264 M.G. Buscemi and U. Montanari

product a× b combines two constraints. A c-semiring is automatically equipped
with a partial ordering a ≤ b, which means that a is more constrained than b,
or, more interestingly, that a entails b.

Remarkably, our c-semirings are quite adequate for modeling the so-called
soft constraints, i.e. constraints which do not return only true or false, but more
informative values instead. In fact, it is easy to define c-semirings expressing
fuzzy, hierarchical, or probabilistic values. Also, optimization algorithms work
on the c-semiring consisting of the reals plus infinity with the operations of sum
as × and min as +. The last difference with respect to [18] is that we handle
variables, or rather names, differently. Indeed, our named constraints are based
on c-semirings equipped with the notion of permutation algebras, which allows
characterising the set of relevant, i.e. free, names of a constraint.

As a motivating example, consider a service offering computing resources (e.g.
units of CPUs of a given power) and suppose the service provider and a client
want to reach a QoS contract. The provider PN, with N available resources and
the client Cn requiring at least n resources can be specified in our framework
as follows, being max the maximum number of resources that can be allocated
to each client. The graph representation of the constraint system resulting from
the above negotiation is depicted below. Each node represents a variable, and
each constraint is modelled by a hyperedge connecting the variables involved in
the constraint.

PN = (x0) (tell (x0 = N).Q(x0))
Q(x) = (v) (x′) (tell (x′ = x− v). tell (v ≤ max). v〈.〉Q(x′))

Cn = (y) (tell (y ≥ n). c〈y〉. τ. retract (y ≥ n). tell (y = 0) ).

In words, PN first sets the initial number of resources to N and evolves to Q.
Process Q creates a name v representing the resources available to a client and
a name x′ representing a non-negative integer counting the resources left after
concluding a contract with the client; Q then adds the constraints x′ = x− v for
setting the value of x′ and v ≤ max for imposing the bound max on v. Finally,
Q signs the contract, i.e. it synchronises on a channel c with a client and, if
the synchronisation succeeds, Q becomes ready to accept a new request. On the
other side, Cn initially creates a local name y representing the required resources
and places the constraint y ≥ n. Next, Cn tries to synchronise on a public port
c with a server. In case of success, Cn makes some calculation involving the
obtained resources, which is modelled as a silent action τ . Then, Cn releases the
allocated resources by removing the above constraint on y (retract (y ≥ n)) and
by setting y to 0 (tell (y = 0)). Hence, a negotiation between PN and Cn begins
with the two parties placing their constraints. PN and Cn can then synchronise
(thus yielding the fusion of names v and y), if the resulting constraint system is
consistent, i.e. if n ≤ min(N, max), as shown by the graph representation below.

x0

x′ v y

x0 = N

x′ = x0 − v

v ≤ max

v = y
y ≥ n

provider PN

client Cn



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 265

In this work we also present a variant of the cc-pi calculus in which non-
deterministic choice is replaced by a form of prioritised guarded choice à la [9],
which features a static priority that favours its left over its right argument.
We claim that this version is more suited to model the protocol followed by
a negotiating partner who usually has a given order of preference between its
possible alternatives. The underlying idea is that in a choice

∑
i πi.Pi the branch

Pi is selected if i is the minimum index such that the guard πi is enabled. For
instance, if c × d is consistent the process d | (tell c.P + tell c′.Q) can make
a tell c action and evolve as P while the second branch cannot be chosen as
tell c′ has not the minimum index among the other alternatives. Consequently,
the synchronisation mechanism needs to be changed. As an example, composing
a process in parallel with an input/output action might enable a guard, thus
blocking the execution of a branch with greater index.

The present prioritised version of the cc-pi calculus decreases the level of non-
determinism. However, the non-determinism that is removed concerns alternative
branches of a choice while the calculus keeps the degree of non-determinism aris-
ing from the possible interleavings of processes in parallel. For instance, if there
are two choice operators running in parallel, the prioritised transition semantics
accounts for selecting an alternative within every choice but, in case both of
them have enabled guards, any possible interleaving is allowed.

To show how both the un-prioritised and prioritised versions of the cc-pi
work, we consider two case studies of the Sensoria Project taken from the
Telecommunication and Finance domains, which are described in Chapter 0-3.
In the first case, we apply the original cc-pi calculus for specifying Telco QoS
policies and for enforcing them at execution time. In the second case, we consider
a credit request service and we formalise in the prioritised cc-pi a QoS-aware
service negotiation.

Synopsis. In §2 we recall the basic concepts about c-semirings and named c-
semirings. In §3 we overview the cc-pi calculus by describing its syntax and
semantics. In §4 we apply cc-pi for specifying negotiations of Telco policies. In
§5 we present a prioritised variant of the cc-pi calculus and in §6 we show an
example of QoS negotiation taken from a financial domain. In §7 we draw some
conclusions and compare our contribution to related work in the literature.

Several results have been proved for both versions of the calculus. Such con-
tributions are technical and go beyond the scope of the present chapter. We refer
the interested reader to [6,7,5,8]. Specifically, in [6] the expressiveness of the un-
prioritised calculus is studied by giving reduction-preserving translations of the
explicit fusion calculus and of concurrent constraint programming into cc-pi. [7]
proposes a labelled semantics of cc-pi along with a notion of open bisimulation
much like in pi-calculus. [8] introduces a version of prioritised cc-pi calculus that
is a generalisation with dynamic priority of the calculus presented in §5: in [8]
we have exploited the presence of constraints in order to allow for dynamic pri-
orities that depend on the store of constraints and we have proved that dynamic
priorities are strictly more expressive than static priorities. Finally, the examples
shown in sections §4 and §6 are mainly based on [5] and [8], respectively.



www.manaraa.com

266 M.G. Buscemi and U. Montanari

2 Named Constraints

Let N be an infinite, countable set of names and let x, y, z . . . range over names.
We define (name) fusions as total equivalence relations on N with only finitely
many non-singular equivalence classes. By x = y we denote the fusion with a
unique non-singular equivalence class containing x and y. A substitution is a
function σ : N → N . We denote by [y/x] the substitution that maps x into y. A
permutation ρ is a bijective substitution. The kernel K(ρ) of a permutation ρ is
the set of names that are changed by ρ. A permutation algebra A is defined by a
carrier set and by a function defining how states are transformed by the finite-
kernel permutations. In our case, A characterises the set of ‘relevant’ names of
each element c of the c-semiring as the support supp(c) in A. Note that the
notion of support associated with permutation algebras recalls the concept of
free names in process calculi.

We now introduce the basic concepts about c-semirings and named c-
semirings. The interested reader is referred to [16,3,2,6] for a more detailed
treatment.

2.1 C-semirings

Definition 1. A commutative semiring is a tuple 〈A, +, ×, 0, 1〉 such that: (i)
A is a set and 0, 1 ∈ A, and +,× : A×A→ A are binary operators making the
triples 〈A,×, 1〉 and 〈A, +, 0〉 commutative monoids (semigroups with identity),
satisfying the following axioms.

a× (b + c) = (a× b) + (a× c) ∀ a, b, c ∈ A a× 0 = 0 ∀ a ∈ A

Definition 2 (c-semiring). A constraint semiring (c-semiring) 〈A, +, ×, 0, 1〉
is a commutative semiring such that + is idempotent and a+1 = 1 for all a ∈ A
(i.e. with top element).

Typical examples are the c-semiring for classical constraint satisfaction problems
CSPs 〈{False, True},∨,∧, False, True〉, the c-semiring for fuzzy CSPs 〈[0, 1], max,
min, 0, 1〉, and the c-semiring of weighted CSPs 〈R+ ∪ {+∞}, min, +, +∞, 0〉.
Note that the Cartesian product of two c-semirings is a c-semiring, hence this
framework is also suited to model multicriteria optimization.

Commutative semirings with top element are also known in the literature
as absorptive. Next, we briefly overview some classical notions and results on
absorptive semirings that are outlined in [16] and that we rephrase below for
c-semirings.

Let . be a relation over A such that a. b iff a + b = b. This relation gives
us a way to compare semiring values and constraints. Assume a c-semiring S =
〈A, +,×, 0, 1〉. Then: (i) . is a partial order; (ii) + and × are monotone on
.; (iii) a × b. a, b, for all a, b; (iv) 0 is its minimum and 1 its maximum; and
(v) for all a, b ∈ A, a + b is the least upper bound of a and b. Moreover, if ×
is idempotent, a × b is the greatest lower bound of a and b. S is invertible if



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 267

there exists an element c ∈ A such that b × c = a for all elements a, b ∈ A
such that a. b; S is complete if it is closed with respect to infinite sums, and
the distributivity law holds also for an infinite number of summands. It can be
proved that if S is complete then the set {x ∈ A | b× x. a} admits a maximum
for all elements a, b ∈ A, denoted a÷ b. Note that the idempotency of × implies
that the invertibility property holds. However, for the purpose of this chapter, we
simply require invertibility and completeness while not imposing idempotency
of ×.

2.2 Named C-semirings

A named c-semiring is a complete and invertible c-semiring enriched with a
notion of name fusions, a permutation algebra A and a hiding operator ν x. c
that makes a name x local in c. Note that in certain named c-semirings the
hiding operator coincides with the homologous operator ∃x defined in concurrent
constraint programming. Formally:

Definition 3. A named c-semiring C = 〈C, +,×, ν x. , ρ, 0, 1〉 is a tuple where:
(i) x=y ∈ C for all x and y in N ; (ii) 〈C, +,×, 0, 1〉 is a complete and invertible
c-semiring; (iii) 〈C, ρ〉 is a finite-support permutation algebra such that every
permutation ρ distributes over × and + and is inactive on 0 and 1 ; (iv) ∀x,
ν x. : C → C is a unary operation; (v) for all c, d ∈ C and for all ρ the
following axioms hold.

x=y × c = x=y × [y/x] c ρ (ν x. c) = ν x. (ρ c) if x /∈ K(ρ)
ν x. 1 = 1 ν x. ν y. c = ν y. ν x. c ν x. c = ν y. [y/x] c if y �∈ supp(c)
ν x. (c× d) = c× ν x. d if x �∈ supp(c) ν x. (c + d) = c + ν x. d if x �∈ supp(c)

The top left axiom above accounts for combining fusions and generic elements
of c-semirings. According to the top right axiom, the order of ρ and ν can be
changed if x is not affected by ρ. The remaining axioms rule how the ν operation
interacts with the operations of the c-semiring and they are inspired by the
analogous structural congruence axioms for restriction in process calculi. Given
C = 〈A, +,×, ρ, ν x. , 0, 1〉, a (named) constraint c is an element of A. For C ⊆ A,
C is consistent if (×C) �= 0; for c ∈ A, C entails c, written C + c, if (×C). c.
Moreover, by c≺ d we abbreviate c. d and c �= d.

Soft constraints. Given a domain D of interpretation for the set of names N
and a c-semiring S = 〈A, +,×, 0, 1〉, a soft constraint c can be represented as a
function c = (N → D)→ A associating to each variable assignment η = N → D
(i.e. instantiation of the variables occurring in the constraint) a value in A, which
can be interpreted e.g. as a set of preference values or costs. Soft constraints
can be combined by means of the operators of S. Assume Csoft is the tuple
Csoft = 〈C, +′,×′, ν x. , ρ, 0′, 1′〉 such that: (i) C is the set of all soft constraints
over N , D and S; (ii) name equalities x = y are defined as (x = y)η = 1
if η(x) = η(y), (x = y)η = 0 otherwise; (iii) (c1 +′ c2)η = c1η + c2η; (iv)
(c1 ×′ c2)η = c1η × c2η; (v) (ν x. c)η =

∑
d∈D (cη[d/x]), where

∑
d∈D denotes

the c-semiring sum operator and the assignment η[d/x] is defined, as usual, as



www.manaraa.com

268 M.G. Buscemi and U. Montanari

η[d/x](y) = d if x = y, η(y) otherwise; (vi) (ρ c)η = cη with η(x) = η(ρ(x));
(vii) 0′ η = 0 and 1′η = 1 for all η. It is possible to prove that Csoft is indeed a
named c-semiring and that the product ×′ is invertible and complete provided
that × is so. Remark that for S = 〈{False, True},∨,∧, False, True〉, the named
constraints of Csoft leads to solutions consisting of the set of tuples of legal
domain values. In this case, for instance, the interpretation of the constraint
c = x ≤ a × b ≤ y, where x, y are names in N , a, b are domain values in D,
and ≤ has the usual meaning of “less than or equal” on integers, is that c is the
function (N → D)→ {False, True}, with the assignment η such that cη = True if
η(x) ≤ a and b ≤ η(y), while cη = False otherwise. For instance, we write y ≤ 2
to abbreviate a constraint such that for each η that assigns to y a value smaller
than or equal to 2 holds True, otherwise holds False. By varying the structure
of the underlying c-semiring, we can model soft constraints, i.e. constraints that
return more informative values than just Booleans. As an example, if we consider
two constraints c1 and c2 defined over the c-semiring for Fuzzy CSPs 〈[0, 1], max,
min, 0, 1〉, the product c1 × c2 is the minimum between the preference values of
c1 and c2.

3 The cc-pi Calculus

3.1 Syntax

We assume the countable set of names N and a set of process identifiers, ranged
over by I. We let c range over constraints of an arbitrary named c-semiring C.
Definition 4. The sets of prefixes and cc-pi processes are defined as follows:

Prefixes π ::= τ
∣∣ x〈ỹ〉 ∣∣ x〈ỹ〉 ∣∣ tell c

∣∣ ask c
∣∣ retract c

∣∣ check c

Unconstrained U ::= 0
∣∣ U |U ∣∣ ∑

i πi.Ui

∣∣ (x)U
∣∣ I(ỹ)

Processes

Constrained P ::= U
∣∣ c

∣∣ P |P ∣∣ (x)P
Processes

Hereafter, by ỹ we denote a tuple of names. The τ prefix stands for a silent ac-
tion, the output prefix x〈ỹ〉 for emitting over the port x the message ỹ and the
input prefix x〈ỹ〉 for receiving over x a message and fusing it to ỹ. Prefix tell c
generates a constraint c and puts it in parallel with the other constraints, if the
resulting parallel composition of constraints is consistent; tell c is not enabled
otherwise. Prefix ask c is enabled if c is entailed by the set of constraints in
parallel. Prefix retract c removes a constraint c, if c is present. Prefix check c
is enabled if c is consistent with the set of constraints in parallel. Unconstrained
processes U are essentially processes that can only contain constraints c in pre-
fixes tell c, ask c, retract c, and check c. As usual, 0 stands for the inert
process and U |U for the parallel composition.

∑
i πi.Ui denotes an external

choice in which some guarded unconstrained process Ui is chosen when the cor-
responding guard πi is enabled. Restriction (x)U makes the name x local in U .



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 269

I(ỹ) denotes a definition call where a defining equation for the process identifier
I is of the form I(x̃) def= U with |x̃| = |ỹ|. Constrained processes P are defined
like unconstrained processes U but for the fact that P may have constraints
c in parallel with processes. We simply write processes to refer to constrained
processes.

We extend the usual notion of free names of a process by stating that the set
of free names of a constraint c is the support supp(c) defined in the previous
section. Formally, the set fn(P ) is inductively defined as follows:

fn(0) = ∅ fn(τ.U) = fn(U) fn(x〈ỹ〉.U) = {x, ỹ} ∪ fn(U) fn(x〈ỹ〉.U) = {x, ỹ} ∪ fn(U)

fn(π.U) = supp(c) ∪ fn(U) if π = tell c, ask c, retract c, check c

fn(
∑

i πi.Ui) = ∪i fn(πi.Ui) fn(I(x̃)) = fn(U) if I(x̃) def= U

fn(c) = supp(c) fn(P |Q) = fn(P ) ∪ fn(Q) fn((x)P ) = fn(P ) \ {x}

We write n(P ) for the set of names of a process P and bn(P ) = n(P )\ fn(P ) for
the set of bound names ; the usual notion of α-conversion on bound names holds.
By σ P we denote the process obtained from P by simultaneously substituting
each free occurrence of z in P by σ(z), possibly α-converting bound names.

3.2 Operational Semantics

The reduction semantics, as usual, is given in two steps: the definition of a
structural congruence, which rearranges processes into adjacent positions, and a
notion of reduction relation that captures computations.

Definition 5. We let structural congruence, ≡, be the least congruence over
processes closed with respect to α-conversion and satisfying the following rules.

(Ax-Par) P |0 ≡ P P |Q ≡ Q|P (P |Q)|R ≡ P |(Q|R)

(Ax-Sum) P + 0 ≡ P P + Q ≡ Q + P (P + Q) + R ≡ P + (Q + R)

(Ax-Res) (x)0 ≡ 0 (x)(y)P ≡ (y)(x)P P |(x)Q ≡ (x)(P |Q) if x �∈ fn(P )

(Ax-Rec) I(ỹ) ≡ [ỹ/x̃]U if I(x̃) def= U

These axioms can be applied for reducing every process P into a normal form
(x1) . . . (xn) (C |U), where C is a parallel composition of constraints and U is
an unconstrained process. Specifically, the axioms are applied from left to right
in the following order: (Ax-Res) for moving forward restrictions, and (Ax-Par)

for grouping constraints together, and (Ax-Rec). The normal form of a process
is unique up to commutativity of parallel composition. In the sequel we write
P≡nf Q to mean that Q is the normal form of P .

Definition 6. The reduction relation over processes → is the least relation
satisfying the inference rules in Table 1. We use the following notations: C
stands for the parallel composition of constraints c1 | . . . | cn; C consistent
means (c1 × . . . × cn) �= 0; C + c if (c1 × . . . × cn). c; C − c stands for
c1 | . . . | ci−1 | ci+1 | . . . | cn if c = ci for some i, while C− c = C otherwise.



www.manaraa.com

270 M.G. Buscemi and U. Montanari

Table 1. Reduction semantics for cc-pi

(tau) C | τ.U → C |U (tell) C | tell c.U → C | c |U if C | c consistent

(ask) C | ask c.U → C |U if C � c (retract) C | retract c.U → (C− c) |U

(check) C | check c.U → C |U if C | c consistent

(com) C | (x〈ỹ〉.U +
∑

i πi.Ui) | (z〈w̃〉.V +
∑

j π′j .Vj) −→ C | ỹ = w̃ |U |V
if |ỹ| = |w̃|, C | ỹ = w̃ consistent and C � x = z

(sum)

C |πi.Ui → P

C |
∑

i πi.Ui → P
(par)

P → P ′

P |U → P ′ |U

(res )

P → P ′

(x) P → (x)P ′
(struct)

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

The idea behind this reduction relation is to proceed as follows. First, rear-
ranging processes into the normal form (x1) . . . (xn) (C |U) by means of rule
(struct). Next, applying the rules (tell), (ask), (retract), and (check)

for primitives on constraints, the rule (sum) for selecting a branch, and the rule
(com) for synchronising processes. Finally, closing with respect to parallel com-
position and restriction ((par), (res)). More in detail, rule (tell) states that
if C | c is consistent then a process can place c in parallel with C, the process
is stuck otherwise. Rules (ask) and (check) specify that a process starting
with an ask c or, respectively, check c prefix evolves to its continuation if c
is entailed by C or, respectively, if c |C is consistent, and that the process is
stuck otherwise. By rule (retract) a process can remove c if c is among the
syntactic constraints in C; e.g., the process x=y | y = z | retract x = z. U does
not affect x=y | y = z. In rules (com), we write ỹ = w̃ to denote the parallel
composition of fusions y1 = w1 | . . . , | yn = wn. Intuitively, two processes x〈ỹ〉.P
and z〈w̃〉.Q can synchronise if the equality of the names x and z is entailed by
C and if the parallel composition C | ỹ = w̃ is consistent. Note that it is legal to
treat fusions as constraints c over C, because we only require named c-semirings
to include name fusions, as noted in § 2. Rule (par) allows for closure with
respect to unconstrained processes in parallel. This rule imposes to take into
account all constraints in parallel when applying the rules for constraints and
synchronisation.

The present semantics does not specify how to solve at each step the constraint
system given by the parallel composition of constraints C. However, in [14] it
is shown how to apply dynamic programming to solve a CSP by solving its
subproblems and then by combining solutions to obtain the solution of the whole
problem.

Below we consider a slightly more complex scenario of the one given in the
introduction with one provider PN and three clients Cn1 , Cn2 , and Cn3 . The graph
representation of the constraint system resulting from the negotiation among the
parties is depicted below.



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 271

x0

x1

x2

x3

v1

v2

v3

y1

y2

y3

x0 = N

x1 = x0 − v1

x2 = x1 − v2

x3 = x2 − v3

v1 = y1

v2 = y2

v1 ≤ max

v2 ≤ max

v3 ≤ max

y1 ≥ n1

y2 ≥ n2

y3 ≥ n3

Provideroff,N Clientreq1

Clientreq2

Clientreq3

Suppose that PN has allocated the resources y1 and y2, with yi ≥ ni for i = 1, 2,
to Cn1 and Cn2 , respectively. If Cn3 makes a request y3 ≥ n3 that PN is not able
to satisfy because n1 + n2 + n3 ≥ N, the synchronisation between PN and Cn3

cannot take place until some resources {yi}i, with (
∑

i yi) ≥ n1 + n2 + n3 − N,
are released.

4 A Telecommunication Case Study

In this section we analyse a case study borrowed from the Telecommunication
area, described in Chapter 0-3. We show how to apply the cc-pi calculus for
specifying, negotiating, and enforcing policies for Telco services. We start by
introducing a service scenario called CallBySms.

The CallBySms service allows a mobile phone user to activate a voice call by
sending an SMS message to a specific service number. The SMS message must
contain a nickname of the person the user wishes to call. The service is able to
automatically find the number associated with the nickname and to set up a
party call between the user and the callee. In order to keep privacy, the service
does not know actual phone numbers, but only opaque-id representing users.
The service in turn uses two services, ThirdPartyCall and ShortMessaging, for
specifying the operations respectively necessary to set-up and control calls and to
receive/send short messages. Figure 1 depicts a possible service scenario in which
John wishes to call Mary and he knows that Mary’s nickname is “sunshine”.

1. The Third Party application subscribes the services that are used by the
CallBySms service and signs a QoS contract with the Network Operator;

2. The CallBySMS service is activated and the Third Party application receives
a service number, e.g. 11111;

3. Mary sends an SMS “REGISTER sunshine” to the service number 11111;
4. The service associates “sunshine” to the opaque-id of Mary;
5. John sends an SMS “CALL sunshine” to the service number 11111;
6. The service retrieves the opaque-id associated to “sunshine” and set-up a

call;
7. John’s phone rings; John answers and gets the ringing tone;
8. Mary’s phone rings; Mary answers;
9. John and Mary are connected.



www.manaraa.com

272 M.G. Buscemi and U. Montanari

Fig. 1. CallBySms Service Scenario

Policies as constraints. We now focus on specifying and ensuring time policies.
In [5] we address modelling and enforcement of other policies such as policies on
frequency. For simplicity, hereafter we take the reference constraint system to be
a classical constraint satisfaction problem by considering the named c-semiring
of Boolean values. However, such constraint system can be easily generalised to
soft constraint satisfaction problems by replacing the underlying c-semiring with
an arbitrary c-semiring.

The constraint ctime(i, f) = (7 ≤ i ≤ 9) × (15 ≤ f ≤ 18) specifies the initial
and final time ranges within which calls can be set up by end users. Similarly,
dtime(i, f) = (6 ≤ i ≤ 8) × (17 ≤ f ≤ 19) states the time requirements of
the third party. The result of combining these policies is the intersection of
the initial and final time ranges, which is expressed by the c-semiring product
etime(i, f) = ctime(i, f) × dtime(i, f) = (7 ≤ i ≤ 8) × (17 ≤ f ≤ 18). Note that
the constraint etime is part of the QoS contract among the network operator and
the third party application and it is validated by the operator domain once a
call request from a end user is received. Other policies might depend on some
network operator parameter while being related to the agreement of the third
party with every end-user.

Cc-pi specification. We now show the main steps of the formalisation in cc-pi
calculus of the policy negotiation and service execution scenario of CallBySms.
We refer to [5] for a complete description of the specification.

The negotation phase between the third party application and the network
operator consists of the two parties placing their own constraints and trying to
synchronise on port x in order to export their local parameters. If the set of all
such constraints induced by the synchronisation is consistent, the two parties
have concluded a contract, which is expressed by the c-semiring product of all
constraints:



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 273

NetOp Neg(x, z) = (i, f) (tell ctime(i, f)). x〈i, f〉
3rdPA Neg(x) = (i′, f ′) (tell dtime(i′, f ′)).x〈i′, f ′〉

The process ClockT is meant to simulate the actual time by increasing of time
unit a variable t starting from its present value T. We assume this + operation
automatically resets the clock by the end of the day:

ClockT(t) = retract (t = T). tell (t = T + 1). ClockT+1(t)

After a service activation request by the third party application, the network
operator is ready to accept registration requests from end-users and to forward
them to the third party application. An end-user intending to register to Call-
BySms tries to synchronise with the network operator on z with its private
identity mary and nickname sunshine as parameters. The network operator for-
wards this request to the third party application by sending on x the nickname,
though not revealing the user’s identity:

Regist User(z, sunshine) = (mary) (z〈mary , sunshine〉. Wait Calls(mary))

NetOp Acpt Reqst(x, z, i, f, t) = (id ,nn)(z〈id ,nn〉.x〈nn〉.(
NetOp Acpt Reqst(x, z, i, f, t)

|NetOp Acpt Call(i, f, t, id ,nn)))

3rdPA Acpt Reqst(x ) = (nn ′) (x〈nn ′〉.(3rdPA Acpt Reqst(x ))

A user who wants to call Mary but only knows her nickname is specified by
a process sending its private name john on the public port sunshine and then
waiting to be connected with sunshine on port john. The network operator ver-
ifies that the call request is within the legal time range. In case of success, the
network operator forwards the name john to the private port mary in order to
connect the two users:

Wait Calls(mary) = (cal ′) (mary〈cal ′〉.cal ′〈〉.Wait Calls(mary))

Caller(sunshine) = (john)sunshine〈john〉.john〈〉
NetOp Acpt Call(i, f, t, id ,nn) = (cal )nn〈cal〉.(check (i ≤ t ≤ f ).id〈cal 〉.

NetOp Acpt Call(i, f, t, id ,nn))

The whole system S is given by the parallel composition of the two users, the
clock and the processes specifying the policy negotiation followed by the pro-
cesses modelling the service execution:

S = Regist User(z, sunshine) |Caller(sunshine) | tell (t = 0). Clock0(t))

| NetOp Neg(x).NetOp Acpt Reqst(x, z, i, f, t)

| 3rdPA Neg(x).3rdPA Acpt Reqst(x )

where the above notation P.Q is shorthand for the process that after completing
the execution of P behaves as Q.



www.manaraa.com

274 M.G. Buscemi and U. Montanari

Note that our framework can be employed to model more complex negotiation
scenarios, e.g. in which there is an arbitrary number of end-users or in which
the third party application and the network operator may want to retract their
initial policies and replace them with weaker constraints, in order to reach an
agreement.

5 The Prioritised cc-pi Calculus

We now present a prioritised variant of the cc-pi. The main novelty of the pri-
oritised cc-pi calculus with respect to the original cc-pi calculus concerns the
choice operation. First, following [9], we prevent output prefixes from appear-
ing as guards. The main reason behind this restriction is to avoid processes like
(x〈〉 + y〈)〉 | (y〈〉 + x〈)〉, in which we have to decide which synchronisation take
precedence over the other one. Second, the branch πi.Ui of a choice

∑
i πi.Ui is

chosen if not only the corresponding guard πi is enabled but also there is no
guard πj with j ≤ i that is enabled. Consequently, we remove axiom (Ax-Sum)

from the structural congruence given in Definition 5.
Before introducing the reduction semantics for the prioritised calculus, we for-

mally define the notions of enabled guard and maximal enabled guard. For C the
parallel composition of constraints c1 | . . . | cn, we adopt the same abbreviations
introduced in Definition 10 plus the following:

– C × d to mean c1 × . . .× cn × d;
– C ÷ d to mean (c1 × . . .× cn)÷ d.

Definition 7. Given a process P ≡nf C |U | ∑i πi.Vi, a guard πj is enabled
in P if: (i) πj = τ or (ii) πj = tell c, check c and C | c consistent or (iii)
πj = ask c and C + c or (iv) πj = z〈w̃〉 and U = U1 | . . . |Un and there exists
k with 1 ≤ k ≤ n such that Uk = x〈ỹ〉.U ′ and |ỹ| = |w̃| and C | ỹ = w̃ consistent
and C + x = z, for some x, ỹ, U ′ .

A guard πj is a maximal enabled guard in P ≡nf C |U | ∑i πi.Vi if πj is
enabled in P and there is no guard πk of

∑
i πi.Vi that is enabled in P and such

that k < j.

Roughly, a guard is a maximal enabled guard if it is a left-most enabled
guard among the alternatives. Note that if more than one branch can be se-
lected in different choices running in parallel, then the choice is performed non-
deterministically.

Definition 8 (acceptance set). Given a process P ≡nf C |U with U ≡nf

U1 | . . . |Un, the acceptance set of P , AS(P ), is defined as follows.

AS(P ) = {y〈x〉 | ∃m with 1 ≤ m ≤ n such that Um =
∑r

i=1 πi.Vi and
πj = y〈x〉 not enabled in P and � ∃ k with 1 ≤ k ≤ r
s.t. k < j and πk an enabled guard}.



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 275

Definition 9 (ready set). Given a process P ≡nf C |U , with U ≡nf

U1 | . . . |Un, the ready set of U , RS(U), is defined as follows.

RS(U) = {x〈w〉 | ∃m with 1 ≤ m ≤ n such that Um = x〈w〉.Vm}.

Roughly, the acceptance set contains all the input prefixes that are not enabled
and such that there is no further enabled guard with smaller index. Similarly,
the ready set contains the output prefixes that are ready to synchronise, i.e. that
are not under another prefix. Given a set of input prefixes X and a set of output
prefixes Y , and a parallel composition of constraints C, we say that C entails
X ∩ Y = ∅, written C + X ∩ Y = ∅, if for every pair x〈z〉 in X and y〈w〉 in Y ,
either C �+ x = y or C×z = w is inconsistent. As an example, consider the process
P ≡nf C | (x〈y〉.U1 + τ.U2) | (z〈w〉.V1 + τ.V2). Then, AS(P ) = {x〈y〉, z〈w〉}. Let
U be the process U = u〈v〉 | ∑i c′i : π′

i.U
′
i . The ready set RS(U) = {u〈v〉}. For

C = (x = u) we have that C �+ AS(P )∩RS(U) = ∅, because the equality of the
channel names x and u is entailed by the store and C × y = v is consistent.

Definition 10 (Reduction Semantics). The prioritised reduction relation
over processes → is the least relation satisfying the inference rules in Table 1
where rules (sum), (com), and (par) are replaced by their omologous rules in
Table 2.

Table 2. Novel reduction rules for prioritised cc-pi

(pr-sum)

C |πj .Uj → P (�)

C |
∑

i πi.Ui → P

(pr-com) C | (x〈ỹ〉.U) | (π1.V1 + . . . + z〈w̃〉.Vj + . . . + πn.Vn)
−→ C | ỹ = w̃ |U |Vj (��)

(pr-par)

P → P ′ (� � �)

P |U → P ′ |U

(�) πj maximal enabled guard in C | (
∑n

i=1 πi.Ui).

(��) z〈w̃〉 maximal enabled guard in C | (x〈ỹ〉.U) | (
∑n

i=1 πi.Vi).

(� � �) If P ≡nf C |V and C � AS(P ) ∩ RS(U) = ∅

Rule (pr-sum) and rule (pr-com) achieve a form of priority over actions. Rule
(pr-sum) states that the branch πi.Ui is selected if πi is a maximal enabled guard
in the list of alternatives. For instance, P ≡nf x = z | (ask (x = y).U + τ.V ) has
only a transition P → x = z |V since ask (x = y) is not enabled; on the other
side, Q ≡nf x = y |P can only reduce as Q → x = y |x = z |U . According to
rule (pr-com), two processes x〈ỹ〉.U and

∑
i πi.Vi can synchronise if there is a

maximal enabled guard z〈w̃〉 in x〈ỹ〉.U | ∑i πi.Vi. For example, let

P ≡nf x �= y | (z〈y〉.U + retract x �= y.V ) Q ≡nf z〈k〉.



www.manaraa.com

276 M.G. Buscemi and U. Montanari

The parallel composition P |Q has a single transition P |Q → x �= y | y = k |U .
Conversely, if we take Q′ ≡ z〈x〉 then the input prefix z〈y〉 cannot successfully
synchronize and hence P |Q′ only has a transition P |Q′ → V |Q′. Side condition
(� � �) of rule (pr-par) guarantees that every maximal enabled guard in P is
preserved in P |U . For instance, consider again the processes P , Q, and Q′ above.
The parallel composition P |Q |Q′ should not execute retract x �= y, since it
is not a maximal enabled guard. Indeed, the only transition of P |Q |Q′ can be
obtained by first applying rule (pr-com) to P |Q and, then, rule (pr-par) with
U = Q′. Hence, the action performed is the synchronisation between z〈y〉 and
z〈k〉. In [8] we give a formal proof that side condition (� � �) indeed guarantees
that the composition with an unconstrained process U does not activate any
additional synchronisation that could enable a guard x〈y〉 whose index is smaller
than the index of a maximal enabled guard.

6 A Finance Case Study

In this section we apply the prioritised cc-pi calculus for specifying QoS negotia-
tions. Consider a credit bank scenario in which a customer requests a mortgage
from a bank. This scenario is inspired by a Finance case study presented in
Chapter . The detailed interaction process is as follows:

Step I: The customer starts a credit request application and uploads her bal-
ances and a certain amount of money.

Step II: As soon as the data are uploaded, they are forwarded to a third party
application which analyses them and returns to the bank a profile of the
customer.

Step III: Depending of the produced profile, the bank can either reject the
application or make an offer. If the customer receives an offer, she can decide
whether to accept or reject it. In this last case, the bank may decide for an
alternative offer.

The services involved in the above scenario are the credit request service invoked
by the customer to obtain a mortgage from the bank, and a financial service
provided by a third party application and that is in turn requested by the bank
in order to obtain a customer profile as a result of analysing her data.

The parameters we focus on are: (i) the time taken by each service in order
to complete its task (response time, for short) and the cost of each service. The
negotiations are as follows:

1. The first negotiation is between a customer and the bank: the customer
specifies a maximum response time while she does not specify a cost because
we assume this service is free for him (she will possibly be charged if she
obtaines the mortgage).

2. Upon reception of a credit request, the bank starts a second negotiation on
the quality of service of a financial service. As the maximum response time
for the financial service the bank requests the same response time that it has



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 277

to ensure to the customer for the credit service. Therefore, the bank will be
able to respect the contract with the customer, provided a financial service
will in turn respect its contract with the bank. As for the cost of the service,
the bank initially offers a given price. If a financial service satisfying the cost
and response time requirements are found, an agreement will be reached
and, consequently, the negotiation (1) will be concluded successfully. By
contrast, if there is no such financial service, the bank will offer a higher
price for the same service. The negotiation will go on until either a suitable
financial service is found or a maximum price threshold imposed by the bank
is exceeded.

Specification in prioritised cc-pi. We assume that customers and banks nego-
tiate over the channel n the response time, while banks and the third party
application providing the financial service negotiate over m the cost of the fi-
nancial service and the response time. The constant rt stands for the maximal
response time accepted by the customer, while oc and max represent the initial
and the maximum price offered by the bank for the financial service, where we
assume oc ≤ max. Moreover, the third party application fixes a minimum cost rc
and a minimum response time ot for the offered service. In Table 3, we specify
in the prioritised cc-pi calculus a system describing the behaviour of customer,
bank, and third party application. We model QoS requirements and guarantees
in terms of CSPs (see §2). For the sake of simplicity, we initially consider crisp
constraints by taking the c-semiring of classical CSPs: in this case, we recall
that the product operation × is interpreted as a logical ∧ and a composition
of constraints is consistent if there exists a legal assignment of the variables.
The customer starts by fixing a constraint about the maximum allowed response
time, then she communicates on channel n with the bank by sending her QoS
request and a channel name ca that will be used to receive the acknowledge-
ment from the bank that the negotiation succeded. Afterwards, the bank sends
a request to a third party application over channel m with the response time
constraint required by the customer and with an initial maximal price oc. On
the other side, the third party application fixes a minimum cost rc for the ser-
vice and a minimum response time ot that can be guaranteed. If the constraints

Table 3. Credit request: cc-pi specification

Customerrt(n) = (ctime, ca) (tell ctime ≤ rt.n〈ctime, ca〉.ca〈〉)
Bankoc,max(n, m) = (btime, bcost , a) n〈btime, a〉.

Reqoc,max(n, bcost , btime, m, a)

Reqc,max(n, bcost , btime, m, a) = tell bcost ≤ c.(m〈bcost , btime〉.a〈〉
+ Negc,max(n, bcost , btime, m, a))

Negc,max(n, bcost , btime, m, a)) = retract bcost ≤ c.(tell (max < c + 50).fail〈〉
+ Reqc+50,max(n, bcost , btime, m, a))

3rd PArc,ot(m) = (vcost , vtime) (tell (vcost ≥ rc× vtime ≥ ot).
m〈vcost , vtime〉



www.manaraa.com

278 M.G. Buscemi and U. Montanari

placed by the three entities are consistent, i.e. there is a legal assignment of the
names, the bank and the third party application will be able to reach an agree-
ment, and consequently the bank and the customer as well. Such agreements are
modelled as successful synchronisations over the channels m and a, respectively.
Conversely, if the synchronisation on m cannot take place, the bank retracts its
offer and checks whether the maximum max would been exceeded by an higher
offer (action tell max < oc + 50). If this is the case the process fails, otherwise
the bank starts making a new offer.

As an example, consider the following system composed of a customer, a bank
and two third party applications.

S ≡ (n, m)(Customer50(n) |Bank150,300(n, m) | 3rd PA200,40(m)
| 3rd PA100,60(m))

The customer requests a maximum response time of 50 time units and the bank
starts by offering 150 Euros with a maximal offer of 300 Euros. On the other
side, the two third party applications offer minimum response time of 40 and
60 for a minimum price of 200 and 100 Euros respectively. It is clear that the
response time offered by the second third party application does not satisfy the
request by the customer: in fact, the synchronisation with the bank is never
possible as it would yield an inconsistent constraint (50 ≥ 60). On the other
side, the negotiation with the first third party application can take place after
the bank has increased its offer once. Formally, the system reduces as follows.
For the sake of brevity, we disregard the restricted names, the set of free names
of each process definition, and the second provider as it does not take part to
the interactions. Moreover, by →� we refer to a sequence of reduction steps →.
First the customer places her own constraint and comunicates with the bank:

S →� ((ctime ≤ 50) | (ctime = btime) | (ca = a)
| ca〈〉 |Req150,300 | 3rd PA200,40) ≡ S ′.

Next, the bank makes its first offer of 150 Euros to the third party applica-
tion that, in turn, places its time and cost constraints. The synchronisation on
m cannot take place as it would yield an inconsistent constraint (150 ≥ 200).
Hence, the bank removes the initial offer (retract action) and checks whether
the maximum would be exceeded by making a bigger offer. Since this limit is
respected, the process Req150+50,300 is activated.

S′ →� (ctime ≤ 50) | (ctime = btime) | (ca = a) | (vcost ≥ 200 × vtime ≥ 40)
| ca〈〉 |Req150+50,300 |m〈vtime, vcost〉.

Now, an agreement can be reached with price 200 Euros and response time
ranging between 40 and 50 time units.

Let us add to the above system S a third party application 3rd PA150,40. In
this case, once the constraints (vcost ≥ 150) and (vtime ≥ 40) have been placed,
the minimal enabled guard is m〈btime, bcost〉 rather than retract. Hence, the
prioritised reduction semantics ensures that the bank will reach an agreement
only with this additional provider rather than with 3rd PA200E,40.



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 279

We can also slightly vary the negotiation scenario and allow each party to
specify QoS requests and guarantees as soft constraints by changing the underly-
ing named c-semiring while keeping the same process specification. For instance,
consider the c-semiring of Fuzzy CSPs and assume the constraint ctime ≤ 50 of
the customer is replaced by the following fuzzy constraint (cost is a meta-variable
over the set of non-negative integers):

x �→ cost =

⎧⎪⎪⎨⎪⎪⎩
1 if 0 ≤ cost ≤ 25
.5 if 26 ≤ cost ≤ 50
.1 if 51 ≤ cost ≤ 60
0 if 61 ≤ cost

while the other constraints are translated to trivial fuzzy constraints (i.e. taking
only values 0 or 1). Of course, this change in the underlying setting leads to
different solutions as, for instance, a negotiation with the third party application
3rd PA100E,60 would now be successful in absence of more convenient agreements.

7 Conclusions and Related Work

In this work we have illustrated the cc-pi calculus, a constraint-based model of
QoS negotiations in service composition. Cc-pi features synchronous communi-
cations along with explicit primitives for handling constraints. Moreover, cc-pi is
parametric with respect to the choice of the underlying named c-semiring struc-
ture. We have shown the applicability of the cc-pi by employing the calculus for
specification and enforcement of Telco policies. We have also outlined a priori-
tised variant of the calculus in which the alternatives in a choice rather than
being selected non-deterministically are assigned a static priority. We have ar-
gued that this prioritised version is more suited to model the protocol followed by
a negotiating partner who usually has a given order of preference by employing.
To substantiate this claim, we have applied the prioritised cc-pi to model a sce-
nario involving three parties that negotiate their QoS requirements/guarantees
about a service meant for financial purposes.

Bistarelli and Santini [4] have presented a constraint-based model for Service
Level Agreements as an extension of soft concurrent constraint programming.
The proposed model includes operations quite different from those of the cc-pi
calculus, such as those for relaxing the constraints involving a given set of vari-
ables and then adding a new constraint, and for checking if a constraint is not
entailed by the store. Coppo and Dezani-Ciancaglini [11] have proposed a calcu-
lus of contracts by combining the basic primitives of the cc-pi calculus with the
notion of sessions and session types to design communication protocols which as-
sure safe and reliable communication sequences. Bacciu et al. [1] have developed
a formalism for specifying the service guarantees and requester requirements
on QoS and the negotiation mechanism. Unlike our model, their approach re-
lies on fuzzy sets rather than on c-semirings. Mukhija et al. [15] have proposed a
QoS-aware approach to dynamic service composition by providing a specification
language for QoS values and a broker that allows for service provider selection
based both on functional and QoS parameters. However, the key contribution



www.manaraa.com

280 M.G. Buscemi and U. Montanari

of [15] is the algorithm that allows choosing the offer that best matches a given
request while we are more interested in specifying the dynamics of the system
during the negotiation. Furthermore, none of the above languages allows mod-
elling complex negotiations, i.e. interactions in which QoS requirements may be
weakened if an agreement cannot be reached.

We know of no other attempt to assign priorities to the alternatives of a
choice operator in a constrained-based paradigm. However, a number of ap-
proaches have been proposed for taking into account different aspects of priority
using process calculi (see e.g. [9,19], and [10] for a survey on this topic). Most of
the contributions within this branch of research assign priority values to actions
and can be classified according to two main criteria: dynamic/static priority
(referring to the fact that action priorities may or may not change during com-
putations) and global/local pre-emption (meaning that an action with higher
priority may or may not pre-empt another action out its scope, hence modelling
centralised or distributed system behaviours). We adapt to our constraint-based
model the approach in [9] in which a prioritised choice is introduced rather than
assigning priorities to actions. Moreover, we differ from models like that in [19]
in which the only possible synchronisations are those between processes with the
same priorities as this mechanism does not fit the negotiation scenarios we need
to model.

Within the Sensoria project, several process calculi have been designed for
modelling interactions in SOC scenarios (see Chapter 2-1). Among those calculi,
COWS proposes a communication mechanism featuring dynamic priorities and
local pre-emption. Unlike our prioritised calculus, in COWS processes running in
parallel are assigned different priorities as a consequence of the fact that receive
actions have higher priorities if they have more defined patterns. In fact, the
goal of this mechanism is to ensure that service instances take precedence over
service definitions, thus preventing creation of wrong new instances.

References

1. Bacciu, A., Botta, A., Melgratti, H.: A fuzzy approach for negotiating quality
of services. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS,
vol. 4661, pp. 200–217. Springer, Heidelberg (2007)

2. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based
formalisms. In: ECAI, pp. 63–67. IOS Press, Amsterdam (2006)

3. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of the ACM 44(2), 201–236 (1997)

4. Bistarelli, S., Santini, F.: A nonmonotonic soft concurrent constraint language for
sla negotiation. Electr. Notes Theor. Comput. Sci. 236, 147–162 (2009)

5. Buscemi, M.G., Ferrari, L., Moiso, C., Montanari, U.: Constraint-based policy ne-
gotiation and enforcement for telco services. In: Proc. TASE, pp. 463–472. IEEE
Computer Society, Los Alamitos (2007)

6. Buscemi, M.G., Montanari, U.: Cc-pi: A constraint-based language for specifying
service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
18–32. Springer, Heidelberg (2007)



www.manaraa.com

CC-Pi: A Constraint Language for Service Negotiation and Composition 281

7. Buscemi, M.G., Montanari, U.: Open bisimulation for the concurrent constraint pi-
calculus. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 254–268. Springer,
Heidelberg (2008)

8. Buscemi, M.G., Montanari, U.: A contraint-based language for Qos negotiation in
service composition. Technical report, Dipartimento di Informatica, University of
Pisa (2009)

9. Camilleri, J., Winskel, G.: CCS with priority choice. Inform. and Comput. 116,
26–37 (1995)

10. Cleaveland, R., Luttgen, G., Natarajan, V.: Priority in process algebras. Technical
report, NASA/CR-1999-208979 ICASE-99-3 (1999)

11. Coppo, M., Dezani-Ciancaglini, M.: Structured communications with concurrent
constraints. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp.
104–125. Springer, Heidelberg (2009)

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, I and II. Inform.
and Comput. 100(1), 1–40, 41–77 (1992)

13. Montanari, U., Pistore, M.: Structured coalgebras and minimal hd-automata for
the pi-calculus. Theoret. Comput. Sci 340(3), 539–576 (2005)

14. Montanari, U., Rossi, F.: Constraint relaxation may be perfect. Artif. Intell. 48(2),
143–170 (1991)

15. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-aware service composition
in dino. In: Proc. ECOWS, pp. 3–12. IEEE Comp. Society, Los Alamitos (2007)

16. Rudeanu, S., Vaida, D.: Semirings in operations research and computer science.
Fundam. Inf. 61(1), 61–85 (2004)

17. Saraswat, V., Lincoln, P.: Higher-order linear concurrent constraint programming,
Technical Report, Xerox Parc (1992)

18. Saraswat, V., Rinard, M.: Concurrent constraint programming. In: Proc. POPL.
ACM Press, New York (1990)

19. Versari, C.: A core calculus for a comparative analysis of bio-inspired calculi. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 411–425. Springer, Heidelberg
(2007)

20. Wischik, L., Gardner, P.: Explicit fusions. Theoret. Comput. Sci. 340(3), 606–630
(2005)



www.manaraa.com

Advanced Mechanisms for Service Composition,
Query and Discovery�

Michele Boreale1 and Mario Bravetti2

1 Dip. di Sistemi e Informatica, Università di Firenze, Italy
boreale@dsi.unifi.it

2 Dip. Scienze dell’Informazione, Università di Bologna, Italy
bravetti@cs.unibo.it

Abstract. One of the ultimate goals of Service Oriented Computing
(SOC) is to provide support for the automatic on-demand discovery of
basic functionalities that, once combined, correctly compute a user de-
fined task. To this aim, it is necessary for services to come equipped with a
computer-understandable interface that allow applications to match the
provided functionalities with the user needs. In this context, a promi-
nent issue concerns the compliance between the operations invoked by
the client – the client protocol – and the operations executed by the
service – the service protocol. Process calculi, the theoretical tools in-
vestigated in the Work Package 2 of Sensoria, can contribute to the
solution of this problem. The idea we present in this chapter is to de-
scribe the externally observable message-passing behaviour of services as
process calculi expressions; following recently adopted terminology, we
call this description the service contract. We show how, in certain cases,
service contracts can be automatically extracted out of service behaviour,
and how they can be used to formally check the compliance among the
communication protocols of interacting services.

1 Introduction

Service Oriented Computing (SOC) is based on services, intended as autonomous
and heterogeneous components that can be published and discovered via stan-
dard interface languages and publish/discovery protocols. Web Services is the
most prominent service oriented technology: Web Services publish their interface
expressed in the Web Service Description Language (WSDL); they are discov-
ered through the UDDI protocol, and they are invoked using SOAP. Even if one
of the declared goal of Web Services is to support the automatic discovery of
services, this is not yet practically achieved. In Sensoria, we have addressed
this problem by considering how to: (a) actually extracting a manageable de-
scription of the service interface (contract) out of a reasonably detailed service
specification, and (b) guaranteeing that the services retrieved from a repository
behave correctly according to the needs of the user and of the other retrieved

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 282–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 283

services. In other terms, the retrieved services and the client invocation protocol
should be compliant/complementary. For instance, it should be possible to check
whether the overall composition of the client protocol with the invoked services
is stuck-free.

In order to be able to perform this kind of checks, it is necessary for the services
to expose in their interface also the description of their expected behaviour.
In general, a service interface description language can expose both static and
dynamic information. The former deals with the signature (name and type of
the parameters) of the invocable operations; the latter deals with the correct
order of invocation of the provided operations in order to correctly complete a
session of interaction. The WSDL, which is the standard Web Services interface
description language is basically concerned just with static information.

The aim of this paper is to report about process-algebraic techniques that
could be effectively exploited in order to describe also the dynamic part of ser-
vice interfaces. The choice of process-algebraic techniques for service interface
descriptions is a natural one, as demonstrated also by other work by Fournet
et al. [11] and Carpineti et al. [6]. The former introduces the notion of contract
as “interface that specify the externally visible message passing behaviour” of
processes, the latter refines this notion of contract considering a more specific
client-service scenario.

Following the terminology adopted in this book, we call service contract the
dynamic part of the service interface. More precisely, the service contract should
describe the sequence of input/output operations that the service intends to ex-
ecute within a session of interaction with other services. Let us consider two
major aspects that must be addressed before service contracts become an effec-
tive technique for service publication, discovery and composition.

1. Contract as abstraction. As reported above, a contract is informally de-
fined as the externally visible message passing behaviour of a service. We
formally define, using a process algebraic approach, how to extract the ex-
ternally observable behaviour from the description of the actual behaviour
of a service. The technique that we report is based on the notion of abstrac-
tion context, which indicates how to statically associate to service events the
corresponding observation tags. The achieved abstraction should be enough
informative to enable proofs of certain properties (e.g. safety ones) of the
actual service.

2. Contract-based service composition. One of the most important aspect
that the service contract technology should be able to address is correctness
of composition: given any set of services, it should be possible to prove that
their composition is correct knowing only their contracts, i.e. in the absence
of complete knowledge about (the internal details of) the services behaviour.
We formalize the notion of correct composition, and show which kind of
information should be exposed by a service in the corresponding contract,
in order to enable proofs of service composition correctness. The notion of
correctness that we consider requires that all computations in a service com-
position may be extended in order to reach a final state in which all services



www.manaraa.com

284 M. Boreale and M. Bravetti

have successfully completed their activities. In other terms, it is not possi-
ble for a service to wait indefinitely for another service to send or receive a
message.

Even if the two above contract-based techniques are strictly related, they are
concerned with two different levels of abstractions of the service behaviour. In
the first case, in order to extract an appropriate contract from a service, it is
necessary to start from a detailed description of its behaviour. In the second
case, it is possible to abstract away from the values actually exchanged between
the service(s) and the client; indeed, only the order of invocations is relevant.
These two different levels of abstractions justify the use of two different calculi for
service behaviour description. In order to investigate the contract as abstraction
concept, we start from a Pi-calculus description, while in order to investigate
contract-based service composition, we abstract away from value passing and we
consider a CCS-like process calculus.

This chapter is structured as follows. Sections 2 and 3 discuss, respectively, the
two basic aspects: contract as abstraction and contract-based service composition.
Section 4 contain some concluding remarks. Details of the techniques reported
in this chapter can be found in [1] as far as Section 2 is concerned, and in [3,5,4]
as far as Section 3 is concerned.

2 Contract as Abstraction

According to the Service Oriented Computing paradigm, services can be seen
as processes that provide a set of functionalities. A client can invoke a given
functionality by sending an appropriate message to the corresponding opera-
tion/channel on the service side, and then waiting for a reply message, con-
taining the computed results. More sophisticated schemes that involve complex
conversations between the invoker and the service, and between the service and
third parties, are also possible. When considering a system composed by sev-
eral parties, be them clients or services, one is often interested in describing
a choreography. This is the overall behaviour of the system in terms of, say,
invoked service operations together with their argument types, allowable order-
ings among such operations, and so on. In any case, since services interact via
message-passing, they can be seen as processes of some “first-order” calculus,
such as Pi- or Join-calculus. Approximating a first-order (Pi, Join) process by
a simpler propositional (CCS, bpp, Petri nets,...) model, not explicitly featur-
ing message-passing, can be understood as the operation of extracting a contract
out of a service. We consider methods to perform such approximations statically.
Specifically, we describe a type system to associate Pi-calculus processes with
restriction-free CCS types; such types can be thought of as contracts. A process
is shown to be in simulation relation with its types, hence safety properties that
hold of the types also hold of the process.



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 285

2.1 The Asynchronous Pi-Calculus

Processes. Let N , ranged over by a, b, c, . . . , x, y, . . ., be a countable set of names
and Tag, ranged over by α, β, . . . , be a set of tags disjoint from N ; we assume
Tag also contains a distinct “unit” tag (). The set P of processes P, Q, . . . is
defined as the set of terms generated by the following grammar:

P, Q ::= a〈b〉
∣∣ ∑

i∈I

ai(b).Pi

∣∣ ∑
i∈I

τ.Pi

∣∣ if a = b then P else P
∣∣ !a(b).P

∣∣ (νa : α)P
∣∣P |P .

This language is a variation on the asynchronous Pi-calculus. Please note that
the restriction operator (νa : α)P creates a new restricted name a with initial
scope P and assigns it a tag α.

In an output action a〈b〉, name a is the subject and b the object of the action.
Similarly, in a replicated input prefix !a(b).P and in

∑
i∈I ai(b).Pi, the names a

and ai for i ∈ I are said to occur in input subject position. Binders and alpha-
equivalence arise as expected and processes are identified up to alpha-equivalence
of names. Substitution of a with b in an expression e is denoted by e[b/a]. In what
follows, 0 stands for the empty summation

∑
i∈∅ τ.Pi. We shall sometimes omit

the object parts of input and output actions, when not relevant for the discussion;
e.g. a stands for an output action with subject a and an object left unspecified.
Similarly, we shall omit tag annotations, writing e.g. (νa)P instead of (νa : α)P ,
when the identity of the tag is not relevant.

Operational semantics. The (early-style) semantics of processes is given by the
labelled transition system in Table 1. We let �, �′, . . . represent generic elements
of N ∪ Tag. A transitions label μ can be a free output, a〈b〉, a bound output,
(νb : α)a〈b〉, an input, a(b), or a silent move, τ〈�, �′〉. We assume a distinct
tag ι for decorating internal transitions (arising from conditional and internal
chioce; see Table 1) and often abbreviate τ〈ι, ι〉 simply as τ . In the following we
indicate by n(μ) the set of all names in μ and by fn(μ), the set of free names
of μ, defined as expected. The rules are standard, except for the extra book-
keeping required by tag annotation of bound output and internal actions. In
particular, in (res-tau) bound names involved in a synchronization are hidden
from the observer and replaced by the corresponding tags. Note that if we erase
the tag annotation from labels we get exactly the usual labelled semantics of
asynchronous Pi-calculus.

2.2 Γ -Abstractions of Processes

A context Γ is a finite partial function from names to tags, written Γ = {a1 :
α1, · · · , an : αn}, with distinct ai. In what follows Γ � a : αmeans that a : α ∈ Γ .
A tag sorting system E is a finite subset of {α[β] |α, β are tags and α 	= ()}.
Informally, α[β] ∈ E means that subject names associated with tag α can carry
object names associated with tag β. In what follows, if α[β1], · · · , α[βn] are the
only elements of E with subject α, we write α[β1, · · · , βn] ∈ E .



www.manaraa.com

286 M. Boreale and M. Bravetti

Table 1. Operational semantics of Pi-calculus processes. Symmetric rules not shown.

(out) a〈b〉 a〈b〉−−→ 0

(g-sum)

∑
i∈I ai(bi).Pi

aj(c)
−−−→ Pj [c/bj ], j ∈ I (i-sum)

∑
i∈I τ.Pi

τ−→ Pj , j ∈ I

(rep) !a(c).P
a(b)−−→ P [b/c] | !a(c).P (com)

P
a〈b〉−−→ P ′ Q

a(b)−−→ Q′

P |Q τ〈a,b〉−−−−→ P ′ |Q′

(close)
P

(νb:β)a〈b〉−−−−−−→ P ′ Q
a(b)−−→ Q′

P |Q τ〈a,β〉−−−−→ (νb : β)(P ′ |Q′)
(open)

P
b〈a〉−−→ P ′ b �= a

(νa : α)P
(νa:α)b〈a〉−−−−−−→ P ′

(if-f) if a = b then P else Q
τ−→ Q, a �= b (if-t) if a = a then P else Q

τ−→ P

(par)
P

μ−→ P ′ bn(μ) ∩ fn(Q) = ∅
P |Q μ−→ P ′|Q

(res)
P

μ−→ P ′ a /∈ n(μ)
(νa : α)P

μ−→ (νa : α)P ′

(res-tau)
P

τ〈
1,
2〉−−−−−→ P ′ a ∈ {�1, �2} � = �1[α/a] �′ = �2[α/a]

(νa : α)P
τ〈
,
′〉−−−−→ (νa : α)P ′

A triple (P, Γ, E), written PΓ ;E , is called Γ -abstraction of P under E . In
what follows, we shall consider a fixed sorting system E , and keep E implicit
by writing PΓ instead of PΓ ;E . Next, we define a labeled transition system with
process abstractions as states and transition labels λ, which can be output, α〈β〉,
input, α〈β〉 or annotated silent action, τ〈α, β〉. The set of labels generated by
this grammar is denoted by Λ. The labeled transition system is defined by the
rules below. Here, μΓ denotes the result of substituting each a ∈ fn(μ)∩dom(Γ )
by Γ (a) in μ. Informally, PΓ represents the abstract behavior of P , once each
concrete action μ has been mapped to an abstract action λ. Note that in both
rule (a-outn) and rule (a-inpn) the context Γ grows with a new association
b : β. In rule (a-inpn), a tag for b is chosen among the possible tags specified in
E . Note that no type checking is performed by these rules, in particular (a-outn)

does not look up E to check that β can be carried by α.

(a-old)
P

μ−→ P ′ μ ::= τ 〈�, �′〉|a(b)|a〈b〉 n(μ) ⊆ dom(Γ ) λ = μΓ

PΓ
λ−→ P ′Γ

(a-outn)
P

(νb:β)a〈b〉−−−−−−→ P ′ Γ � a : α

PΓ
α〈β〉−−−→ P ′Γ,b:β

(a-inpn)

b /∈ dom(Γ )
P

a(b)−−→ P ′ Γ � a : α α[β] ∈E

PΓ
α〈β〉−−−→ P ′Γ,b:β

Simulation, bisimulation and modal logic. Given a labelled transition system T
with labels in Λ, strong bisimulation ∼ and simulation 
 over states of T are
defined as expected. The closed versions of simulation and bisimulation, written

c and ∼c, respectively, are defined in a similar manner, but limited to silent
transitions, i.e. transitions carrying labels of the kind τ〈α, β〉. In the rest of the
paper, we will sometimes make use of simple action-based modal logic formulae



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 287

φ, ψ, ... taken from modal mu-calculus [19] to formulate concisely properties of
types or processes. In particular, a state s of T satisfies 〈A〉φ, written s � 〈A〉φ,
if there is a transition s

λ−→ s′ with λ ∈ A and s′ � φ. The interpretation of
modality 〈〈A〉〉φ is similar, but the phrase “a transition s

λ−→ s′ with λ ∈ A” is
changed into “a sequence of transitions s σ−→ s′ with σ ∈ A∗”.

2.3 ccs− Types

In the type system we propose, types are essentially CCS expressions whose
behavior over-approximate the (abstract) process behavior.

The set Tccs of types, ranged over by T, S, . . . , is defined by the following
syntax:

T ::= α〈β〉 ∣∣ ∑
i∈I

αi〈βi〉.Ti

∣∣ ∑
i∈I

τ.Ti

∣∣ !α〈β〉.T ∣∣ T|T

where α, αi 	= (). The empty summation
∑

i∈∅ τ.Ti will be often denoted by
nil, and T1 | · · · |Tn will be often written as

∏
i∈{1,··· ,n} Ti. As usual, we shall

sometimes omit the object part of actions when not relevant for the discussion or
equal to the unit tag (), writing e.g. α and τ〈α〉 instead of α〈β〉 and τ〈α, β〉.Types
are essentially asynchronous, restriction-free CCS processes over the alphabet of
actions Λ. The standard operational semantics of CCS, giving rise to a labelled
transition system with labels in Λ, is assumed (see [1]).

The typing rules. We let E be a fixed tag sorting system and Γ a context.
Judgements of the type system are of the form Γ �E P : T. The rules of the
type system are presented in Table 2. Notice that rule (T-inp) has been intro-
duced with the sake of improving the readability of the system; indeed expanding
(T-sum) would result in a much longer and more complex rule.

A brief explanation of some typing rules follows. In rule (T-out), the output
process a〈b〉 gives rise to the action a〈b〉Γ = α〈β〉, provided this action is expected
by the tag sorting system E . The type T of an input process depends on E : in
(T-inp) all tags which can be carried by α, the tag associated with the action’s
subject, contribute to the definition of the summation in T as expected. In the
case of (T-rep), summation is replaced by a parallel composition of replicated
types, which is behaviorally – up to strong bisimulation – the same as a replicated
summation. The subtyping relation 
 is the simulation preorder over E , (T-sub).
The rest of the rules should be self-explanatory.

Results. The subject reduction theorem below establishes an operational cor-
respondence between the abstract behavior PΓ and any type T that can be
assigned to P under Γ .

Theorem 1 (subject reduction). Γ �E P : T and PΓ
λ−→ P ′

Γ ′ imply that

there is T′ such that T
λ−→ T′ and Γ ′ �E P ′ : T′.

As a corollary, we obtain that T simulates PΓ : thanks to Theorem 1, it is easy
to see that the relation R =

{
(PΓ ,T)

∣∣Γ �E P : T
}

is a simulation relation.



www.manaraa.com

288 M. Boreale and M. Bravetti

Table 2. Typing rules for ccs
− types

(T-inp)
Γ � a : α α[β1, · · · , βn] ∈ E ∀i ∈ {1, · · · , n} : Γ, b : βi �E P : Ti

Γ �E a(b).P :
∑

i∈{1,··· ,n}
α〈βi〉.Ti

(T-rep)
Γ � a : α α[β1, · · · , βn] ∈ E ∀i ∈ {1, · · · , n} : Γ, b : βi �E P : Ti

Γ �E !a(b).P :
∏

i∈{1,··· ,n}
!α〈βi〉.Ti

(T-gsum)

|I | �= 1 ∀i ∈ I : Γ �E ai(bi).Pi :
∑
j∈Ji

αi〈βj〉.Tij

Γ �E
∑
i∈I

ai(bi).Pi :
∑

i∈I,j∈Ji

αi〈βj〉Tij

(T-out)
Γ � a : α α[β] ∈ E Γ � b : β

Γ �E a〈b〉 : α〈β〉 (T-isum)
∀i ∈ I : Γ �E Pi : Ti

Γ �E
∑
i∈I

τ.Pi :
∑
i∈I

τ.Ti

(T-par)
Γ �E P : T Γ �E Q : S

Γ �E P |Q : T|S (T-res)
Γ, a : α �E P : T

Γ �E (νa : α)P : T

(T-if)
Γ �E P : T Γ �E Q : S

Γ �E if a = b then P else Q : τ.T + τ.S
(T-sub)

Γ �E P : T T 
 S
Γ �E P : S

Corollary 1. Suppose Γ �E P : T. Then PΓ 
 T.

A consequence of the previous result is that safety properties satisfied by a type
are also satisfied by the processes that inhabit that type – or, more precisely, by
their Γ -abstract versions. Consider the small logic defined in Section 2.2: let us
say that φ ∈ L is a safety formula if every occurrence of 〈A〉 and 〈〈A〉〉 in φ is
underneath an odd number of negations. The following proposition, follows from
Corollary 1 and first principles.

Proposition 1. Suppose Γ �E P : T and φ is a safety formula, with T � φ.
Then PΓ � φ.

As a final remark on the type system, consider taking out rule (T-sub): the new
system can be viewed as a (partial) function that for any P computes a minimal
type for P , that is, a subtype of all types of P (just read the rules bottom-up).

2.4 An Example

A simple printing system is considered, where users are required to authenticate
themselves before being allowed to print. For simplicity, only two levels of privi-
leges are considered for users, authorized and non-authorized. Correspondingly,
two sets of credentials are given: {ci | i ∈ I} (also written c̃i) for authorized users
and {cj | j ∈ J} (also written c̃j) for non-authorized users, with c̃i ∩ c̃j = ∅.
Process A is an authentication server that receives from any client a credential



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 289

c, a private return channel r and an error channel e, and then sends both r and
e to a credential-handling process T . If the client is not authorized, T will raise
an error on channel e, otherwise T establishes a private connection between the
client and the printer by creating a new communication link k and passing it
to the client. Process C describes the cumulative behavior of all clients: C tries
nondeterministically to authenticate using a credential cl, l ∈ I ∪ J , and then
waits for a link to the printer on the private channel r, or for an error, on the
private channel e. After printing or receiving an error, C’s execution restarts.
One expects that every printing request accompanied by authorized credentials
will be satisfied, and that every print is preceded by an authentication request.

Sys
�
= (νa : aut , c̃i : ok , c̃j : nok , M : (), print : pr)

(
T | C |A | !print(d)

)
T

�
=

∏
i∈I !ci(x, e).(νk : key)

(
x〈k〉 | k(d).print〈d〉

)
|
∏

j∈J !cj(x, e).e

A
�
= !a(c, r, e).c〈r, e〉

C
�
= (νi : iter)

(
i | !i.(νr : ret , e : err)

(∑
l∈I∪J τ.a〈cl, r, e〉 | r(z).((z〈M〉 | i) + e.i

))
Below, we analyze this system using CCS types. To ease the notation, we shall
omit the unit tag () involved in inputs and outputs and write e.g. α instead
of α[()]. We shall consider a calculus enriched with polyadic communication
and values: these extensions are easy to accommodate. Consider the tag sorting
system

E = {aut [ok , ret , err ], aut [nok , ret , err ], ok[ret , err ],

nok[ret , err ], ret [key ], pr[()], err[ ], key [()], iter[ ]} .
It is easy to prove that ∅ �E Sys : TT | TA | TC | !pr = T, where

TT

�
= !ok〈ret , err〉.

(
ret〈key〉 | key .pr

)
| !nok〈ret , err〉.err

TA

�
= !aut〈ok , ret , err〉.ok〈ret , err〉 | !aut〈nok , ret , err〉.nok〈ret , err〉

TC

�
= iter |!iter .

(
(τ.aut〈ok , ret , err〉+τ.aut〈nok , ret , err〉)|(ret〈key〉.(key |iter)+err .iter)

)
.

Furthermore, it holds that

T � φ
�
= ¬〈〈Λ − {nok〈ret, err〉, aut〈nok, ret, err〉, τ〈aut, nok, ret, err〉}〉〉 〈err 〉

T � ψ
�
= ¬〈〈Λ − {ok〈ret, err〉, aut〈ok , ret , err〉, τ〈aut, ok, ret, err〉}〉〉 〈pr 〉

that is, error only arises from an authentication request containing non autho-
rized credentials, and every print pr action is preceded by a successful authen-
tication request. Both formulas express safety properties, hence Proposition 1
ensures that are both satisfied by the abstract process Sys∅.

2.5 Extensions

We discuss here the other type systems presented in [1]. We just outline the most
relevant aspects and refer the interested reader to [1] for full details. Choreogra-
phies are generated by specific compositions of several actors, be them clients or



www.manaraa.com

290 M. Boreale and M. Bravetti

services. In [1] the type system reported here is adapted to choreographies, also
called global or closed systems, to contrast them with the ccs

− types applicable
to open processes. In the closed case, types are bpp processes. Sufficient condi-
tions are given under which a minimal bpp type can be computed that is bisimilar
to a given process. For closed systems, it is possible to get rid of synchronization
in types, obtaining a more direct and precise approximation of the behavior of
PΓ . Roughly, this is achieved by first associating each input prefix a(b).P in the

considered process with a labelled rewrite rule α[β]
α[β]−−→ α1[β1], ..., αn[βn].

Here, α[β] is the tag-representation of a(b), according to Γ . The right-hand side
of the rule is the multiset of observable outputs that can be triggered by a re-
duction involving the considered input prefix, according to Γ . An output action
a〈b〉 of P is associated with a symbol α[β], that can be rewritten according to
the rules. Types we obtain in this way are precisely Basic Parallel Processes
(bpp, [7]). Results similar to the open case holds for the closed case. Further-
more, by restricting one’s attention to (a generalization of) uniform receptive
processes [18], it is possible to show that a bisimulation relation relates pro-
cesses and their types: in this case, processes and their types satisfy the same
abstract properties.

It is possible to partially extend the treatment of closed behaviour to the case
of Join processes [10] (the Join open case requires additional care and we leave
it for future work). The essential step one has to take, at the level of types, is
moving from bpp to place/transition Petri nets (pn). Technically, this step is
somehow forced by the presence of the join pattern construct in the calculus,
which expresses multi-synchronization. In the context of infinite states transition
systems [9,13], moving from bpp to pn corresponds precisely to moving from
rewrite rules with a single nonterminal on the lhs (bpp) to rules with multisets
of nonterminals on the lhs (pn).

3 Contract-Based Service Composition

After having discussed, in the previous section, a general technique to extract a
contract from service behaviours, we consider the problem of the exploitation of
contracts in order to check the correctness of service compositions. In particular,
in this section we take, as a starting point, services described by means of a
calculus without value passing, similar to (a distributed version of) the CCS
based language used in the previous section as the contract language. We express
such services in the form of “plain” (language independent) contracts, i.e. finite
labeled transition systems (obtained e.g. as the semantics of service terms), in
order to check whether a service can be correctly introduced in a specific service
composition. Service compositions, also called choreographies, are specified as a
set of communicating contracts, in execution at specific locations, also called roles
in choreographies. Thus, checking whether a service can be correctly introduced
in a service composition coincides with checking whether its contract refines a
contract sitting at a given location in the context of a choreography.



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 291

The remainder of this section is devoted to the formal definition of this refine-
ment relation called subcontract relation. We first give a declarative definition of
the subcontract relation induced by the properties that we want the refinement
to satisfy. Then, we provide a testing based procedure to verify whether two
contracts are in subcontract relation.

3.1 Behavioural Contracts

Definition 1. A finite connected labeled transition system (LTS) with termi-
nation transitions is a tuple T = (S,L,−→, sh, s0) where S is a finite set
of states, L is a set of labels, the transition relation −→ is a finite subset of
(S − {sh}) × (L ∪ {√}) × S such that (s,

√
, s′) ∈−→ implies s′ = sh, sh ∈ S

represents a halt state, s0 ∈ S represents the initial state, and it holds that every
state in S is reachable (according to −→) from s0.

In a finite connected LTS with termination transitions we use
√

transitions
(leading to the halt state sh) to represent successful termination. On the con-
trary, if we get (via a transition different from

√
) into a state with no outgoing

transitions (like, e.g., sh) then we represent an internal failure or a deadlock.
We assume a denumerable set of action names N , ranged over by a, b, c, . . . .

We use τ /∈ N to denote an internal (unsynchronizable) computation. We con-
sider a denumerable set Loc of location names, ranged over by l, l′, l1, l2, · · · . In
contracts the possible transition labels are the typical internal τ action and the
input/output actions a, a, where the outputs (as we will see when composing
contracts) are directed to a destination address denoted by a location l ∈ Loc.

Definition 2. A contract is a finite connected LTS with termination transitions,
that is a tuple (S,L,−→, sh, s0), where L = {a, al, τ | a ∈ N ∧ l ∈ Loc}.
In the following we introduce a process algebraic representation for contracts by
using a simple extension of basic CCS [12] with successful termination 1.

Definition 3. We consider a denumerable set of contract variables V ar ranged
over by X, Y , · · · . The syntax of contracts is defined by the following grammar

C ::= 0 | 1 | α.C | C+C | X | recX.C

α ::= τ | a | al

where recX. is a binder for the process variable X. The set of the contracts C
in which all process variables are bound, i.e. C is a closed term, is denoted by
Pcon. In the following we will often omit trailing “1” when writing contracts.

The operational semantics of contracts is defined in terms of a transition system
labeled by L = {a, al, τ | a ∈ N ∧ l ∈ Loc} obtained by the rules in Table 3 (plus
symmetric rule for choice), where we take λ to range over L∪{√}. In particular
the semantics of a contract C ∈ Pcon gives rise to a finite connected LTS with



www.manaraa.com

292 M. Boreale and M. Bravetti

Table 3. Semantic rules for contracts (symmetric rules omitted)

1
√
−→ 0 α.C

α−→ C

C
λ−→ C′

C+D
λ−→ C′

C{recX.C/X} λ−→ C′

recX.C
λ−→ C′

termination transitions (S,L,−→,0, C) where S is the set of states reachable
from C and −→ includes only transitions between states of S.

In [4] we formalize the correspondence between contracts and terms of Pcon

by showing how to obtain from a contract T = (S,L,−→, sh, s0) a corresponding
C ∈ Pcon such that there exists a (surjective) homomorphism from the opera-
tional semantics of C to T itself.

In the following we use C λ−→ to mean ∃C′ : C λ−→ C′ and, given a string of
labels w ∈ L∗, that is w = λ1λ2 · · ·λn−1λn (possibly empty, i.e., w = ε), we use

C
w−→ C′ to denote the sequence of transitions C λ1−→ C1

λ2−→ · · · λn−1−→ Cn−1
λn−→

C′ (in case of w = ε we have C′ = C, i.e., C ε−→ C).

Definition 4 (Output persistence). A contract C ∈ Pcon is output persistent

if, given C
w−→ C′ with C′ al−→, then: C′

√
−→/ and if C′ α−→ C′′ with α 	= al then

also C′′ al−→.

The output persistence property states that once a contract decides to execute
an output, its actual execution is mandatory in order to successfully complete the
execution of the contract. This property typically hold in languages for the de-
scription of service behaviours or for service orchestrations (see e.g. WS-BPEL)
in which output actions cannot be used as guards in external choices (see e.g.
the pick operator of WS-BPEL which is an external choice guarded on input
actions). In these languages, when a process instance or an internal thread de-
cides to execute an output actions, it will have to complete such action before
ending successfully. In the context of service descriptions expressed by means
of process algebra with parallel composition, a syntactical characterization that
guarantees output persistence will be presented in the next section.

The actual impact of output persistence (in turn coming from an asymmetric
treatment of inputs and outputs) in our theory is the existence of a maximal in-
dependent refinement (see Section 3.4), i.e. a maximal refinement pre-order that
makes it possible to independently refine different contracts of an initial coreog-
raphy (see [3] for a counter-example showing the necessity of output persistence).

3.2 An Example of Service Language

The service language that we consider in this section, that is aimed to modeling
choreographies, can be seen as a distributed version of (a slightly modified version
of) the ccs

− language considered for contracts in the previous section, where



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 293

we also distinguish between successful and unsuccessful termination. Other dif-
ferences also come from the fact that we adopt operators which are closer to
choreography languages such as abstract WS-BPEL [16]. For instance, here we
consider sequential composition ; instead of the prefix operator . , we use a
repetition construct ∗ to program unbounded computations instead of recursive
definitions, and we assume that the decision to execute an output operation is
taken locally, thus all outputs are of the form τ ; b (where τ is the typical internal
acion of CCS and b is an output action on the name b). An important conse-
quence of this form of output operation is that it is not possible to use output
actions as guards of branches in a choice; for instance, we cannot write a + b,
but we have to write a+ (τ ; b) where performing the τ action represents the de-
cision to perform the action b: once the decision is taken we have to perform b to
reach success. Contracts arising from services with such a syntax are obviously
output persistent. Notice that, as long as output finite persistent contracts are
derived from services (here finiteness is guaranteed by usage of the Kleene-star
repetition operator instead of general recursion), our contract theory is totally
independent from the particular service language considered.

Definition 5 (Services). The syntax of services is

S ::= 0 | 1 | τ | a | τ ; al | S;S | S+S | S|S | S∗

In the following we will omit trailing “1” when writing services.

The operational semantics of services, giving rise to a contract in the form of a
finite connected LTS with termination transitions for every S, is quite standard;
see [5] for a formal definition.

3.3 Composing Services via Their Contract

Definition 6 (Systems). The syntax of systems (contract compositions) is

P ::= [C]l | P ||P | P\\L

where L ⊆ {al, al | a ∈ N ∧l ∈ Loc}. A system P is well-formed if: (i) every con-
tract subterm [C]l occurs in P at a different location l and (ii) no output action
with destination l is syntactically included inside a contract subterm occurring
in P at the same location l, i.e. actions al cannot occur inside a subterm [C]l
of P . The set of all well-formed systems P is denoted by P. In the following we
will just consider well-formed systems and, we will call them just systems.

The operational semantics of systems is defined by the rules in Table 4 plus
symmetric rules. We take λ to range over the set of transition labels Lsys =
{al, al, τ,

√ | a ∈ N ∧ l ∈ Loc}.
Example 1 (Travel Agency Service). As a running example, we consider a
travel agency service which, upon invocation, sends parellel invocations to an



www.manaraa.com

294 M. Boreale and M. Bravetti

Table 4. Semantic rules for contract compositions (symmetric rules omitted)

C
a−→ C′

[C]l
al−→ [C′]l

C
λ−→ C′ λ = al′ , τ,

√

[C]l
λ−→ [C′]l

P
λ−→ P ′ λ �= √

P ||Q λ−→ P ′||Q

P
al−→ P ′ Q

al−→ Q′

P ||Q τ−→ P ′||Q′
P
√
−→ P ′ Q

√
−→ Q′

P ||Q
√
−→ P ′||Q′

P
λ−→ P ′ λ �∈ L

P\\L λ−→ P ′\\L

airplane reservation service and a hotel reservation service in order to complete
the overall organization of a trip. The travel agency service can be defined as:

[Reservation; ( τ ;ReserveAirCompany;ConfirmFlight |
τ ;ReserveHotel;ConfirmRoom );

τ ;ConfirmationClient]TravelAgency

A possible client for this service can be as follows:

[τ ;ReservationTravelAgency ;Confirmation]Client

while the two reservation services could be:

[Reserve; τ ;ConfirmFlightTravelAgency ]AirCompany

[Reserve; τ ;ConfirmRoomTravelAgency ]Hotel

3.4 Subcontract Relation

Intuitively, a system composed of contracts is correct if all possible computa-
tions may guarantee completion; this means that the system is both deadlock
and livelock free (there can be an infinite computation, but given any possible
prefix of this infinite computation, it must be possible to extend it to reach a
successfully completed computation).

Definition 7 (Correct contract composition). A system P is a correct con-
tract composition, denoted P ↓, if for every P ′ such that P τ−→∗

P ′ there exists

P ′′ such that P ′ τ−→∗
P ′′

√
−→ .

We are now ready to formalize the notion of pre-order allowing for the refinement
of contracts preserving the correctness of contract compositions. We call these
class of pre-orders Independent Subcontracts. Given a contract C ∈ Pcon, we use
oloc(C) ⊂ Loc to denote the set of the locations of the destinations of all the
output actions occurring inside C.



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 295

Definition 8 (Independent Subcontract pre-order). A pre-order ≤ over
Pcon is an independent subcontract pre-order if, for any n ≥ 1, contracts C1, . . . ,
Cn ∈ Pcon and C′

1, . . . , C
′
n ∈ Pcon such that ∀i. C′

i ≤ Ci, and distinguished
location names l1, . . . , ln ∈ Loc such that ∀i. li /∈ oloc(Ci) ∪ oloc(C′

i), we have

([C1]l1 || . . . || [Cn]ln)↓ ⇒ ([C′
1]l1 || . . . || [C′

n]ln)↓
We will show that the maximal independent subcontract pre-order can be
achieved defining a coarser form of refinement in which, given any system com-
posed of a set of contracts, refinement is applied to one contract only (thus
leaving the other unchanged). We call this form of refinement singular subcon-
tract pre-order.

Intuitively a pre-order ≤ over Pcon is a singular subcontract pre-order when-
ever the correctness of systems is preserved by refining just one of the contracts.
More precisely, for any n ≥ 1, contracts C1, . . . , Cn ∈ Pcon, 1 ≤ i ≤ n, C′

i ∈ Pcon

such that C′
i ≤ Ci, and distinguished location names l1, . . . , ln ∈ Loc such that

∀k 	= i. lk /∈ oloc(Ck) and li /∈ oloc(Ci) ∪ oloc(C′
i), we require

([C1]l1 || . . . || [Ci]li || . . . || [Cn]ln)↓ ⇒ ([C1]l1 || . . . || [C′
i]li || . . . || [Cn]ln)↓

By exploiting commutativity and associativity of parallel composition we can
group the contracts which are not being refined and get the following cleaner
definition. We let Pconpar denote the set of systems of the form [C1]l1 || . . . ||[Cn]ln ,
with Ci ∈ Pcon, for all i ∈ {1, . . . , n}.
Definition 9 (Singular subcontract pre-order). A pre-order ≤ over Pcon

is a singular subcontract pre-order if, for any C,C′ ∈ Pcon such that C′ ≤ C,
P ∈ Pconpar, l ∈ Loc such that l /∈ oloc(C)∪oloc(C′)∪loc(P ), we have ([C]l||P )↓
implies ([C′]l||P )↓
From the simple structure of their definition we can easily deduce that singular
subcontract pre-order have maximum, i.e. there exists a singular subcontract
pre-order that includes all the other singular subcontract pre-orders.

Definition 10 (Subcontract relation). A contract C′ is a subcontract of a
contract C denoted C′ � C, if and only if for all P ∈ Pconpar, l ∈ Loc such that
l /∈ oloc(C) ∪ oloc(C′) ∪ loc(P ), we have ([C]l||P )↓ implies ([C′]l||P )↓
It is trivial to verify that the pre-order � is a singular subcontract pre-order and
is the maximum of all the singular subcontract pre-orders.

Theorem 2. A pre-order ≤ is an independent subcontract pre-order if and only
if ≤ is a singular subcontract pre-order.

We can, therefore, conclude that there exists a maximal independent subcontract
pre-order and it corresponds to “�”.

Example 2. It is not difficult to see that the parallel composition of the contracts
of services TravelAgency, Client, AirCompany and Hotel defined in the Exam-
ple 1 is a correct composition according to the Definition 7. It is also interesting



www.manaraa.com

296 M. Boreale and M. Bravetti

to observe that the travel agency service could invoke sequentially the service
without breaking the correctness of the system:

[ Reservation; τ ;ReserveAirCompany;ConfirmFlight;

τ ;ReserveHotel;ConfirmRoom; τ ;ConfirmationClient ]TravelAgency

Nevertheless, the contract of this new service is not in general a subcontract of
the one of the travel agency service proposed in Example 1 because there exist
context in which it cannot be a correctness preserving substitute. Consider, for
instance, the two following interacting reservation services:

[Reserve;HotelConfirm; τ ;ConfirmFlightTravelAgency ]AirCompany

[Reserve; τ ;ConfirmRoomTravelAgency ; τ ;HotelConfirmAirCompany]Hotel

In this case, the confirmation of the hotel reservation service is always sent to
the travel agency before the confirmation of the airplane company; this is not
problematic for the travel agency in the Example 1 that performs the invocation
in parallel, while the above sequential invocation deadlocks.

3.5 Subcontract Relation Characterization

The definition of the subcontract relation reported in Definition 10 cannot be
directly used to check whether two contracts are in relation due to the universal
quantification on all possible locations l and contexts P . In this section we first
prove that it is not necessary to range over all possible contexts P in order to
check whether a contract C′ is in subcontract relation with a contract C, but it
is sufficient to consider a restricted class of relevant contexts in which all input
and output operations are performed on channels on which the contract C can
perform outputs or inputs, respectively. Then we present an actual procedure,
achieved resorting to the theory of should-testing [17], that can be used to prove
that two contracts are in subcontract relation.

To characterize the restricted class of relevant contexts we have to introduce a
subcontract relation parameterized on the set of inputs and outputs executable
by the context. In the following we use Nloc = {al | a ∈ N , l ∈ Loc} to denote the
set of located action names and we assume that, given I ⊂ Nloc, I = {al | al ∈ I}.
Definition 11 (Input and Output sets). Given C ∈ Pcon, we define I(C)
(resp. O(C)) as the subset of N (resp. Nloc) of the potential input (resp. output)
actions of C. Formally, we define I(C) as follows (O(C) is defined similarly):

I(0) = I(1) = I(X) = ∅ I(τ.C) = I(al.C) = I(recX.C) = I(C)

I(a.C) = {a} ∪ I(C) I(C+C′) = I(C)∪I(C′)

Given the system P , we define I(P ) (resp. O(P )) as the subset of Nloc of the
potential input (resp. output) actions of P . Formally, we define I(P ) as follows
(O(P ) is defined similarly):

I([C]l) = {al | a ∈ I(C)} I(P ||P ′) = I(P ) ∪ I(P ′) I(P\\L) = I(P ) − L



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 297

We have now to consider slightly more complex contexts than Pconpar systems.
We let Pconpres denote the set of systems of the form ([C1]l1 || . . . ||[Cn]ln)\\L
with Ci ∈ Pcon for all i ∈ {1, . . . , n} and L ∈ {al, al | a ∈ N ∧ l ∈ Loc}.
Note that, given P = ([C1]l1 || . . . ||[Cn]ln)\\I ∪ O ∈ Pconpres, we have I(P ) =
(
⋃

1≤i≤n I([Ci]li)) − I and O(P ) = (
⋃

1≤i≤n O([Ci]li)) − O. In the following we
let Pconpres,I,O, with I,O ⊆ Nloc, denote the subset of systems of Pconpres such
that I(P ) ⊆ I and O(P ) ⊆ O.

Definition 12 (Input-Output Subcontract relation). A contract C′ is a
subcontract of a contract C with respect to a set of input located names I ⊆ Nloc

and output located names O ⊆ Nloc, denoted C′ �I,O C, if and only if for all
P ∈ Pconpres,I,O, l ∈ Loc such that l /∈ oloc(C) ∪ oloc(C′) ∪ loc(P ), we have
([C]l||P )↓ implies ([C′]l||P )↓
It is not difficult to see, looking at Definition 10, that �=�Nloc,Nloc

. Moreover,
notice that, given �I′,O′ , and larger sets I and O (i.e. I ′ ⊆ I and O′ ⊆ O) we
obtain a smaller pre-order �I,O (i.e. �I,O⊆�I′,O′). This follows from the fact
that extending the sets of input and output actions means considering a larger
set of discriminating contexts.

The following Proposition shows conditions on the input and output sets under
which also the opposite direction holds; more precisely, the set of potential inputs
and outputs of the other contracts in the system (as long as it includes those
needed to interact with the contract) is an information that does not influence
the subcontract relation.

Proposition 2. Let C ∈ Pcon be contracts, I, I ′ ⊆ Nloc be two sets of located
input names such that O(C) ⊆ I, I ′ and O,O′ ⊆ Nloc be two sets of located
output names such that for every l ∈ Loc we have I([C]l) ⊆ O,O′. We have that
for every contract C′ ∈ Pcon,

C′ �I,O C ⇐⇒ C′ �I′,O C ⇐⇒ C′ �I,O′ C

It is interesting to note that the above results depend on the systems being
output persistent. Consider, e.g., the trivially correct system [a]l1 ||[τ.al1 ]l2 . We
have that the contract a could be replaced by a + c.0 as well as the contract
τ.al1 that could be replaced by τ.al1 + c.0; this because it is easy to see that

a+ c.0 �∅,{al,cl|l∈Loc} a and τ.al1 + c.0 �{al1},{cl|l∈Loc} τ.al1

thus, as a consequence of the last two propositions and the fact that
�=�Nloc,Nloc

, we have that

a+ c.0 � a and τ.al1 + c.0 � τ.al1

But these two examples of subcontracts are not correct if we can write output
operations without a previous internal τ action. In fact, the two correct systems
[a]l1 ||[al1 + cl1 ]l2 and [a + cl2 ]l1 ||[al1 ]l2 , are no longer correct if we replace the
contracts a and al1 with their abovely discussed subcontracts.



www.manaraa.com

298 M. Boreale and M. Bravetti

The above example show that a subcontract may contain additional inputs
(see the additional input on channel c). This property is formalized by the follow-
ing Lemma that is a direct consequence of the fact that C′ �Nloc,

⋃
l∈Loc I([C]l) C

if and only if C′ � C as stated by Proposition 2. In the Lemma (and in
the following) we use the abuse of notation “C\\M” to stand for the contract
“C{0/a|a ∈M}” achieved replacing all input actions in the set M ∈ N with the
failed process 0.

Lemma 1. Let C,C′ ∈ Pcon be contracts. We have

C′\\(I(C′) − I(C)) � C ⇔ C′ � C

The remainder of this subsection is devoted to the definition of an actual proce-
dure for proving that two contracts are in subcontract relation. This is achieved
resorting to the theory of should-testing [17]. We denote with �test the should-
testing pre-order defined in [17] where we consider the set of actions used by
terms as being Λ = Lsys ∪{a, a | a ∈ N} (i.e. we consider located and unlocated
input and output actions and

√
is included in the set of actions of terms under

testing as any other action). We denote here with
√′ the special action for the

success of the test (denoted by
√

in [17]). Should testing is a variant of must
testing which ensures correctness under a fairness assumption, similarly as for
our correct contract compositions. Given two processes P and P ′, P ′ �test P iff
for every test t, P shd t implies P’ shd t, where Q shd t iff

∀w ∈ Λ∗, Q′. Q||Λ−{τ}t
w−→ Q′ ⇒ ∃v ∈ Λ∗, Q′′ : Q′ v−→ Q′′

√′
−→

where ||S is the CSP parallel operator: in R||SR′ transitions of R and R′ with
the same label λ ∈ S must synchronize and yield a λ transition.

In order to resort to the theory of [17], we just have to consider “normal form”
terms NF(C), where NF(C) is obtained from contract terms C by replacing√
.0 for 1 and by using the notation for prefix and recursion used in [17].

Theorem 3. Let C,C′ ∈ Pcon be two contracts. We have

NF(C′\\I(C′)−I(C)) �test NF(C) ⇒ C′ � C

Note that the opposite implication

C′ � C ⇒ NF(C′\\I(C′)−I(C)) �test NF(C)

does not hold in general. For example if we take contracts C = a + a.c and
C′ = b+b.c we have that C′ � C (and C � C′) (there is no location l and context
P such that ([C]l||P )↓ or ([C′]l||P )↓), but obviously NF(C′\\{b}) �test NF(C)
(and NF(C\\{a}) �test NF(C′) ) does not hold.

In [17] it is proved that, for finite transition systems like our contracts, should-
testing preorder is decidable and an actual verification algorithm is presented.
This algorithm, in the light of our Theorem 3, represents a sound approach to
prove also our subcontract relation.



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 299

Example 3. We complete the analysis of our running example, showing a subcon-
tract of the original travel agency service. For instance, the following alternative
travel agency gives rise to a subcontract of the one proposed in the Example 1:

[Reservation; ( τ ;ReserveAirCompany;ConfirmFlight |
τ ;ReserveHotel; (ConfirmRoom+ CancelRoom) );

τ ;ConfirmationClient]TravelAgency

as it simply differs for an additional input on the CancelRoom channel, modelling
the possibility for the hotel reservation to fail.

4 Conclusion

We have reported an overview of mechanisms that paves the way for service pub-
lication, discovery and composition based on the notion of service contract, that
is an abstract description of the message-passing behaviour of the service. These
mechanisms have been developed also in the light of applications to the core cal-
culi described in Chapter 2-1. Also related to service publication, discovery and
composition are 2-4 and 3-1. In Chapter 2-4 the authors present a framework
for designing and composing services in a “call-by-contract” fashion, i.e. accord-
ing to their behaviour and show how to correctly plan service compositions in
some relevant classes of services and behavioural properties. They propose a core
functional calculus for services and a type and effect system over-approximating
the actual run-time behaviour of services. A further static analysis step finds the
plan that drive the selection of services matching the behavioural requirements
on demand. In Chapter 3-1 the authors overview the CC-pi calculus, a model
for specifying QoS negotiations in service composition that also allows to study
mechanisms for resource allocation and for joining different QoS parameters.

Concerning related work, Igarashi and Kobayashi’s work [14] on generic type
systems is the first instance of the processes-as-types approach. The work [1] is
mostly inspired by [14], with a few important differences. In particular, [1] consid-
ers an asynchronous version of the pi-calculus, and types account for a tag-wise,
rather than channel -wise, view of the behaviour of processes. On one hand, this
simplification leads to some loss of information, which prevents one from captur-
ing certain liveness properties such as race- and deadlock-freedom. On the other
hand, it allows one to make the connection between different kinds of behavior
(open/closed) and different type models (ccs/bpp) direct and explicit. As an
example, in the case of bpp [1] spells out reasonably simple conditions under
which the type analysis is “precise” (Γ -uniform receptiveness). Also, this ap-
proach naturally carries over to the Join calculus, by moving to Petri nets types.
The paradigm type-as-abstraction is also the subject of [2]. There, sufficient con-
ditions are given under which certain liveness and safety properties, expressed in
a simple spatial logic, can be transferred from types to the inhabiting processes.

Another work strongly related to our concept of type-as-abstraction is [15],
where the generic type system of Igarashi and Kobayashi is extended in order to



www.manaraa.com

300 M. Boreale and M. Bravetti

guarantee certain safety properties in a resource-access scenario. A pi-calculus
enriched with resources and related access primitives is introduced; resources are
decorated with access policies formulated as regular languages. ccs types are
used to check the behaviour of processes against those policies. The main result
ensures that no well-typed process violates at runtime the prescribed policies.

As far as contract-based service composition is concerned, it is important
to say that, even if we have characterized our notion of compliance resorting
to the theory of testing, there are some relevant differences between our form
of testing and the traditional one proposed by De Nicola-Hennessy [8]. The
most relevant difference is that, besides requiring the success of the test, we
impose also that the tested process should successfully complete its execution.
This further requirement has important consequences; for instance, we do not
distinguish between the always unsuccessful process 0 and other processes, such
as a.1 + a.b.1, for which there are no guarantees of successful completion in any
possible context. Another relevant difference is in the treatment of divergence:
we do not follow the traditional catastrophic approach, but the fair approach
introduced by the theory of should-testing of Rensink-Vogler [17]. In fact, we do
not impose that all computations must succeed, but that all computations can
always be extended in order to reach success.

Contracts have been investigated also by Fournet et al. [11] and Carpineti et
al. [6]. In [11] contracts are CCS-like processes; a generic process P is defined as
compliant to a contract C if, for every tuple of names ã and process Q, whenever
(νã)(C|Q) is stuck-free then also (νã)(P |Q) is. Our notion of contract refinement
differs from stuck-free conformance mainly because we consider a different no-
tion of stuckness. In [11] a process state is stuck (on a tuple of channel names
ã) if it has no internal moves (but it can execute at least one action on one of
the channels in ã). In our approach, an end-state different from successful ter-
mination is stuck (independently of any tuple ã). Thus, we distinguish between
internal deadlock and successful completion while this is not the case in [11].
Another difference follows from the exploitation of the restriction (νã); this is
used in [11] to explicitly indicate the local channels of communication used be-
tween the contract C and the process Q. In our context we can make a stronger
closed-world assumption (corresponding to a restriction on all channel names)
because service contracts do not describe the entire behaviour of a service, but
the flow of execution of its operations inside one session of communication.

The closed-world assumption is considered also in [6] where, as in our case,
a service oriented scenario is considered. In particular, in [6] a theory of con-
tracts is defined for investigating the compatibility between one client and one
service. Our paper consider multi-party composition where several services are
composed in a peer-to-peer manner. Moreover, we impose service substitutability
as a mandatory property for our notion of refinement; this does not hold in [6]
where it is not in general possible to substitute a service exposing one contract
with another one exposing a subcontract. Another, related, significant difference
is that contracts in [6] comprise also mixed choices.



www.manaraa.com

Advanced Mechanisms for Service Composition, Query and Discovery 301

References

1. Acciai, L., Boreale, M.: Type abstractions of name-passing processes. In: Arbab, F.,
Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 302–317. Springer, Heidelberg
(2007)

2. Acciai, L., Boreale, M.: Spatial and Behavioral Types in the Pi-Calculus. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 372–386.
Springer, Heidelberg (2008)

3. Bravetti, M., Zavattaro, G.: A Foundational Theory of Contracts for Multi-party
Service Composition. Fundamenta Informaticae 89(4), 451–478 (2008)

4. Bravetti, M., Zavattaro, G.: Contract-Based Discovery and Composition of Web
Services. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 261–295. Springer, Heidelberg (2009)

5. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Con-
formance and Contract Compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC
2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007),
http://www.cs.unibo.it/~bravetti/html/techreports.html

6. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A Formal Account of Con-
tracts for Web Services. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-
FM 2006. LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

7. Christensen, S., Hirshfeld, Y., Moller, F.: Bisimulation equivalence is decidable for
basic parallel processes. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp.
143–157. Springer, Heidelberg (1993)

8. De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Com-
puter Science 34, 83–133 (1984)

9. Esparza, J.: More Infinite Results. In: Current trends in Theoretical Computer
Science: entering the 21st century, pp. 480–503 (2001)

10. Fournet, C., Gouthier, G.: The Reflexive Chemical Abstract Machine and the Join
Calculus. In: Proc. of POPL 1996, pp. 372–385. ACM Press, New York (1996)

11. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 242–254. Springer,
Heidelberg (2004)

12. Milner, R.: A complete axiomatization for observational congruence of finite-state
behaviours. Information and Computation 81, 227–247 (1989)

13. Hirshfeld, Y., Moller, F.: Decidability Results in Automata and Process theory.
In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp.
102–148. Springer, Heidelberg (1996)

14. Igarashi, A., Kobayashi, N.: A Generic Type System for the Pi-Calculus. In: Proc.
of POPL, pp. 128–141. ACM Press, New York (2001); Full version appeared in
Theoretical Computer Science 311(1-3), 121–163 (2004)

15. Kobayashi, N., Suenaga, K., Wischik, L.: Resource Usage Analysis for the Pi-
Calculus. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855,
pp. 298–312. Springer, Heidelberg (2006)

16. OASIS. Web Services Business Process Execution Language Version 2.0
17. Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–

198 (2007)
18. Sangiorgi, D.: The name discipline of uniform receptiveness. In: Degano, P., Gorri-

eri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256. Springer,
Heidelberg (1997); Theoretical Computer Science 221(1-2), 457–493 (1999)

19. Stirling, C.: Modal Logics for Communicating Systems. Theoretical Computer Sci-
ence 49(2-3), 311–347 (1987)

http://www.cs.unibo.it/~bravetti/html/techreports.html


www.manaraa.com

Advanced Mechanisms for
Service Combination and Transactions�

Carla Ferreira2, Ivan Lanese1, Antonio Ravara2,
Hugo Torres Vieira2, and Gianluigi Zavattaro1

1 Focus Team, Università di Bologna/INRIA, Italy
{lanese,zavattar}@cs.unibo.it

2 CITI and Departamento de Informática, Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa, Portugal

{carla.ferreira,aravara,htv}@fct.unl.pt

Abstract. Languages and models for service-oriented applications usu-
ally include primitives and constructs for exception and compensation
handling. Exception handling is used to react to unexpected events while
compensation handling is used to undo previously completed activities.
In this chapter we investigate the impact of exception and compensa-
tion handling in message-based process calculi and the related theories
developed within Sensoria.

1 Introduction

Long-running transactions (henceforth LRTs) are computer activities that may
last long periods of time. These kinds of activities are particularly common
in systems composed by loosely coupled components communicating by mes-
sage passing, like most distributed systems and, in particular, service-oriented
systems.

Due to the nature of these systems and to the time duration of the activities, it
is not feasible to lock (non-local) resources, and thus, LRTs do not enjoy some of
the usual ACID properties of database transactions (namely isolation, since the
execution of a single LRT is not intended to block the whole system). Therefore,
to recover from partial executions of LRTs (due to their abortion because of
system failures like unreachability of a partner or time-out of communication, or
to some other unexpected event), it is necessary to foresee special activities to
regain system consistency, i.e., to compensate the fact that the transaction has
been aborted. These activities should be triggered in case of transaction failure,
and need to be programmed a priori. Note that, in general, the execution of a
compensation does not exactly “undo” the activities already performed by the
LRT (what is, in general, impossible).

1.1 Content of the Chapter

Programming or specification languages provide these days two kinds of recovery
mechanisms: exception handling and compensation handling. The former uses
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 302–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 303

primitives like throw to raise failure signals and try-catch to manage them. The
latter uses primitives to install and activate dedicated compensation activities.
This chapter presents linguistic primitives and associated semantic models for
dealing with transaction failure. The main features under inspection are the
mechanisms to deal with:

1. failures: exceptions or compensations ;
2. non-interruptable units of process execution: protection operator ;
3. nested computations: nested transactions and nested failures.

The models are either based on (mobile) process calculi, or on the service-
oriented core calculi developed within Sensoria. We address three questions:

1. What is the relative expressive power of the mechanisms proposed?
Section 2 is dedicated to basic linguistic primitives for exception and com-
pensation handling. We present: (1) a study of the expressive power of two
well-known exception handling mechanisms, in the context of the Calculus of
Communicating Systems, CCS [28]; and (2) compensation handling mech-
anisms and their relative expressiveness, in the context of mobile process
calculi.

2. How can these recovery mechanisms be used in the context of Service-
Oriented Computing (SOC)?
Section 3 presents the application of the mechanisms in some of the Senso-

ria calculi.
3. How can one ensure that the compensation activities implement a particular

recovery policy?
Section 4 presents three different models to reason about the compensation
activities: two of them use abstract descriptions of the desired behavior,
in BPEL and SAGAs respectively, and the last one defines a state-based
compensation model to reason about the correctness of the activities.

1.2 Overview of Process Calculi Approaches

In process calculi there are several approaches toward the formalization of LRTs,
whose proposals differ with respect to the mechanisms to recover from transac-
tion failure. Table 1 presents a summary of the use of compensation handling
mechanisms in different message-based calculi, which we group in three fami-
lies: π-calculus [29,34] based, session-based and correlation-based. Compensation
handling has been investigated also in the context of event-based communication:
this is the subject of Chapter 3-4 where compensation handling is investigated
in the context of the Signal Calculus SC [14].

π-calculus Based Calculi. The πt-calculus is an extension of asynchronous poly-
adic π-calculus [34] with the notion of transaction [2]. The compensation mecha-
nism is static, and transaction abort triggers the execution of the compensations
of all terminated subtransactions. The cJoin calculus [7] extends the Join calcu-
lus [15] with primitives for representing transactions with static compensations.



www.manaraa.com

304 C. Ferreira et al.

Table 1. Features of message-based calculi with compensation handling

communication compensation nested vs protection
mechanism definition non-nested operator

πt [2] π-based static nested no
c-join [7] π-based static nested no
webπ [24] π-based static non-nested implementable

webπ∞ [27] π-based static non-nested implementable
dcπ [36] π-based parallel nested yes

CaSPiS [3] sessions static nested no
CC [37] sessions static nested no

COWS [26] correlation static nested yes
SOCK [18] correlation dynamic nested implementable

Transactions can however dynamically merge, thus merging their compensations.
Laneve and Zavattaro defined webπ [24], which is an extension of asynchronous
polyadic π-calculus with a timed transaction construct. An untimed version of
webπ, called webπ∞, was proposed by Mazzara and Lanese [27]. Both webπ
and webπ∞ support a non-nested static compensation mechanism. The dcπ cal-
culus [36] is also based on the asynchronous polyadic π-calculus, extended with
primitives for representing nested transactions and dynamic compensations. This
is obtained by adding information about compensation update to input prefix.
Compensation items are composed in parallel. Section 2 presents in more detail
the compensation handling mechanisms of webπ∞ and dcπ.

Session-Based Calculi. The coordinated handling of exceptions of several parties
involved in a service conversation is of particular importance, since an exception
local to a party must be somehow propagated to all other parties involved in the
service task.

CaSPiS [3] includes primitives for compensating aborted sessions (see Section 3
for more details). The Conversation Calculus, CC [37], supports error recovery
with two exception primitives: try-catch and throw. Section 4.3 presents in more
detail the exception handling mechanism and the soundness model of CC. In
the approach of Carbone et al. [13], as in SCC [4] and CaSPiS [3], such error
propagation is modeled internally to the semantics of the exception handling
primitives. CC considers a different approach, by providing the exception han-
dling primitives with a standard “local” semantics, leaving to the programmer
the task of coordinating the exception handling activities. The approach of Car-
bone et al. [13] already aims at a typed exception handling model, allowing to
prove safety and liveness results.

Correlation-Based Calculi. COWS [26] provides a primitive to kill processes
within a scope. We show in Section 4.1 how these primitives can be used to
encode a BPEL-style scope construct (BPEL [32] is a language for service or-
chestration which provides static nested compensations). SOCK [18] includes also



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 305

explicit primitives for dynamic handler update and automatic failure notification
to remote partners. Section 3 presents in more detail the compensation handling
mechanisms of SOCK. An implementation of SOCK, the language JOLIE [21],
inherits its fault handling capabilities.

2 Basic Mechanisms

In this section we focus on different basic linguistic primitives that have been pro-
posed for programming long-running transactions (LRTs), inter-relating them.
We leave to the next section their application to service-oriented systems.

2.1 Exception Handling

Here we present and compare with respect to expressiveness two well established
mechanisms, the first taken from the tradition of process calculi—the interrupt
operator of CSP [20]; the second from popular programming languages—the
try-catch operator of languages such as C++ or Java.

Interrupt Versus Try-catch. The interrupt operator P�Q executes P until Q exe-
cutes its first action; when Q starts executing, the process P is interrupted. The
tryP catchQ operator executes P , but if P performs a throw action it is inter-
rupted and Q is executed instead. We have found these operators particularly
useful because, even if very simple, they are the basic building blocks to model
the typical operators for programming LRTs.

These two operators are apparently very similar as they both allow for the
combination of two processes P and Q, where the first one executes until the
second one performs its first action. Nevertheless, there is an interesting distin-
guishing feature, as shown by the following example.

Consider for instance a bank payment activity PAY , which may set a variable
res to false in case of failure. Failure management can be performed quite simply
using try-catch:

try PAY; if res = F then throw else 0; ...catch manageFault

The interrupt operator, instead, needs some help from an external process.

PAY; if res = F then throw else 0; ...�(f. manageFault) | throw.f

where we assume that throw synchronizes with throw and f with f . Here in case
of failure the external process is called, and then it enables the compensation.
When the compensation starts, the main activity is interrupted. Note however
that the interruption is not atomic as in previous case.

As seen in the examples, the main difference is that in the try-catch operator,
the decision to interrupt the execution of P is taken inside P itself (by means
of the execution of the throw action), while in the interrupt operator P�Q such
decision is taken from Q (by executing any initial action). Another difference



www.manaraa.com

306 C. Ferreira et al.

Table 2. Interrupt vs try-catch

interrupt try-catch

CCS�! CCStc
!

replication existential termination undecidable existential termination undecidable
universal termination decidable universal termination decidable

CCS�rec CCStc
rec

recursion existential termination undecidable existential termination undecidable
universal termination decidable universal termination undecidable

between the try-catch and the interrupt operators is that the former includes an
implicit scoping mechanism which has no counterpart in the interrupt operator.
More precisely, the try-catch operator defines a new scope for the special throw
action which is bound to a specific instance of exception handler.

Starting from these intuitive and informal evaluations of the differences be-
tween such operators, a more rigorous and formal investigation has been per-
formed [5]. To this aim, two restriction-free fragments of CCS [28] have been
considered, one with replication and one with restriction, and they have been
both extended with either the interrupt or the try-catch operator thus obtaining
four different calculi: CCS�

! , CCStc
! , CCS�

rec, and CCStc
rec as depicted in Table 2.

Calculi without restriction, the standard explicit binder operator of CCS, have
been considered in order to be able to observe the impact of the implicit binder of
try-catch. Moreover, replication and recursion have been considered separately
because in CCS there is an interesting interplay between these operators and
binders [9]: in the case of replication it is possible to compute, given a process
P , an upper bound to the nesting depth of binders for all derivatives of P (i.e.
those processes that can be reached from P after a sequence of transitions). In
CCS with recursion, on the contrary, this upper bound cannot be computed in
general.

For these four calculi, the decidability of the following termination problems
has been investigated: existential termination (i.e., there exists a terminating
computation) and universal termination (i.e., all computations terminate). The
obtained results are depicted in Table 2.

These results about the decidability of existential/universal termination in
the considered calculi establish two interesting discrimination results:

– Basic mechanisms for interruption cannot be in general encoded
using only communication primitives. In CCS without restriction, ex-
istential termination is decidable [5], while it turns out to be undecidable
when either the interrupt or the try-catch operators are also considered.

– The try-catch mechanism cannot be in general encoded using com-
munication primitives and the interrupt operator. In the considered
calculus with recursion, universal termination is decidable in the presence of
the interrupt operator, while this is not the case for try-catch.



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 307

2.2 Compensation Handling

The operators above offer a local approach to error handling and compensations:
the trigger of the fault, the executing process and the compensation are all
defined inside P and Q. However, in a concurrent and distributed system, fault
triggers may also arise from other processes running concurrently.

Static Compensations. Such an aspect has been tackled first by webπ [24] and its
untimed version webπ∞ [27]. There, web transactions, i.e., long-running transac-
tions involving web applications, have been considered, and modeled by adding a
workunit construct to the asynchronous π-calculus. We concentrate here on the
untimed version proposed by [27], since time introduces a degree of expressive
power which is orthogonal to the one represented by compensation primitives
we investigate here.

A workunit 〈|P ; Q|〉t executes process P until a message t (without parame-
ters) is received on channel t. After that, process P is killed and compensation
Q is executed. Thus message t acts as throw in the case of the try-catch oper-
ator. However, here message t may come both from inside P , as for throw in
try-catch, or from parallel processes. Also, the message may be directed to a
specific workunit, instead of being forced to kill the nearest enclosing workunit.

Thus the above example of bank payment can be written in webπ∞ as:

〈| PAY.if res = F then t else 0.... ; manageFault|〉t
where we used prefixing instead of sequential composition (simply because this
is the control flow mechanism provided by webπ∞). However, the example can
be simply modified to allow for an external activity to interrupt the transaction.
Assume that in parallel some checks on the payment are done. If the checks do
not succeed, the transaction can also be interrupted by the parallel process:

〈| PAY.if res = F then t ; manageFault|〉t | ....if checkRes = F then t...

Since now the failure signal may also come from outside, it is necessary to define
when a workunit has terminated, thus to avoid interrupting and compensating
terminated transactions. In webπ∞ the transaction is considered terminated,
and thus discarded, when its body P becomes 0. A few other aspects have to
be considered for killing and termination. First, since webπ∞ is asynchronous,
messages are considered sent as soon as they become enabled. Thus they can
freely float out of workunits. Moreover, they are not deleted when the workunit
is interrupted. Another important aspect is transaction nesting. Two approaches
exist in the literature: nested failure and non-nested failure. In the nested failure
approach, when a transaction is killed all its subtransactions are killed too.
In the non-nested failure approach instead, subtransactions are preserved and
continue their regular execution. Suppose for instance that the payment workunit
described above is part of a more complex transaction with body Q:

〈|〈| PAY.... ; manageFault|〉t |Q ; manageLargerFault|〉s



www.manaraa.com

308 C. Ferreira et al.

With the nested failure approach in case of failure of s also t is killed. However
this is not the behavior of webπ∞, which follows the non-nested failure approach.
In webπ∞ this behavior can be obtained by adding an explicit kill of t as part
of the management of the larger fault, e.g., by replacing the compensation with
the process t | manageLargerFault.

The webπ∞ calculus is equipped with a reduction semantics formally describ-
ing the behavior of systems based on web transactions, and with a labeled tran-
sition system supporting the standard observational equivalence—weak barbed
congruence [30]. Furthermore, weak asynchronous bisimilarity [1], adapted to the
webπ∞ setting, where transaction kill has to be explicitly considered, character-
izes weak barbed congruence. Therefore, transformations of webπ∞ processes can
be coinductively proved correct (with respect to weak asynchronous bisimilarity,
and thus, with respect to weak barbed congruence).

While referring to the paper [27] for the technical details, we present here a
sample law, illustrating handlers reducibility:

〈|P ; Q|〉x = (x′x′′)(〈|P ; x′ |〉x | 〈|x′.Q ; 0|〉x′′)

for each x′, x′′ 	∈ fn(P ) ∪ fn(Q), x′ 	= x′′ 	= x. In other words, it is not necessary
to have a generic process Q as compensation of a workunit, but it is enough to
have a simple output message x′ . In fact, it is enough to put the compensation
in another workunit, guarded by an input on the name x′. Note that both the
name x′ and the name x′′ of the auxiliary workunit need to be private (this is
done by the restriction operator (x′x′′)) to avoid interferences.

Dynamic Compensations. In webπ∞, the compensation of each workunit is
static, i.e., in a workunit 〈|P ; Q|〉x, P is not allowed to update Q. Assume
that P is a complex activity, e.g., executing a sequence of bank payments. If
a failure occurs before any bank payment, then no particular error recovery is
needed (possibly just some garbage collection or error notification). Instead, if
a few bank payments have been completed and an error requires to abort the
transaction, then the already completed bank payments have to be annulled. In
webπ∞ this can be done for instance by keeping track of the performed bank
payments, and by having the compensation Q checking which of them have been
completed to annul them. Another solution, suggested by the law above, is to
put the compensation in a different workunit to be replaced with an updated one
each time a new payment is completed. However, both the solutions are complex
and error-prone [19]. In general, one may want to adapt the compensation of a
complex transaction to the evolving state of its process P . This kind of problems
has been tackled by dcπ [36], by compensable processes [22], and by SOCK [18].
The three approaches differ in a few technical decisions, but they all share the
idea that a compensation can be dynamically updated. We present here the gen-
eral approach in the framework of π-calculus [36,22], leaving to next section the
discussion of the interplay with service-oriented features.

Parallel Recovery. The simplest proposal is the one of dcπ. There, scopes (similar
to webπ∞ workunits) have the form t[P ] where P is the executing process and



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 309

t the scope name. Inputs in P may install compensations. For instance, assume
that a message payConf 〈v〉 confirms that a payment has been completed, and
that v contains the data of the payment. In dcπ such a message can be received by
an input payConf (x)%Annul〈x〉.Q that after receiving the message payConf 〈v〉
installs in the nearest enclosing scope a new compensation item Annul〈v〉 and
continues as Q{v/x}. When a scope is killed, all the installed compensation items
are executed in parallel. This form of recovery is called parallel recovery. Note
that input and compensation update form a unique atomic primitive. This is
important since it should never be the case that the state of the transaction is
changed (because of the received input), and the compensation has not been
changed accordingly. In our example this would cause a performed payment
not to be annulled. It would be difficult to ensure this atomicity property if
compensation update has to be mimicked as described above.

General Recovery Policies. As shown, dcπ allows to dynamically add new com-
pensation items in parallel. However, it may be handy to have more control on
the order of execution of compensation items, and to be able to remove com-
pensation items when they are no more useful. A more general approach has
been proposed in the framework of SOCK[18], and analyzed in the framework
of π-calculus [22]. We describe here the latter, where compensable processes
are defined. Compensable processes define a scope construct t[P,Q] similar to
the workunit 〈|P ; Q|〉t of webπ∞. However compensable processes provide in
addition a compensation update primitive inst�λX.Q′�.R that replaces the cur-
rent compensation Q in the nearest enclosing scope with the new compensation
Q′{Q/X}. This allows for instance to add a new compensation item in parallel,
by choosing Q′ = Q′′ |X where X does not occur in Q′′, mimicking dcπ parallel
recovery. However, many other options are available. For instance one may ex-
ecute compensations of different activities in reverse order of completion (this
policy is called backward recovery [16]). In compensable processes such behavior
is obtained by using compensations of the form λX.(finished)(Q′ | finished.X)
where the actual compensation Q′ signals its termination with an output on
the private channel finished. Moreover, the compensation can be deleted by in-
stalling λX.0, or replaced with a new compensation by installing λX.NewComp
where NewComp does not contain X .

Consider the following scenario: a few bank payments are executed by sending
messages to the banks in charge of them. If something goes wrong in one of the
payments, all of the performed payments have to be annulled. At the end a final
check is performed, and if it succeeds then annul is no more possible. This can
be implemented in compensable processes as follows:

t[PAY 1. inst�λX.ANNUL1.X�. . . . .PAY n. inst�λX.ANNULn.X�.
CHECK . if check = ok then inst�λX.0� else t,0]

where PAY 1, . . . , PAY n are activities executing the payments, ANNUL1, . . . ,
ANNULn the corresponding annul activities and CHECK performs the final
verification putting the result in check.



www.manaraa.com

310 C. Ferreira et al.

Differently from webπ∞, compensable processes have been given both a nes-
ted failure semantics and a non-nested failure one, while dcπ follows the nested
failure approach. However both compensable processes and dcπ provide a pro-
tection operator 〈P 〉 that executes P in a protected way and that can be used
to avoid undesired external kills. The non-nested failure approach can thus be
mimicked by enclosing each transaction in a protected block.

Another difference between webπ∞ and compensable processes is that com-
pensable processes scopes never commit. However, webπ∞ commit behavior can
be easily recovered since a scope (t)t[0,0] with a restricted name, no body and
no compensation is equivalent to 0. Note that “no compensation” can be forced
in compensable processes with a suitable compensation update, while the same
is not possible for webπ∞.

The definition of the semantics of compensation update requires a bit of care.
As said above, in fact, it should never be the case that a state change requiring a
compensation update has been performed, and the corresponding compensation
update has not been executed. For instance in:

t[PAY 1. inst�λX.ANNUL1.X�. . . . ]

if the transaction is killed after PAY 1 has been completed but before the compen-
sation has been updated, no annul is performed. For this reason, compensation
update has priority w.r.t. other actions. Thus a compensation update is executed
as soon as it becomes enabled. This feature comes for free in dcπ, since the input
and the compensation update are composed in a unique primitive.

The expressive powers of static recovery, parallel recovery, backward recov-
ery and dynamic recovery have been compared in [22]. There the existence/non
existence of suitable encodings (compositional [17], preserving testing equiva-
lence [33], and not introducing divergency) has been discussed. Two main results
were achieved:

– An encoding of parallel recovery into static recovery which satis-
fies the conditions above and preserves also weak bisimilarity. The
existence of such an encoding proves that parallel recovery and static recov-
ery have the same expressive power. The encoding stores the dynamically
created compensation items in the running process protected by protected
blocks, and exploits suitable messages to enable them only when needed.

– A separation result proving that no encoding satisfying the proper-
ties above exists from backward recovery to static recovery neither
from compensable processes to static recovery.

The results above, together with the ones presented at the beginning of the sec-
tion, prove that primitives for interruption and compensation are an important
feature of languages, since they can not be encoded in an easy way, and that also
the choice of the exact kind of primitives may change the expressive power of
the language. Thus a careful choice is needed to decide which of these primitives
have to be included in a language. Next section shows how these primitives can
be applied to service-oriented systems.



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 311

3 Exploiting the Mechanisms in SOC

In this section we show how the mechanisms introduced in the previous sections
to deal with failures and compensations can be exploited in service-oriented com-
puting models and languages, where an application is composed by orchestrating
different services. Service instances interact giving rise to sessions involving pos-
sibly many partners. Thus errors may be both internal to a single session, and in
this case the techniques described in the previous section may be applied directly,
or may involve different services. The first case has been considered for instance
in the Conversation Calculus [37] (see also Chapter 2-1), where a conversation
is a set of related interactions that take place in a dedicated medium—a con-
versation context—which may be accessed from several distributed conversation
access pieces (cf. endpoints), each one held by a different party. The Conversa-
tion Calculus manages errors by using the try-catch operator discussed in the
previous section. As we show in Section 4.3, this is enough to model cCSP [11].

Different approaches were chosen in various other Sensoria calculi. We
explain these approaches below.

3.1 Static Compensation Policies

We present the compensation mechanisms of COWS and of CaSPiS.

Killing Activities. COWS [26] includes primitives used to force immediate termi-
nation of concurrent threads. The syntax of COWS and an informal explanation
of its semantics are presented in Chapter 2-1. Besides allowing generation of
‘fresh’ private names (as ‘restriction’ in π-calculus [29]), the delimitation opera-
tor of COWS provides a means for modeling a named scope for grouping certain
activities. A named scope [k] s can be then equipped with suitable termination
activities, as well as ad hoc fault and compensation handlers, thus laying the
foundation for guaranteeing transactional properties in spite of services’ loose
coupling. This can be conveniently done by relying on the kill activity kill(k),
that causes immediate termination of all concurrent activities inside the enclos-
ing [k] (which stops the killing effect), and the protection operator {|s|}, that
preserves intact a critical activity s also when one of its enclosing scopes is
abruptly terminated.

Failure management operators can be programmed and assembled in COWS
by simply exploiting these basic operators. For example, the try-catch block used
for the bank payment activity can be written as follows:

PAY | [if , then, k] ( if • then?〈false〉.(kill(k) | {|manageFault |} ) |
if • then?〈true〉.s )

Suppose that the result of the payment transaction is provided by the process
PAY through the invoke activity if • then!〈xres〉 and by setting the variable xres

to communicate the success (xres = true) or failure (xres = false) of the trans-
action. The delimitation of the killer label k confines the transaction, otherwise



www.manaraa.com

312 C. Ferreira et al.

uncontrolled faults can jeopardize service composition. Suppose that the failure
is risen by the activity if • then !〈false〉. The management of the corresponding
fault can be activated while the activity if • then?〈true〉.s is abruptly terminated
by means of the activity kill(k). To ensure a proper execution order in the above
transaction, i.e. the management of the fault should not be performed before the
termination of the killing effect of kill(k), kill activities in COWS have higher
priority than other activities.

Finally, restriction and protection operators implicitly provide embedded
mechanisms for handling nested failures. The following simple example illus-
trates the effect of executing a kill activity within a nested protection block:

[k] ({|s1 | [k′] {|s2 | kill(k′)|} | kill(k)|} | s3) | s4

evolves to

[k, k′] {|s2 | kill(k′)|} | s4
For simplicity, we assume that s1 and s3 do not contain protected activities. In
essence, kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill activity
(i.e. s2 | kill(k′)).

Closing Sessions. The Service Centered Calculus (SCC) [4] and its evolution
CaSPiS [3] propose another approach. As shown in Chapter 2-1, conversations in
CaSPiS are structured as binary sessions involving a client and a service instance,
dynamically created during service invocation. CaSPiS features primitives for
session closure. Recall that, using close, a partner can leave a session at any
time; the semantics will then guarantee that the other party is informed and
that nested sessions are closed as well. In terms of transactions, completing and
abandoning a session may be understood respectively as commit and failure.
CaSPiS compensation handling can be classified as static, indeed compensations
are programmed once and for all by means of listeners, k · P , at design time.

Below, we briefly illustrate the use of session-closing primitives for program-
ming compensations by means of a simple example. Further details can be found
in [3], while the (similar) approach proposed by SCC is described in [4].

Consider another version of the bank example, where the bank (process B
below) offers a service pay that, after receiving the amount to be paid and
the user’s credentials, invokes an auxiliary service, checkAmt, in order to check
the client’s available funds. A client (process C below) invokes this service and
requires the payment of an amount a. The example contains three listeners. In
B, upon invocation, the listener of the service definition payk, k ·close, closes the
current session and notifies the closure to the invoker, while the listener of service
invocation, checkAmtk′ , also closes the enclosing session by spawning †(k). The
listener of service invocation payk′′ , k′′ · payNotAllowed , is activated in case of
failure in the payment process on the service side: payNotAllowed encodes the
execution of appropriate recovery actions



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 313

B � (ν k)payk.
(
k · close

| (?amt, ?id)select ?go
from (ν k′)checkAmtk′ .(k′ · (close|†(k)) |

〈amt, id〉(?rep)〈rep〉↑)
inif go then · · · else close

)
C � (ν k′′, a, id)payk′′ .

(
k′′ · payNotAllowed | 〈a, id〉 · · · ) .

Consider the system S � B |C. The session installed between the client and the
bank can be terminated unexpectedly in two cases: when the auxiliary service
closes the interaction unexpectedly or when the checkAmt service answers neg-
atively. After the synchronization of service definition and invocation and the
first intra-session communication for sending the amount and the id, the system
becomes S′ below.

S′ � (ν r, k, k′′, a, id)(
r �k′′

(
k · close | select ?go

from (ν k′)checkAmtk′ .(k′ · (close|†(k)) |
〈a, id〉(?rep)〈rep〉↑)

inif go then · · · else close
)

|r �k

(
k′′ · payNotAllowed | · · ·

)
If the service call checkAmt returns false, S′ reduces to S′′ and (omitting the
terminated session originated by the service invocation checkAmtk′ .) we have

S′′ � (ν r, k, k′′, a, id)
(
r �k′′

(
k · close | close

) | r �k

(
k′′ · payNotAllowed | · · · ))

−→
(ν r, k, k′′, a, id)

(
�

(
k · close | †(k′′)) | r �k

(
k′′ · payNotAllowed | · · · ))

−→
(ν r, k, k′′, a, id)

(
�

(
k · close

) | r �k

(
payNotAllowed | · · · )) � S′′′ .

In S′′′, the client proceeds by taking appropriate recovery actions (defined in
payNotAllowed).

In case the closure is originated by service checkAmt, the signal †(k) will be
captured by the listener k · close and the session closure protocol will proceed
similarly.

3.2 Dynamic Compensation Policies

The last approach we consider is the one of the Service Oriented Computing
Kernel (SOCK) [10]. As described in Chapter 2-1, SOCK is a calculus for service-
oriented computing that has been inspired by the main technologies in the field,



www.manaraa.com

314 C. Ferreira et al.

in particular WSDL [38], the standard for defining web service interfaces, and
WS-BPEL [32], the de-facto standard for web services composition. SOCK allows
the definition of services exploiting the one-way and request-response patterns
provided by WSDL.

From a compensation point of view, SOCK has been extended in [18] with
mechanisms that integrate the WS-BPEL concepts of scope, termination and
compensation with the dynamic approach to error recovery described in the
previous section.

A scope in SOCK is a process container denoted by a name and able to manage
faults. Faults are thrown by the primitive throw(f) where f is the name of the
fault. Inside a scope, three different kinds of handler can be defined. A fault
handler f specifies the recovery code to be executed when fault f is thrown inside
the scope. A termination handler, which has the name of the scope containing it,
specifies how to smoothly terminate the scope when it is reached by an external
fault. Finally, compensation handler q specifies how to undo the activities of
the finished scope q if required during error recovery inside an outer scope. For
instance

{PAY : [f → manageFault, q → manageExternalFault]}q

is a scope that executes activity PAY , executes code manageFault in case PAY
throws fault f and executes code manageExternalFault in case of external
failure.1

Assume that activity PAY throws fault f , e.g. since PAY = PAY ′ | throw(f).
First, all the activities inside PAY ′ are terminated, including subscopes. Termi-
nation handlers of those subscopes are executed. Then the fault handler for f is
looked for inside q. Since it is available then it is executed, handling fault f . If
no fault handler was found, the fault would be rethrown to the enclosing scope,
let us call it q′, while q terminates with a failure. Error handling would continue
in q′, and the fault would be recursively thrown to the nearest enclosing scope
until a handler is found. Both termination handler manageExternalFault and
fault handler manageFault may use the primitive comp(q1) to execute the com-
pensation handler of some subscope q1 of q to undo its activity. This is available
only if q1 has terminated with success.

Up to here, this is the error recovery policy used also by WS-BPEL. How-
ever, in WS-BPEL handlers are defined statically inside the scope. SOCK al-
lows to update them at runtime, thus following the dynamic approach. Consider
the scope q above. SOCK provides a compensation update primitive, inst([f →
newHandler]), similar to the one of compensable processes, to replace the old
handler manageFault with the new handler newHandler. Differently from com-
pensable processes, now the name of the handler(s) to be updated has to be
specified. Like in compensable processes, the old handler may not be discarded.
In fact, one can use the placeholder cH inside the handler update primitive to
recover the old handler. For instance, inst([f → newHandler; cH ]), adds the new
handler newHandler before the old handler manageFault (here ; is sequential
1 The actual syntax is slightly more complex, cfr. [18].



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 315

composition), producing the new handler newHandler; manageFault. Both fault
and termination handlers can be updated in this way. A compensation handler
instead is just the last defined termination handler when the scope terminates.
This is justified by the fact that intuitively the behavior of a service should be
the same if the fault occurs just before or just after its termination. Anyway, the
ability of dynamically updating the handlers allows to redefine termination han-
dler just before termination if a different behavior is desired for compensation
handler. Notice that the update primitive is executed with priority w.r.t. other
instructions, so to ensure that the state of the error handlers always matches the
state of the computation.

Until now we have managed errors involving just one service instance. As al-
ready said, services in SOCK may interact using two modalities: one-way o@z(y)
and request-response or@z(y,x). With the one-way, a service invokes another
service o located at z and does not care about the result. This is a loosely cou-
pled interaction pattern, thus does not poses particular problems from an error
handling point of view. With the request-response instead a client invokes a ser-
vice or located at z and waits for an answer. This interaction pattern may be
spoiled by errors both on client side and on service side. Assume for instance
that the invoked service fails because of some fault f , either from the service
code or from the service environment. In WS-BPEL such a service will not send
back any answer, and the client would wait undefinitely. Vice versa, if the client
fails (because of some fault in a parallel process), the answer from the service
may be lost. Consider our example of bank payment. Now the payment may be
required by a process

{payr@bank(y,x) |Q : [f → manageFault, g → manageRemoteFault]}q

Suppose that after the payr service has been invoked Q throws fault f . Thus the
client will not know whether the operation has been successful (and money has
been taken from the account) or not. Clearly the two scenarios require different
compensation policies on the client side.

To answer these problems SOCK proposes an approach based on automatic
error notification and allows to exploit those notifications during error recovery.
In particular, if the server payr above fails because of fault g, a faulty answer is
automatically sent to the waiting client, where it is considered as a local fault.
This has a double aim: on the one side the client will not be stuck waiting for a
response that will not arrive, on the other side the client may specify a suitable
handler for g allowing to recover locally from the remote error. For instance
the handler manageRemoteFault may notify the user or look for other payment
methods.

Furthermore, if the client fails while waiting for the answer of the request-
response operation (the fault comes from Q), the answer from payr is waited for
before error recovery is started. Also, a non-faulty answer may update the error-
handler on the client side requiring for instance to undo the remote activity. This
can be obtained by modifying the request-response above into

payr@bank(y,x, [f → annulPay; cH ])



www.manaraa.com

316 C. Ferreira et al.

Now, upon successful answer from payr, the fault handler for f is updated spec-
ifying that in case of such a fault (that, we assume, makes the whole transaction
fail) the pay operation should be undone. The compensation update is performed
only if the remote operation has been successful, and even if there has been a
local fault in the meanwhile.

The proposed approach has been validated (see [18] for details) in differ-
ent ways. First, by formally proving that the formalism satisfies some expected
high-level properties such as “each request-response receives an answer, either
a normal one or a faulty one” or “it is never the case that a fault is managed
by an handler that has not been updated”. Second, SOCK error handling prim-
itives have been used to program error handling for the automotive case study
(see Chapter 0-3). Third, SOCK primitives have been introduced in the language
JOLIE [31,21], a full-fledged language to program service-oriented applications
inspired by SOCK, and used to program real applications.

4 Models of Compensations

In the previous sections we have presented different mechanisms for defining
long-running transactions and compensations. However those mechanisms are
not all at the same abstraction level. They range from some low level mecha-
nisms, such as the ones of COWS [26] providing basic operators such as kill and
protection, to more complex mechanisms such as the ones of SOCK [19] and WS-
BPEL [32]. In the literature there are also abstract descriptions of the desired
behavior that compensated activities should have, such as the one provided by
SAGAs calculi [8]. Also, some approaches aiming at proving the correctness of
compensations are emerging [12,35].

In this section we present three comparisons between approaches at different
levels of abstraction. These can be exploited with different aims. On one side
they provide a way to assess the expressive power of languages, showing that
they are able to implement some abstract behavior. On the other side they
help the programmer of the application, who can specify the desired recovery
strategy at the high level of abstraction and exploit an automatic translation to
derive an implementation which is correct by construction. Finally, techniques
and strategies developed at one abstraction level can be exported to other levels.

4.1 Encoding BPEL Scopes in COWS

The first encoding that we present shows how COWS basic mechanisms are
powerful enough to implement WS-BPEL [32] scope construct.

Consider the following version of the WS-BPEL scope activity:

[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 317

This construct permits explicitly grouping activities together2. The declaration
of a scope activity contains a unique scope identifier i , a service s representing the
normal behavior, an optional list of fault handlers s1, . . . , sn, and a compensation
handler sc. The fault generator activity throw(φ) can be used by a service to
rise a fault signal φ. This signal will trigger execution of activity s′, if a construct
of the form catch(φ){s′} exists within the same scope. The compensate activity
compensate(i) can be used to invoke a compensation handler of an inner scope
named i that has already completed with success. Compensation can only be
invoked from within a fault or a compensation handler. Here, we fix two syntactic
constraints: handlers do not contain scope activities and, as in WS-BPEL (see
[32]), for each compensate(i) occurring in a service there exists at least an
inner scope i . Notably, an activity [s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i
acts as a binder for φ1, . . . , φn; in this way, a scope can only catch and handle
faults coming from its enclosed activities.

Now we show that this version of fault and compensation handling can be
easily encoded in COWS. The most interesting cases of the encoding are the
following:

〈〈[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i〉〉k =
[φ1, . . . , φn] ( 〈〈catch(φ1){s1}〉〉k | . . . | 〈〈catch(φn){sn}〉〉k

| [ki ] 〈〈s〉〉ki ; (xdone • odone!〈〉 | [k′] {|make • undo?〈i〉.〈〈sc〉〉k′ |} ) )

〈〈catch(φ){s}〉〉k = raise • throw?〈φ〉.[k′] 〈〈s〉〉k′

〈〈compensate(i)〉〉k = make • undo!〈i〉 | xdone • odone!〈〉
〈〈throw(φ)〉〉k = {|raise • throw !〈φ〉|} | kill(k)

The two distinguished endpoints raise • throw and make • undo are used for
exchanging fault and compensation signals, respectively. Each scope identifier i
or fault signal φ can be used to activate scope compensation or fault handling,
respectively.

The encoding 〈〈·〉〉k is parametrized by the label k that identifies the closest en-
closing scope, if any. The parameter is used when encoding a fault generator, to
launch a kill activity that forces termination of all the remaining activities of the
enclosing scope, and when encoding a scope, to delimit the field of action of inner
kill activities. The compensation handler sc of scope i is installed when the nor-
mal behavior s successfully completes, but it is activated only when signal make •

undo!〈i〉 occurs. Similarly, if during normal execution a fault φ occurs, a signal
raise • throw !〈φ〉 triggers execution of the corresponding fault handler (if any).
Installed compensation handlers are protected from killing by means of {| |}. No-
tably, the compensate activity can immediately terminate (thus enabling possible
sequential compositions by signaling its completion through the endpoint xdone •

odone); this, of course,does not mean that the corresponding handler is terminated.

2 This version only permits to compensate specified inner scopes and does not provide
an automatic compensation mechanism à la SAGAs. This latter mechanism, how-
ever, can be implemented in COWS by relying on ‘queues’ (we refer the interested
reader to [25] for further details).



www.manaraa.com

318 C. Ferreira et al.

4.2 SAGAs in SOCK

The next encoding that we present is from the SAGAs calculi [8] to SOCK [18].
SAGAs calculi are based on the composition of basic activities. An activity A
may either terminate with success, or with failure. An activity A may have an
associated compensation activity B whose aim is to compensate the activity A in
case of failure of the transaction. Activities can be composed using sequential and
parallel composition, and grouped into subtransactions. For instance a SAGA
executing two payment requests and annulling them in case of failure can be
written as:

{[PAY1%ANNUL1;PAY2%ANNUL2]}
Different recovery policies are defined, specifying how to compose compensa-
tions and when to execute them. The general idea is that sequential activities
are compensated in backward order while parallel activities are compensated in
parallel. SAGAs calculi provide different policies, depending on whether paral-
lel activities are stopped in case of fault, and on whether compensations are
executed in a centralized or distributed way. We concentrate here on “coordi-
nated interruption”, where parallel branches are stopped when a flow aborts,
and compensations are handled in a centralized way.

This policy has been implemented using SOCK mechanisms in [23].
SAGA activities have been implemented by SOCK services, invoked using the
request-response interaction pattern. For instance, the activity PAY1 above is
implemented by a service PAY1 located at location lPAY1 and invoked by a
request-response PAY1@lPAY1 (parameters are not considered since they are
not important from a failure point of view).

If the activity PAY1 succeeds, then it sends back an answer (values sent in
the answer are not important too). If it fails, then it generates a specific fault
c. Through the automatic fault notification mechanism of SOCK, this fault is
notified to the caller, where it is raised signaling that the current SAGA is
aborting and has to be compensated.

Abortion of a SAGA is managed by using SOCK fault and compensation
handlers. Each activity invocation is inside a dedicated scope. If the activity
successfully finishes, then its compensation is installed as compensation handler
for the scope. At the SAGA level, a fault handler for c is installed, invoking
the compensations of the different inner activities in the required order, which is
extracted from the structure of the term. For instance, the SAGA of the example
above is modeled by a scope of the form

{inst([c→ comp(pay2); comp(pay1)]; . . . ); {. . . }pay1 ; {. . . }pay2}u

Since compensation handlers are available only after the corresponding activity
successfully ends, then only those activities are compensated, as required.

Assume now that the compensating activity ANNUL1 is executed as part of
the recovery. As specified by the compensation handler for PAY1, this is executed
with a different handler w.r.t. normal activities. In particular, in case of failure,
the fault c is caught, and a fault f (for fail) is raised instead. Fault f is never



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 319

caught and makes the whole SAGA fail, according to the SAGA idea that failure
is a catastrophic event.

The translation outlined above has been described in detail and proved correct
in [23]. We outline here also the correctness result. SAGA behavior is defined in
terms of a big-step LTS semantics, with rules of the form Γ � S

α−→  where S
is a SAGA, Γ a function that specifies for each activity in S whether it succeeds
or it fails, α an observation of the computation, specifying the composition of
successful activities executed (the composition contains sequential and parallel
operators) and  may be either success, abort (i.e., success of the compensation)
or failure. For instance the SAGA above has a big-step transition of the form

PAY1 �→ �, PAY2 �→ �, ANNUL1 �→ � �
{[PAY1%ANNUL1;PAY2%ANNUL2]} PAY1;ANNUL1−−−−−−−−−−→ �

specifying that the SAGA aborts if activities PAY1 and ANNUL1 succeed and
PAY2 aborts.

SOCK instead has a small step semantics, including different observations
such as service invocations and replies, uncaught faults and others. Thus the
correctness is expressed in terms of an abstraction of the possible SOCK com-
putation containing only the events corresponding to successful answers from
request responses.

The correctness result can be stated as follows (see [23] for a more formal
statement).

Theorem 1. Let S be a SAGA. Γ � S
α−→  iff for each observation o which is

a linearization3 of α one of the following happens:

–  is success and there is a computation starting from the translation of S
that does not contain uncaught faults whose abstracted observation is o;

–  is abort and there is a computation starting from the translation of S
whose abstracted observation is o and which terminates with an uncaught
fault c which is the only uncaught fault;

–  is failure and there is a computation starting from the translation of S
whose abstracted observation is o and which terminates with an uncaught
fault f which is the only uncaught fault.

For the SAGA above the theorem guarantees that the translation of the SAGA
has a computation whose abstracted observation is PAY1;ANNUL1 and which
has a unique uncaught fault, c.

4.3 Analysis of Compensations in the Conversation Calculus

In this section we show how the Conversation Calculus (CC) [37] (see also Chap-
ter 2-1) may be used to model and reason about structured compensating trans-
actions, following the techniques detailed in [12]. To reason about compensations
3 A linearization is obtained by taking an actual interleaving for parallel activities.



www.manaraa.com

320 C. Ferreira et al.

in an abstract way, independently from a particular language implementation, we
introduce a general model of stateful compensating transactions. We then take
the core language for structured compensations introduced in [11], the compen-
sating CSP calculus (cCSP), but reinterpret its semantics in our generic compen-
sating model framework and prove the fundamental property expected in any
compensation model, namely atomicity of transactions (Theorem 2). Lastly, we
present an embedding of cCSP transactions in the Conversation Calculus, which
is proven correct since it induces a stateful model of compensating transactions
(Theorem 3). In the remainder of this section we describe the main ideas that
are at the basis of our development.

In our model, the most elementary program is a primitive action, similar to
a SAGA activity. A primitive action enjoys the following atomicity property:
it either executes successfully to completion, or it aborts. In case of abortion,
a primitive action is required not to perform any relevant observable behavior,
except signaling abortion by throwing an exception. A transaction, which may
involve several primitive actions, must also enjoy the atomicity property: it either
executes successfully to completion, or it aborts leaving the system in a state
equivalent to the one right before the transaction started executing. An aborted
transaction must not have any visible effect on the state of the system, so any
actions that were executed up to the point of the abortion must be in some
way reverted. Compensations provide a means to achieve this reversibility: if we
attach to every action a compensation that reverts the effect of the action, then
by executing all compensations of the previously executed actions (in the reverse
order) we end up in a state that should be in some sense equivalent to the state
right before the transaction started executing.

We define an abstract notion of compensating model, leaving open the in-
tended notion of “similarity” (��) between states, up to to which reversibility is
to be measured. The definition is also independent of the concrete underlying
operational model.

Definition 1 (Compensation Model). A compensation model is a pair (S,D)
where S gives its static structure and D gives its dynamic structure. The static
structure S = (S, | ,#, ��) is defined such that:

– S is a set of (abstract) states
– | is a partial composition operation on states
– # is an apartness relation on states
– �� is an equivalence relation on S

The dynamic structure D = (Σ, a→) is defined such that:

– Σ is a set of primitive actions
– a→ is a labeled (by elements of Σ) transition system between states.

On the one hand, the compensation model describes the static structure which
consists in a set of states S, a composition operation over states (defined only
when such states are independent/apart #) and an equivalence relation that
introduces flexibility at the level of measuring the cancellation effect of compen-
sations: since compensations, in general, may not be able to leave the system in



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 321

exactly the same state, we must consider a flexible notion of equivalence that
allows us to capture that the compensations produce an “equivalent enough”
state. On the other hand, the dynamic structure of the compensation model is
described by a labeled transition system between the states.

Using this abstract notion of compensation model we proceed by equipping
the cCSP with a semantics defined in terms of interpretations of a compensation
model. The semantics captures the effects and final status of cCSP programs—
the states in which the system is left after executing the program, and a signal
that indicates that the program successfully completed or aborted. cCSP pro-
grams are split in two categories: basic programs and compensable programs.
The simplest compensable program is a pair P ÷Q where P and Q are atomic
actions and action Q is the compensation of action P . Thus action Q intended to
undo the effect of the P action, leading to a ��-equivalent state to the state right
before P was executed. Complex structured compensable programs may then be
defined by composition under various control operators: sequential composition
T ;R, parallel composition T | R, and others. An arbitrary compensable program
T may then be encapsulated as a basic program, by means of the operator 〈T 〉.

The compensation model already allows us to state conditions on basic ac-
tions precise enough to derive general properties, namely the following atomicity
result, that may then be reused in each particular application of the model.

Theorem 2 (Atomicity). Let R be a ��-consistent compensable program. Then
〈R〉 " R+ ⊕ throw .

Theorem 2 guarantees that the behavior of transactions implemented over ��-
consistent compensable programs approximate atomicity: a transaction either
aborts (throw) doing “nothing”, or (⊕) terminates successfully after executing all
of its forward actions (R+) (P is the forward action in P ÷Q). The ��-consistent
condition ensures that for each compensation pair P ÷Q in the program, action
Q reverts the effect of P up to ��.

We now present our provably correct embedding of the cCSP language for
structured compensating transactions in the Conversation Calculus. We con-
sider that primitive actions are implemented by CC processes conforming to the
following behavior: after some interactions with the environment it either sends
(only once) the message ok�! in the current conversation context without any
further action, or aborts, by throwing an exception. If the outcome is abortion,
the system should be left in the “same” state (up to ��) as it was before the
primitive action started executing.

We show a selection of our encoding in Fig. 1. We use [ P ] � (νn)(n �
[ P ]) as an abbreviation to represent an anonymous (restricted) context (use-
ful to frame local computations). We denote by �P �ok the encoding of a basic
program P (namely structured compensating transactions) into a conversation
calculus process. The ok index represents the message label that signals the
successful completion of the basic program, while abortion is signaled by throw-
ing an exception. The encoding of compensable transaction T is denoted by
�T �ok ,ab,cm,cb . The encoding of T will either issue a single message ok� to signal
successful completion (and the implicit installation of compensation handlers)



www.manaraa.com

322 C. Ferreira et al.

�〈T 〉�ok � [ �T �ok,ab,cm,cb | ab?.throw 0 | ok?.ok�! ]

�P ÷Q�ok ,ab,cm,cb � [ try �P �ok catch ab�! |
ok?.ok �!.(cm�?.�Q�cb | cb?.cb�!) ]

�T1; T2�ok,ab,cm,cb � [ �T1�ok1,ab1,cm1,cb | ab1?.ab�! |
ok1?.�T2�ok,ab,cm,cm1 | ab?.cm1!.cb?.ab�! |
ok?.ok �!.cm�?.cm !.cb?.cb�! ]

�T1 | T2�ok,ab,cm,cb � [ �T1�ok1,ab,cm1,cb1 | �T2�ok2,ab,cm2,cb2 |
ok1?.ok2?.ok�!.cm�?.(cm1! | cm2! | cb1?.cb2?.cb�!) |
ab?.(ok1?.cm1!.cb1?.ab�! | ok2?.cm2!.cb1?.ab�! | ab?.ab�!) ]

Fig. 1. Encoding of structured compensating transactions in the CC (selected cases)

or (in exclusive alternative) a single message ab� to signal abortion. After suc-
cessful completion, reception of a single message cm� (“compensate me”) by the
residual will trigger the compensation process. When compensation terminates,
a single message cb� (“compensate back”) will be issued, to trigger compensation
of previous successfully terminated activities.

We prove that our encoding is correct, by showing that it induces a compen-
sation model in the sense of Definition 1 and with respect to the cCSP semantics
(see [12]).

Theorem 3 (Correctness). Let S = (S, | ,#, ��) and D = (Σ, a−→) define a
CC compensating model M = (S,D). If 〈T 〉 is a ��-consistent CC program over
Σ, then �〈T 〉�ok is a CC atomic activity, that either behaves as T+, or aborts
without any observable behavior modulo ��.

Theorem 3 states that the mapping �−�ok yields a sound embedding of arbitrary
(��-consistent) structured compensating transactions in any CC compensating
model. By showing that our encoding is an instance of the cCSP semantics,
we directly recover the property stated in Theorem 2 to any CC compensation
model.

Our framework naturally supports distributed transactions since primitive
actions may be realized by calls to remote services. For example, let us consider a
cCSP specification of a compensable transaction, which captures a credit request
operation between a client and a bank, where the financial ranking of the client
is updated according to the credit request operation, e.g., so as to indicate his
financial status is less reliable.

〈StartCreditRequest ÷ AbandonData ;UpdateRate ÷RestoreRate ;ClientAccept ÷ skip〉
Whenever a credit request operation starts, some data is created and the client’s
financial rate is updated. Then either the client accepts or otherwise the transac-
tion is aborted. In the latter case, the client rate is restored and the data of the
operation is cleared. Primitive actions such as UpdateRate and RestoreRate may
be implemented via calls to services that realize the expected tasks, for instance:



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 323

UpdateRate � new Bank · UpdateRate ⇐ lowerClientRate!.(ok?.ok�! + ko?.throw)

RestoreRate � new Bank · RestoreRate ⇐ raiseClientRate!.ok?.ok�!

Notice that these CC programs either send a single ok message or abort by
throwing an exception, and hence fit in our previous description of primitive
actions. We may then directly obtain a CC implementation of the cCSP trans-
action specified above, via such implementations of the primitive actions and via
the developed embedding of the cCSP compensation operators in CC.

5 Conclusion

In this chapter we have summarized the main results of the Sensoria project
concerning fault and compensation handling in message-based calculi. They con-
cern different aspects. On one side, we have studied different primitives for mod-
eling long-running transactions and compensations, adapting also them to the
particular needs of service-oriented computing. In particular, the idea of dy-
namic handlers is new, and has been studied in details. On the other side, we
have analyzed the expressive power of the different primitives, proving some
interesting separation results. Finally, we have exploited these mechanisms by
inserting them into calculi and languages for service-oriented computing, such as
CaSPiS [3], COWS [26], the Conversation Calculus [37], SOCK [10] and Jolie [31].
Similar results for event-based calculi are presented in Chapter 3-4. For instance,
a mapping of SAGAs into the Signal Calculus [14] has been presented in [6].

While we have today a huge toolbox of primitives able to deal with the
challenges of service-oriented computing, the understanding of the relationships
among them is still far. A few works [22,23,12] have appeared analyzing encod-
ings and separation results, but many pieces are missing, and the whole picture
is still quite obscure. Keep also in mind that the problem is made hard since the
expressive power depends not only on the chosen primitives for fault and com-
pensation handling, but also on the underlying language. Another important
stream for future work is the proof of correctness of compensation strategies.
For long-running transactions one cannot require, as can be done for ACID
transactions instead, that in case of failure the system goes back to the starting
state, since recovery is not perfect. A few approaches are emerging here too.
The previous section presented a framework for reasoning about the correct re-
covery, measured up to some particular behavioral equivalence parametrically
defined in the framework. An alternative approach is to examine observations:
a relation between performed activities and executed compensations is required,
based again on some user-defined pattern [35].

Acknowledgments. The work reported herein is the result of a collaborative
effort of many researchers, not just of the authors. Special thanks to Lucia Ac-
ciai for the contribution on CaSPiS in Section 3, and to Rosario Pugliese and
Francesco Tiezzi for the contribution on COWS in the same section.

António Ravara was partially supported by the Security and Quantum Infor-
mation Group, Instituto de Telecomunicações, Portugal.



www.manaraa.com

324 C. Ferreira et al.

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
pi-calculus. Theoretical Computer Science 195(2), 291–324 (1998)

2. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In:
Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp.
124–138. Springer, Heidelberg (2003)

3. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

4. Boreale, M., et al.: SCC: a Service Centered Calculus. In: Bravetti, M., Núñez,
M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 38–57. Springer,
Heidelberg (2006)

5. Bravetti, M., Zavattaro, G.: On the expressive power of process interruption and
compensation. Mathematical Structures in Computer Science 19(3) (2009)

6. Bruni, R., Ferrari, G.L., Melgratti, H.C., Montanari, U., Strollo, D., Tuosto, E.:
From theory to practice in transactional composition of web services. In: Bravetti,
M., Kloul, L., Tennenholtz, M. (eds.) EPEW/WS-FM 2005. LNCS, vol. 3670, pp.
272–286. Springer, Heidelberg (2005)

7. Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: Ex-
tending join. In: Proc. of IFIP TCS 2004, pp. 563–576. Kluwer, Dordrecht (2004)

8. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: Proc. of POPL 2005, pp. 209–220. ACM Press,
New York (2005)

9. Busi, N., Gabbrielli, M., Zavattaro, G.: Replication vs. recursive definitions in
channel based calculi. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger,
G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 133–144. Springer, Heidelberg (2003)

10. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

11. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Se-
quential Processes. The First 25 Years. LNCS, vol. 3525, pp. 133–150. Springer,
Heidelberg (2005)

12. Caires, L., Ferreira, C., Vieira, H.T.: A process calculus analysis of compensations.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 87–103.
Springer, Heidelberg (2009)

13. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions for ses-
sion types. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201,
pp. 402–417. Springer, Heidelberg (2008)

14. Ferrari, G.L., Guanciale, R., Strollo, D.: JSCL: A middleware for service coordina-
tion. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 46–60. Springer, Heidelberg (2006)

15. Fournet, C., Gonthier, G.: The join calculus: A language for distributed mobile
programming. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.) APPSEM
2000. LNCS, vol. 2395, pp. 268–332. Springer, Heidelberg (2002)

16. Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., Salem, K.: Coordinat-
ing multi-transaction activities. Technical Report Report No. UMIACS-TR-90-24,
Univ. of Maryland Institute for Advanced Computer Studies (1990)



www.manaraa.com

Advanced Mechanisms for Service Combination and Transactions 325

17. Gorla, D.: Towards a unified approach to encodability and separation results for
process calculi. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS,
vol. 5201, pp. 492–507. Springer, Heidelberg (2008)

18. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: Proc. of ACSD 2008, pp.
190–199. IEEE Computer Society Press, Los Alamitos (2008)

19. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service
oriented applications. Fundamenta Informaticae 95(1), 73–102 (2009)

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

21. Jolie website, http://www.jolie-lang.org/
22. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-

sation handling. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 366–386.
Springer, Heidelberg (2010)

23. Lanese, I., Zavattaro, G.: Programming sagas in SOCK. In: Proc. of SEFM 2009,
pp. 189–198. IEEE Computer Society Press, Los Alamitos (2009)

24. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

25. Lapadula, A.: A Formal Account of Web Services Orchestration. PhD thesis, Di-
partimento di Sistemi e Informatica, Università degli Studi di Firenze (2008),
http://rap.dsi.unifi.it/cows

26. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

27. Mazzara, M., Lanese, I.: Towards a unifying theory for web services composition.
In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006. LNCS, vol. 4184,
pp. 257–272. Springer, Heidelberg (2006)

28. Milner,R.:Communication andConcurrency.Prentice-Hall, EnglewoodCliffs (1989)
29. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. In-

formation and Computation 100, 1–77 (1992)
30. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.

LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)
31. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proc.

of ECOWS 2007, pp. 13–22. IEEE Computer Society Press, Los Alamitos (2007)
32. Oasis. Web Services Business Process Execution Language Version 2.0 (2007),

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
33. Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–

198 (2007)
34. Sangiorgi, D., Walker, D.: Pi-Calculus: A Theory of Mobile Processes. Cambridge

University Press, Cambridge (2001)
35. Vaz, C., Ferreira, C.: Towards compensation correctness in interactive systems. In:

Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 161–177. Springer,
Heidelberg (2010)

36. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215.
Springer, Heidelberg (2009)

37. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service-
oriented computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008)

38. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1
(2001), http://www.w3.org/TR/wsdl

http://www.jolie-lang.org/
http://rap.dsi.unifi.it/cows
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.w3.org/TR/wsdl


www.manaraa.com

Model-Driven Development of
Long Running Transactions�

Vincenzo Ciancia1, Gianluigi Ferrari1, Roberto Guanciale1,
Daniele Strollo1, and Emilio Tuosto2

1 Dipartimento di Informatica,
Università degli Studi di Pisa, Italy

{ciancia,giangi,guancio,strollo}@di.unipi.it
2 University of Leicester, Computer Science Department

University Road, LE17RH, Leicester, UK
et52@mcs.le.ac.uk

Abstract. The management of Long Running Transactions is a crucial
aspect in the field of Service Oriented Architectures. This chapter reports
on the usage of the ESC middleware in the design and implementation
of long running transactions. The middleware has been formally defined
as a process calculus and supports a model-driven methodology which
clearly separates the development stages of long running transactions.

1 Introduction

Service Oriented Computing (SOC) envisages systems as combination of basic
computational entities, called services, whose interfaces can be dynamically pub-
lished and bound. The main methodologies for composing services are orchestra-
tion and choreography. Services are orchestrated when their execution work-flow
is described through an “external” process, called orchestrator. A choreogra-
phy, instead, is a design that yields the architecture of the system by specifying
how services should be connected and interact to accomplish their tasks within
the given choreography. Roughly, choreographies yield an abstract global view
of SOC systems that must eventually be “projected” on the distributed com-
ponents. Both orchestration and choreography can benefit from model driven
development (MDD, for short) and refactoring [1] whereby (models of) systems
are repeatedly transformed so that specific concerns are confined at different
stages. MDD methodologies typically start from a (semi-)formal specification
that focuses on the core business process and neglects other aspects (e.g., com-
munication mechanisms or distribution) tackled by subsequent transformations.

An important concern of SOC applications is to guarantee transactional be-
haviors. Classically transactions are thought of as a sequence of actions to be
executed atomically. Namely, if some failure happens at any stage of the se-
quence, the computation must be reverted to the previous stable state. Such

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 326–348, 2011.
� Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Model-Driven Development of Long Running Transactions 327

kind of transactions are referred to as ACID (after atomicity, consistency, iso-
lation and durability) [8]. ACID transactions have been recognized as being not
suitable for SOC (see e.g.[12]). Indeed, being inherently loosely coupled, SOC
systems govern the affairs of transactional behaviors possibly spanning over long
temporal intervals.

Long Running Transactions (LRTs) avoid locks over resources and rely on
compensations as mechanism to recover and deal with failures, aborts and other
unexpected dangerous events. Compensations are executed if a failure occurs:
a failing activity informs its invokers about the anomalous execution triggering
their compensations as well.

The main goal of this chapter is to present a programming middleware devel-
oped within Sensoria which supports a MDD methodology dedicated to man-
age LRT. Our proposal can be summarized as follows: (i) the designer adopts a
specification language to model the transactional requirements of the system, (ii)
the resulting model is transformed into a coordination language for services, (iii)
the developer refines the model to add lower abstract details, (iv) the resulting
model is transformed to obtain a runnable process. A distinguished feature of
our proposal is that any language involved in the development methodology has
a formal definition, thus allowing formal reasoning techniques.

The overall architecture of our framework is illustrated in Fig. 1. From left
to right, we distinguish three main blocks, the Esc platform, the SC process
calculus, and the NCP, choreography model.

The Signal Calculus [5,4] (SC ) is an asynchronous process calculus designed
with the aim of providing the conceptual counterpart of a programming mid-
dleware supporting the development of policies coordinating the behaviour of
distributed services. Differently from other Sensoria approaches (see the chap-
ter), SC does not rely on unicast channels to coordinate services. Indeed, service
coordination policies (orchestration and choreography) are specified by relying
on multicast notification only. Remarkably, the calculus does not assume any
centralized mechanism for publishing, subscribing and notifying events. Being a
programming middleware, SC just supplies a set of basic primitive constructs:
higher level constructs can be automatically compiled over the basic primitives.
For instance, in Section 3, we report on the transformation rules mapping SAGA
LRT [7,2] into SC. This leads to a transactional layer on top of SC (called Saga
in Fig. 1. Notice that in our framework the SC calculus plays the key role of
intermediate meta-model with the respect to the other two layers.

The Network Coordination Policies [3] (NCP) equips our framework with a
choreography model. Coordination policies take the form of processes that rep-
resent the behavior as observed from a global point of view, namely by observing
all the public interactions taking place on the network infrastructure. Hence, an
NCP process describes the interactions that are expected to happen and how
these are interleaved.

SC and NCP lay at two different levels of abstraction. The former is tailored
to support the (formal) design of services, the latter is the specification language
to declare the coordination policies. Indeed, certain features can be described at



www.manaraa.com

328 V. Ciancia et al.

both levels: the NCP specification declares what is expected from the service
network infrastructure, the SC design specifies how to implement it.

The gap between the local and global abstraction levels has been formally
filled [3,10]. It has been proved that for each SC design, there exists an NCP
choreography that reflects all the properties of the design. The conformance of
an SC design with respect to an NCP specification is formally proved by check-
ing weak asynchronous bisimilarity between them. This notion of conformance
has the main benefit of supporting the development of systems in a model driven
development fashion. The conformance of each model with respect to an NCP
specification allows the designer to choose the required level of abstraction, so
that one can focus on coordination of services, without considering the imple-
mentation details, or focus on service design, just trying to match the abstract
policies. We refer to [10] for a more comprehensive analysis of SC and NCP. Fi-
nally, in Fig. 1, the connections between the SC blocks and NCP block represent
the conformance checking.

ESC Transactions

SCL / SCDesigner

E
S
C

 P
la

tf
o
rm

Java Code
Deployment

Java Signal Core Layer

Java Code
Deployment

Java Signal Core Laye

SCL / SCDesigner

SCL / SCDesigner

Signal Calculus (SC)

SC Design

Signal Calculus (SC)

Signal Calculus (SC)

Saga

BPMN
Transactions

UML4SOA

Conformance
Checking

NCP
Choreography

Fig. 1. Esc architecture

At implementation level we find two distinct layers: the Java Signal Core
Layer (Jscl) middleware and the Event-based Service Coordination (Esc). Jscl

consists of a prototypical middleware reflecting the structure and the program-
ming model of the Signal Calculus. Jscltakes the form of a set of Java API for
programming distributed components interacting by notifying multicast events.
Jscl is indeed the run-time support for executing SC networks of services. The
Esc platform consists of a user-friendly interface in the form of a set of Eclipse
plug-ins supplying a graphical and a textual representation of SC networks called
Signal Core Language (Scl). The graphical representation provides the global



www.manaraa.com

Model-Driven Development of Long Running Transactions 329

view of the choreography by considering the components and their intercon-
nections, without detailing their internal logics. The textual notation, instead,
provides a closer view of services allowing designers to focus on the behavioral as-
pects. One can easily pass from the graphical to the textual representation and
to automatically generate the runnable Jscl code as well. The Esc platform
supplies a set of model transformation tools that, starting from the high level
specifications, automatically build their corresponding representation in the Scl

representation. In Section 4.1 we discuss how, starting from the SC coding of
transactional primitives, it is possible to obtain the actual program at the Esc

level. A more comprehensive discussion on the features of the Esc framework
can be found in [14].

In summary, the Esc framework goes all the way from a foundational process
calculus, the Signal Calculus, and its choreography model, Network Coordination
Policy, over a Java middleware, Jscl. In this chapter, the usefulness of the Esc

framework will be illustrated by tackling the problem of designing, implementing
and refining long running transactions.

2 Beyond Message Passing Coordination for Services

The Signal Calculus is a process calculus designed to specify coordination of
services distributed over a network. SC follows the event notification paradigm:
communications are performed by the rising and the handling of events. This
section reviews the main features of the calculus. Moreover, we present the lan-
guage, Signa Core Language (Scl), extending Java to support SC programming
model.

2.1 The Signal Calculus

We now introduce the main syntactic categories of the Signal Calculus, together
with some notational machineries. We assume an infinite set T of names ranged
by τ, τ ′, r, s, . . ., and a infinite set A of component names ranged by a, b, c.... We
use a to denote the set of names a1, ..., an.

SC is centered around the notion of component. A component a[B]RF is a ser-
vice identified by a unique name a, the public address of the service. The active
computations, called behaviors (B), are wrapped and confined inside compo-
nents. Each SC component specifies (i) the reaction (R) to be activated upon
reception of notifications to events and (ii) the set of flows (F ), namely the
collection of component names each emitted event will be delivered to. Hence,
while reactions define the interacting behavior of the component, flows define
the component view of the coordination policies. Reactions and flows have to
be thought of as the middleware interface of components.

Components interact by issuing events raised during their internal computa-
tions. Classes of homogeneous events are grouped into topics. We use the term
topic to represent the “class” of events (e.g. ClickMouse) and event to denote



www.manaraa.com

330 V. Ciancia et al.

Table 1. SC syntax to handle sessions

R ::= 0 | τ λ s � B | τ�s � B | R ⊗ R′

(a) Reactions

F ::= 0 | τ � a | F ⊕ F ′

(b) Flows

B ::= 0 | ε; B | out〈τ�s〉; B | rupd (R) ; B | fupd (F )B; B | B | B | (ντ )B

(c) Behaviors

N ::= ∅ | a [B]RF | N ‖ N | 〈τ�s〉@a | (νn)N where n ∈ A ∪ T
(d) Networks

how its “instance” (e.g. the happening of a mouse click at a well precise position
and time) is locally represented by publishers.

Additionally, events come equipped with a session, allowing to distinguish
the work-flow instance in which the events of a certain topic occur. Therefore,
events are represented as pairs τ�s, where the first element is the topic and the
second element is the session identifier 1. A session determines a sort of “virtual
communication link” among publishers and subscribers and can be established
despite the fact that they do not need to know each other’s names. Intuitively,
a session identifies the scope within which an event is significant: partners that
are not in this scope cannot react to events related to such session.

The delivering of events is demanded to the network infrastructure, which
encapsulates them inside envelopes. An envelope consists of the event itself dec-
orated with the information needed to allow the proper routing within the net-
work infrastructure. Notice that this information is mandatory in our approach
to achieve decentralization (since we rely on a non-brokered solution [11]).

The syntax of reactions (R) is displayed in Table 1a. A reaction is a (possibly
empty) multi-set of unit reactions. A unit reaction (α � B) is composed of a
signature α and a body B (the behavior of the reaction). The signature α can
be either a check (τ�s) or a lambda (τλs) prefix. Again, τ and s denote the event
topic and the session, respectively. Lambda reactions are activated independently
from the session, while check reactions handle notification to events belonging
to a well defined session. Furthermore, lambda reactions, once installed, remain
persistent in the component interface, while check reactions, once executed, are
removed from the component interface. A lambda reaction τλs acts as a binder
for s, i.e. s is the formal name of the session. When notification occurs, s is
bound to the actual session. Unit reactions can be empty and can be composed
(R1 ⊗R2).

1 Even though names τ, τ ′, ... and s, r, ... belong to the same domain of names T , in
order to gain readability, we use these two different notations to denote topic names
(τ ) and session identifiers (s), respectively.



www.manaraa.com

Model-Driven Development of Long Running Transactions 331

Flows (F ) are described in Table 1b. A flow is a set (possibly empty) of
unit flows. A unit flow τ � a expresses the subscription of a set of component
names a for the topic τ . Since flows are defined on the component interface,
their configuration is locally maintained by each component. We freely use the
notation τ � a to denote a flow having a single end point a. Notice that flows
allows to filer events only on their topics. In fact, the reactions are demanded to
regulate the handling of events according to their sessions. Flows composition,
F ⊕ F ′, allows composition of subscriptions.

The syntax of component behaviors is reported in Table 1c. The SC primitives
allow one to dynamically reconfigure the structure of the coordination policies
by adding new flows and reactions. The rule rupd (reaction update) describes the
reconfiguration of the reaction part of the component interface.. In a similar way,
the fupd (flow update) modifies the component flows. An asynchronous emission,
out〈τ�s〉;B, spawns into the network a multicast notification according to the
flows. Differently from the π-calculus, we observe that the SC output operation
(emission) is not presented as bare output. As will be clarified by the semantic
rules out in Table 2, the continuation B of an output operation is activated
without waiting for the consumption of the envelopes from the receivers.

All the SC actions have been presented in the prefixed form act.B, with
act ranging over atomic actions (i.e. {ε, rupd(R), fupd(F ), out〈τ�s〉}). Once the
atomic step act terminates, its continuation B is activated. When it is clear from
the context, we will omit the empty behavior, writing act instead of act.0. Topics
and sessions can be dynamically created by using the primitive (ντ)B. Finally,
behaviors can be composed in parallel and embody concurrent computations
taking place on the same service (e.g. for handling simultaneous notifications
received from several partners).

The SC components describe locations on which the current computations
are taking place. Components are structured to build a network of services
whose syntax is reported in Table 1d. In the following, we use capital letters
N,M, ... ∈ N to denote networks. Notice that networks are flat, namely there
is no hierarchy of components. A network provides the facility to transport en-
velopes encapsulating the events exchanged among components. This feature is
at the core of the SC asynchronous communication. Envelopes 〈τ�s〉@a repre-
sent the network facility to transport event notifications: they yield the emitted
event having topic τ in the session s related to the subscribed component a. The
restriction primitive over networks hides a subset of the components to some of
the other participants. Notice that behaviors cannot restrict component names,
since SC does not allow nested components and hierarchical network structures.

Free (fn) and bound (bn) names are defined in the standard way. Since lambda
reaction τλs �B and restriction (ντ)B act as binders for s and τ , respectively,
hereafter, we report only these rules:

fn((ντ)B) = fn(B) \ {τ} bn((ντ)B) = bn(B) ∪ {τ}
fn(τ λ s�B) = fn(B) \ {s} ∪ {τ} bn(τ λ s �B) = bn(B) ∪ {s}
fn((νn)N) = fn(N) \ {n} bn((νn)N) = bn(N) ∪ {n}



www.manaraa.com

332 V. Ciancia et al.

Table 2. SC semantic rules

a [out〈τ�s〉.B | B′]RF → a [B | B′]RF ‖
∏

b∈(F )↓τ
〈τ�s〉@b (out)

〈τ�s〉@a ‖ a [B]τ�s�B′⊗R
F → a [B|B′]RF (check)

〈τ�s〉@a ‖ a [B]τ λ s′�B′⊗R
F → a [B|{s/s′}B′]RF (lam)

a [rupd (R′) .B]RF → a [B]R⊗R′
F (rupd) a [fupd (F ′) .B]RF → a [B]RF⊕F ′ (fupd)

N → N ′
(npar)

N ‖ M → N ′ ‖ M

N → N1
(new)

(νn)N → (νn)N1

In the following we assume that networks are well formed : component names are
not replicated and for any N1 ‖ N2, fn(N1) ∩ bn(N2) = ∅.

SC reactions, flows, behaviors and networks are defined up to a structural
congruence relation ≡. We assume that (R,⊗, 0), (F,⊕, 0), (B, | , 0) and (N, ‖, ∅)
are commutative monoids, allowing us to freely rearrange SC terms. Also, we
assume the standard scope extrusion rules:

a [(ντ)B1 | B2]
R
F ≡ a [(ντ)(B1 | B2)]

R
F if τ 	∈ fn(B2)

a [(ντ)B]RF ≡ (ντ)a [B]RF if τ 	∈ fn(F ) ∪ fn(R)

((νn)N1) ‖ N2 ≡ (νn)(N1 ‖ N2) if n 	∈ fn(N1) ∪ fn(N2)

The SC reduction semantics is dispalyed in Table 2. The reduction rules ex-
ploit the auxiliary operator (F )↓τ , that yields the set of components that are
subscribed to the topic τ . This operator, called flow projection, is inductively
defined as follows:

(∅F )↓τ= ∅ (τ � a)↓τ ′=
{

a if τ ′ = τ
∅ otherwise (F ⊕ F ′)↓τ= (F )↓τ ∪(F ′)↓τ

Rules check and lam describe the activation of check reactions (that require
the exact match of the session identifier) and of lambda reactions (receiving the
session identifier as argument). Notice that check reactions are consumed, while
lambda reactions are persistent. A lambda reaction can be used to publish a pub-
lic interface that establishes a session with the client. Instead, a check reaction
permits a service to handle only events that belong to a given session. For exam-
ple, if the session is used to identify an instance of a work-flow, this mechanism
allows the service to specialize its behavior for each instance and to track the



www.manaraa.com

Model-Driven Development of Long Running Transactions 333

progress of the control flow. Notice that if several reactions can handle the event
notification, one of them is non-deterministically selected. This is performed by
rearranging the component reactions using the structural congruence.

The rule out introduces in the network a set of envelopes, i.e. an envelope for
each of the subscriber components. The subscribed components b are retrieved
through the flow projection operator (b ∈ (F )↓τ ). Rules rupd and fupd update
reactions and flows, respectively. Rules npar and new are the usual rules of
process calculi.

2.2 Signal Core Language

The Signal Core Language (Scl) is Java implemenation of the SC program-
ming model. Scl has been implemented as a textual plug-in for the Eclipse
environment.

1 restricted : s1,s2;

2 global: t1, t2, t3;

3 component a {

4 local: lt1 , lt2;

5 flows: [t1->a], [lt1 ->b];

6 knows: s1,b;

7 reaction lambda (t1@ws){

8 addFlow ([ws->b]);

9 addReaction (

10 reaction check (lt1@lt2){

11 emit (t1@lt1);

12 }

13 );

14 nop;

15 do {/* behavior */} or {/* behavior */}

16 split {/* behavior */} || {/* behavior */}

17 with (nlt1 ){/* behavior */}

18 skip;

19 }

20 }

21 protected component b {

22 knows: s1;

23 main {

24 // behavior

25 }

26 }

Code 1.1. SCL language through an example

A typical representation of an Scl network is given in Code 1.1. The example
shows a network consisting of two components a and b, defined in the lines



www.manaraa.com

334 V. Ciancia et al.

3-20 and 21-26, respectively. Topic names are declared as global and shared
among components as shown in line 2. Moreover, topics can be declared in a
private scope of a component using the primitive local (line 4) or during the
computation through the primitive with (line 17). Topic names can be private
names shared among several components via the primitive restricted (line 1).
Similarly, component names can be declared restricted by tagging components
with the protected clause (line 21). Components can insert restricted names
inside their scope (with the exception of the names declared with local and with
clauses) by using the knows primitive (lines 6 and 22).

Components are uniquely identified by a name (e.g. a) and declared with the
component keyword. Components contain a set of local topics, a set of flows and
a set of reactions declaring the topics that can be handled and the tasks to
perform.

Events are couples t1@t2, where t1 is the event topic and t2 is the work-flow
session in which it has been declared. Sessions identifiers and topics are freely in-
terchangeable, as show in lines 7-8 where the session ws received by the lambda
reaction is afterwards used as topic name for connecting the component a to the
component b. Components declare their entry points by installing reactions. Two
kinds of reactions can be defined: the reaction lambda (see line 7) that is ac-
tivated regardless its session, and reaction check (see line 10) that triggers
behaviour within a specific session. Flows and reactions can be defined at ini-
tialization phase (lines 5 and 7, respectively) or added at run-time if required
(lines 8 and 9-13, respectively).

The computational steps described inside reactions, declare their behaviors.
The basic behavioral instructions are: emit (line 11), used to send out notifica-
tion for an occurred event, addFlow and addReaction previously described, and
nop (line 14) to indicate a block of code externally defined through the host
language instructions that do not interfere the coordination patterns (e.g. the
access to the database). The skip (line 18) represents the empty action (the SC
silent action). Furthermore, behaviors can be composed in sequence (using, as
usual the semicolon) or with do-or (line 15) and split (line 16) constructs. The
former constructs is used to implement the non deterministic execution of two
branches. The latter construct allows the parallel composition of two behavioral
activities.

Notice that component b declares a main block (lines 23-25). The main block
controls the activation of a component.

3 Experimenting Long Running Transactions

To facilitate the mangement of LRT we equip the Esc framework with suitable
facilities for handling the graphical design of LRT. In particular, bpmn [9] and
Uml4Soa (see Chapter 1-1) have been considered as modelling languages for
long running transactions. Furthermore, the Signal Calculus has been exploited
to formally drive the implementation of the LRT designs expressed in the graph-
ical notation.



www.manaraa.com

Model-Driven Development of Long Running Transactions 335

3.1 A Graphical Notation for LRTs

We now introduce a simple graphical notation for specifying business processes.
Our main goal here is not to provide a novel graphical modeling language, but
rather focussing on the common concepts underlying the treatment of LRT in
the existing approaches. In particular, the graphical design notation is intended
to describe the work-flow of a service-oriented system by a global point of view.
Hence, designers can abstract from service distribution, the communication in-
frastructure and the technologies that will implement each service. Therefore, the
basic elements of the graphical notation are compensable activities, namely pairs
of main activities and compensations that can be composed sequentially or in
parallel. Fig. 2 depicts the designs of sequential (a) and parallel (b) composition
of compensable activities adopting the bpmn [9] notation.

(a) Sequence (b) Parallel

Fig. 2. Composition of compensable activities

Main activities and their related compensations are represented as boxes
linked by dashed arrows. The main activity Task1 has a ”compensation” entry
point connecting its compensation Comp1. The sequential composition is per-
formed by linking together the main activities (cf. Fig. 2a), while the parallel
composition makes use of “fork” and “join” operators. Fig. 2b illustrates the
parallel composition of two transactional activities. The two circles represent
the start event and the termination event of the whole business process, while
the diamond with the plus operation represents the join of the two parallel ac-
tivities. The fork operation is implicit in the multiple connections on the start
event. Compensable activities, and their compositions, can be enclosed inside
transactional boundaries as shown in Fig. 3.

Business processes are built by composing compensable activities. Notice that
the mechanisms used to implement the operation logic of compensable activities
and the interactions needed to coordinate the whole business process are not
specified. Finally, it should be remarked that our graphical modelling language
corresponds indeed to Naive Sagas as presented in [2].



www.manaraa.com

336 V. Ciancia et al.

Fig. 3. Transactional boundaries

3.2 From the Graphical Notation to SC (informally)

This section aims at illustrating the way SC is used as an intermediate lan-
guage to express coordination patterns for services. In particular, we described
the mapping from high level transactional primitives into concrete coordina-
tion patterns expressed as SC behaviors. We illustrate the SC encoding of the
high level transactional primitives by taking advantage of the event notifica-
tion paradigm. We distinguish two groups of observable events: i) the results
obtained during the execution of internal steps and ii) the results observed by
the external activities. Two distinguished event topics f and r are globally used
(after Sagas terminology for forward and rollback flow, respectively) to notify
successful termination of compensable activities.

Compensable Activity

A compensable activity is expressed by the SC component, called transactional
component, illustrated in Code 1.2, where Task and Comp, respectively, represent
the main activity and the compensation of the compensable activity, and next
and prev represent the forward and the backward flows.

TC(a, Task,Comp, prev ,next) = (νok, ex)
(
a[0]fλs�Task | rupd(Rres)

ok�a⊕ex�a⊕f�next⊕r�prev

)
Rres = ok�s �

(
rupd(r�s � Comp)|out(f�s)

)
⊗

ex�s � out(r�s)

Task = ε.out(ok�s) + ε.out(ex�s)
Comp = ε.out(r�s)

Code 1.2. SC coding of LRT: compensable activity

Main activities and compensations make use of the internal action ε to repre-
sent a behaviour not observable at SC level. This internal behaviour has to be
specified at the implementation level. However, we assume that the implemen-
tation of internal behaviour does not alter the structure of the coordination. In



www.manaraa.com

Model-Driven Development of Long Running Transactions 337

other words, the direct access to SC primitives to implement internal behaviour
is not allowed since they can invalidate the overall protocol verified at the higher
level of abstraction.

Sequence

The sequential composition of SC transactional components is obtained by sim-
ply rearranging their interconnections. Namely, given two transactional compo-
nents TCa and TCb of the form:

TCa � TC(a, Taska, Compa, preva,−)
TCb � TC(b, T askb, Compb,−, nextb)

the corresponding sequential composition is given by the SC term:

TCa;TCb � TC(a, Taska, Compa, preva, b) || TC(b, T askb, Compb, a, nextb)

The component a on the left side of the composition is connected for forward
flows to the component b on its right and conversely for the backward flows b is
connected to a.

Parallel Composition

Parallel composition of SC transactional components requires the introduction
of two auxiliary SC components called dispatcher and collector to model the fork
and join entry points of Fig. 2b. Dispatchers collect notifications of the forward
flow (events having topic f) and redirect them to the parallel transactional
components ({a, b}). Symmetrically, dispatchers bounce rollback events of topic
r when the backward flow is executed. Also, collectors propagates forward and
backward flows by sending the events of topic f or r as appropriate. Fig. 4
yields a pictorial representation of how the forward and backward flows of the
dispatcher d and collector c of parallel components a and b are coordinated by
using the f and r events. Notice that a and b have rollback flows connecting each
other; in fact, the semantics of Sagas prescribes that, when the main activity of
a parallel component fails, the other components must be notified and start their
compensations. The SC coding for c and d components is reported in Code 1.3.

d[0]
fλs�

(
out(f�s) | out(n� s) | rupd

(
r�s�rupd(r�s�out(r�s))

))
f�{a,b}⊕n�c⊕r�prev

c[0]
nλs�

(
rupd

(
fλs�rupd(f�s�out(f�s) | rupd(r�s�out(r�s)))

))
f�next⊕r�{a,b}

Code 1.3. SC coding of LRT: parallel composition



www.manaraa.com

338 V. Ciancia et al.

A distiguished topic n is internally used for implementing the dispatcher-
collector synchronization. Intuitively, this topic implements a sort of “private
channel” handling the dispacther-collector interaction. For instance, the dis-
patcher d communicates via the topic n that a new session s is going to start.
The collector after having received through the channel n the work-flow session
identifier s, installs the reactions needed to handle the events notified by the
parallel stages.

Fig. 4. SC parallel composition

Transactional Enclosure

The intended meaning of transactional enclosure is to avoid that internal failures
do affect external activities. To manage transactional enclosures we make full use
of dispatcher and collector components. Fig. 5 provides a pictorial representation
of the SC encoding. The collector is demanded to receive the notification of
forward event (f) of the activty a. Whenever the collector c receives a rollback
event, the component a must activate its compensation. Two cases are possible:
i) a has previously successful terminated, so it has a compensation installed ii)
a internally failed and no compensations are needed. Also in this case, the topic
n is used by the dispatcher d to inform the collector c that a new work-flow
instance has been initiated so that the collector can install the proper check
reactions to consume two distinct instances of f events coming from a.

Fig. 5. SC transactional enclosure



www.manaraa.com

Model-Driven Development of Long Running Transactions 339

The SC coding of transactional enclosures is illustrated in Code 1.4.

d[0]
fλs�

(
out(n�s) | out(f�s) | rupd

(
r�s�rupd(r�s�out(r�s))

))
f�a⊕n�c⊕r�prev

not[0]rλs�out(f�s)
f�c

c[0]
nλs�

(
rupd

(
f�s�out(f�s) | rupd(r�s�out(r�s))

))
f�next⊕r�{d,a}

Code 1.4. SC coding of LRT: transaction

4 A Case Study: The Car Repair Scenario

In this section we illustrate how the Sensoria car repair scenario [15] has been
developed by using the Esc framework. Moreover, we will use this scenario
to illustrate our model driven development methodology. We start by briefly
reviewing the case study. A car manufacturer offers a service that, once a user’s
car breaks down, the system attempts to locate a garage, a tow truck and a
rental car service so that the car is towed to the garage and repaired meanwhile
the car owner may continue his travel.

The interdependencies between the service bookings make it necessary to have
a coordination with compensations. Before looking for a tow truck, a garage
must be found. This poses additional constraints to the candidate tow trucks. If
finding a tow truck fails, the garage appointment must be revoked. If renting a
car succeeds and finding either a tow truck or a garage appointment fails, the
car rental must be redirected to the broken down car’s actual location. If the car
rental fails, it should not affect the tow truck and garage appointment.

Charge
CreditCard

Revoke
Charge

Order Garage
Appointment

Cancel Garage
Appointment

Order 
Tow Truck

Cancel
Tow Truck

Order
Rental Car

Redirect
Rental Car

+

Fig. 6. Car repair scenario: the LRT graphical model



www.manaraa.com

340 V. Ciancia et al.

The graphical representation of this scenario is presented in Fig. 6. Notice
that the car rental service is a isolated sub-transaction, since it does not affect
other activities.

The initial design of the car-repair scenario simply describes the main activ-
ities and the transactional aspects of the coordination. In this phase, service
distribution or further decomposition of main activities are not relevant issue.
Those aspects may be considered at later stages of the development.

4.1 Scl Model Transformation

The Esc framework supplies facilities to transform the abstract initial design
into the platform specific Scl model. This model transformation is driven by
the SC encoding of compensable activities presented above. In the first step
the model transformation generates an Scl transactional component for every
atomic process (aka an activity and the corresponding compensation). The ap-
plication of the model transformation to the abstract initial design produces the
Scl network depicted in Fig. 7.

Fig. 7. The generated Scl network

The iterative application of the model transformation can generate glue com-
ponents and update the existing flows, however the behavior of components
generated in previous steps of the iteration cannot be altered. This permits to
transform a transactional process into an Scl network independently from the
context, and reuse it as building block just changing its connections (namely the
Scl flows).

The following paragraphs report the Scl coding of the compensable activities
of the car repair scenario.

Atomic Process

Code 1.5 illustrates the Scl coding of transactional activity Garage.
The component declares two private topics, ok and ex, (line 2) that will

be used to check termination of the corresponding main activity. Notice that



www.manaraa.com

Model-Driven Development of Long Running Transactions 341

1 component garage {

2 local: ok, ex;

3 flows: [(ok->garage), (ex->garage),

4 (r->creditCard ), (f->dispatcherPar )];

5 reaction lambda (f@s) {

6 split {

7 /* coding of the main activity */

8 do {emit <ok@s >;} or {emit <ex@s >;}

9 } || {

10 addReaction ( reaction check (ok@s) {

11 split {

12 emit <f@s >;

13 }||{

14 addReaction (reaction check (r@s) {

15 /* Coding of Compensation .

16 Defined by host language API. */

17 nop;

18 emit <r@s >;

19 });

20 }

21 });

22 } || {

23 addReaction ( reaction check (ex@s) {

24 emit <r@s >;

25 });

26 }

27 }

Code 1.5. LRT to Scl: compensable activity

all events raised by the component having these topics will be delivered to the
component itself (line 3). Moreover, these topics are local topics: they are re-
stricted to be within the scope of the component. The component starts its
execution by reacting to f (forward) events (block 5-26). Then, the component
bounds (receives) the session identifier s and executes the actual task (line 8).
We do not implement explicitly this activity, we assume that, in case of suc-
cessful termination, the ok event will be issued, otherwise the failure event ex
will be raised. Concurrently with the main activity, the component installs the
reactions to check its termination (blocks 10- 21 and 23-25). A successful exe-
cution (line 10) has the effect of propagating f event to the next stages of the
work-flow (line 12). Furthermore, the check reaction for managing rollback no-
tifications is installed (line 14-19). When a r event for the session s is received,
the compensation is executed (line 17) and the rollback event is propagated
to the previous stages (line 18). For simplicity, the compensation is here ex-
pressed by the nop operation. Once compiled into the Jscl code, it will be
possible to specify, through the host language API (e.g. Java), the actual code



www.manaraa.com

342 V. Ciancia et al.

implementing the compensation. If the execution of the activity fails (line 23),
the handler simply starts the backward flow, raising a rollback event (line 24).
Since the transformation of an atomic task generates only one Scl component,
this component is both the entry point and the exit point of the generated
network.

Parallel Composition

The parallel composition of compensable activities relies on the special com-
ponents collector and dispatcher. Now we describe the Scl code for the dis-
patcher and the collector generated to implement the parallel composition of
the TowTruck and RentalCar services.

1 component dispatcherPar {

2 flows: [f->towTruck ],[f->dispatcherTrans ],

3 [r->garage],[n->collectorPar ];

4 reaction lambda (f@s) {

5 split {

6 emit (f@s);

7 } || {

8 emit (n@s);

9 } || {

10 addReaction (reaction check (r@s) {

11 addReaction (reaction check (r@s) {

12 emit (r@s);

13 });

14 });

15 }

16 }

17 }

Code 1.6. Scl: parallel dispatcher

The dispatcher (c.f. Code 1.6) is the entry point of the parallel branch. Ba-
sically, it activates the forward flow of next components, and synchronizes their
backward flows. Upon reactions to forward events (line 4), the dispatcher emits
two events: one having topic f (line 6) and the other one having topic n (line 8).
The former event is delivered to the components in the pool of the parallel ac-
tivities. The latter event is delivered to the collector. This event is used to
communicate the session that will be later used for synchronization purposes.

Similarly, the collector component (in Code 1.7) implements the synchroniza-
tion mechanism for the forward flows (lines 4 and 5) and to activate the back-
ward flows of the parallel components when a r event is received (block 9-11).
Notice that the collector exploits the distinguished n event to get information
about the session s of the work-flow (line 3).



www.manaraa.com

Model-Driven Development of Long Running Transactions 343

1 component collectorPar {

2 flows: [r->towTruck ],[r->collectorTrans ],[f- >...];

3 reaction lambda (n@s) {

4 addReaction check (f@s) {

5 addReaction check (f@s) {

6 split {

7 emit <f@s >;

8 } || {

9 addReaction check (r@s) {

10 emit <r@s >;

11 }

12 }

13 }

14 }

15 }

16 }

Code 1.7. Scl: parallel collector

Isolated Transaction

A sub-transaction is compiled into a Scl network that does not effects the com-
putation of tasks performed out of the sub-transaction itself. The transformation
makes use of a dispatcher and a collector. The generated Scl code for the sub-
transaction containing the RentalCar component is provided by three internal
components according to the schema given in Fig. 5.

The dispatcherTrans (c.f. Code 1.8) receives from the external activities
the forward events (line 3), communicates that a new transactional session
has been initiated (line 4), redirects the forward event to the RentalCar

(line 5) and installs the rollback handler for the current session (block 6-10).
Notice that, the rollback will be sent out (line 8) after the reception of two r
notifications. The CollectorTrans (c.f. Code 1.8) waits until the dispatcher
communicates the new working session (line 17). Afterwards, it installs the
handler for the f notifications coming from the RentalCar (block 18-23).
The received f event is delivered outside (line 19) and the handler

5 Scl Model Refactoring

The Scl network obtained directly by the model transformation action over
the abstract graphical design only sketches how the overall transaction business
process proceeds without making any further assumption on which services im-
plement such components and where they are actually located. In this section,
we exploit the SC calculus to formally specify some refactoring rules that sup-
ports the refinement of Scl networks in order to include low level details without
altering the overall semantics.



www.manaraa.com

344 V. Ciancia et al.

1 component dispatcherTrans {

2 flows [n->collectorTrans ],[f->RentalCar ];

3 reaction lambda (f@s) {

4 emit (n@s);

5 emit (f@s);

6 addReaction (reaction check (r@s){

7 addReaction (reaction check (r@s){

8 emit (r@s);

9 });

10 });

11 }

12 }

13
14 component collectorTrans {

15 flows: [f->collectorPar ],[r->RentalCar ],

16 [r->dispatcherTrans ];

17 reaction lambda (n@s) {

18 addReaction ( reaction check (f@s) {

19 emit (f@s);

20 addReaction (reaction check (r@s) {

21 emit (r@s);

22 });

23 });

24 }

25 }

Code 1.8. Scl: transactional enclosure

5.1 Refactoring Transactional Components

We have already pointed out that both the main activity and the compensation
of a transactional component are embedded into a single SC component that
manages ok and ex events in order to propagate forward or backward flows.
However, it might be fruitful to assign the compensation task to a different
component. For example, the compensation Comp1 in Fig. 2a could run on a
different host than Task1, because it involves a remote service. Usually, the
actual distribution of services is not tackled in the abstract design of the business
process.

The issues of component distribution are naturally faced when the business
process is viewed at the abstraction level of Scl networks. For instance, it is
possible to allocate components on different hosts by taking advantage of the
Jscl facilities.

A simple example of refinement is provided by the delegation refinement where
the compensation of a transactional component a is switched to the component
b. This refinement is represented below.



www.manaraa.com

Model-Driven Development of Long Running Transactions 345

DelegatedTC = (νb, ex)(Ca ‖ Cb)

Ca = (νok)a[0]
fλs�

(
Task | rupd(Ra)

)
ok�a⊕ex�b⊕r�b⊕f�next

Ra = ok�s�

(
out(f�s) | rupd(r�s � out(r�s))

)
Cb = b [0]Rb

{r�prev}
Rb = exλs � out〈r�s〉 ⊗ rλs � Comp

The refactoring rule relies on the introduction of the restricted component b
(where b ∈ A is fresh). This new component handles the compensation and
manages the backward flow. The refactored a component only needs to check
the successful termination of its main activity. Indeed, the check reaction Ra

propagates the forward flow and activates a listener for the rollback notifications
possibly sent by subsequent transactional components. Notice that Ra implicitly
delegates the execution of the compensation Comp to the new component b. Once
a rollback is captured by a, it is automatically forwarded to the component b.

The initial reactions of b are given by Rb. Intuitively, b waits the notifica-
tion of an exception from Task or a rollback request coming from subsequent
components. In the former case, b simply activates the backward flow (e.g. the
reaction migrated from a) while, in the latter case, b executes Comp that, upon
termination, starts the backward flow.

5.2 Refactoring Parallel Composition

The model transformation of the parallel composition of two compensable activ-
ities relies on two specialized components (Dispatcher and Collector ) that act
as the entry and exit point of the whole composition. Fig. 8a illustrates picto-
rially the shape (in terms of flows and components) of the implementation of
the parallel composition of three transactional components. Two distinguished
dispatchers (d1 and d2) are introduced to manage coordination. Dispatcher d2
forward the requests to components TC1 and TC2 and is externally viewed as
the entry point of their parallel composition. The dispatcher d1 is connected
to TC3 and to d2 acting as entry point for the whole parallel block. Similar
considerations can be used to explain the role played by the exit points c1 and
c2. The availability of two dispatchers in the coordination lead to examime the
strategies for their spatial allocation. For example, the choice of allocating the
components d2, TC1 and TC2 permits to reduce the inter-host communications
for the forward and backward flow, since the dispatcher receives only one inter-
host envelope and then generates two intra-host envelopes for the components
TC1 and TC2. Instead, if TC1, TC2 and TC3 are constrained to reside on dif-
ferent hosts, then the two dispatchers could be fused together.

We now introduce a refinement pattern for parallel compostion. The proposed
transformation tackles two issues:



www.manaraa.com

346 V. Ciancia et al.

(a) (b)

Fig. 8. Parallel composition and its refactoring

(i) it can merge two parallel dispatchers into one, thus simplifying the design,
(ii) it can split a parallel dispatcher, thus refining the communication hierarchy
among hosts.

We discuss the refactoring only for parallel dispatchers. However, the same strat-
egy can be applied to provide a similar refactoring for the collectors.

Let Syncn(τ�s)(B) be the SC process that synchronizes n reception of events
τ�s. This process is specified below.

Sync0(τ�s)(B) = B and Syncn(τ�s)(B) = rupd (τ�s � Syncn−1(τ�s)(B))

Any SC network with a dispatcher d1 triggering a dispatcher d2 can be specified
as Nd1,d2 = (νd1)(νd2)(N ‖ D), where:

D = d2 [0]f λ s�Synck2 (r�s)(out〈r�s〉) | out〈f�s〉
{f�a2⊕r�,d1}

‖ d1 [0]f λ s�Synck1(r�s)(out〈r�s〉) | out〈f�s〉
{f�a1∪d2⊕r�,b}

Below we present the SC process merging two parallel dispatchers (migrating
the flows of the component d2 to the component d1).

N ′
d1,d2

= (νd1)
(
{d1/d2}N ‖ d1 [0]f λ s�Synck1+k2−1(r�s)(out〈r�s〉) | out〈f�s〉

{f�(a1∪a2)⊕r�,b}
)

The correctness proof of the proposed refinement can be intuitively explained as
follow The original system Nd1,d2 consists of dispatchers d1 and d2 managing the
coordination of a set of components. We use N to denote this set of components.
Our refactoring changes only the flows of components in N by migrating all flows
towards d2 onto d1. The resulting network {d1/d2}N performs the same actions
of the original coordination, but for the notifications to d2, that are delivered to
d1. We refer to [6,10] for the detailed presentation of the proofs establising the
correctness of the refinements.



www.manaraa.com

Model-Driven Development of Long Running Transactions 347

6 Concluding Remarks

The size of systems obtained by aggregating services can impose high costs which
may not be affordable by small-medium enterprises. Clearly, this may prevent
service-oriented technologies to be largely adopted condemning them to fail. To
reduce costs and the efforts of adopting service-oriented solutions, it is necessary
to allows developers and designers to separately manage the different aspects a
system. This goal can be achieved by the adoption of MDD methods. Framework
and tools should provide specific formalisms and languages suitable to manage
a subset of the whole aspects of an application.

In this chapter we have summarized some results of the Sensoria project
concerning the management of transactional aspects of SOA systems via a MDD
methodology. A key feature of our proposal is that any language and technology
involved in the stages of the development of long running transactions has formal
foundation and specific verification toolkits in the spirit of Barbed Model Driven
Development [13]. The general issues related to the Model Driven Engineering
of services-based systems and the variety of solutions provided by Sensoria are
discussed in Chapter 6-1. The formal foundations of long running transactions
and compensations is the subject of Chapter 3-3 of this volume. Finally, process-
calculi techniques have been exploited within Sensoria to clarify and formally
define the basic notions of service, sessions and orchestration. Results on these
aspects are reported in other chapters of this volume (see Chapters 2-1 and 2-4).

References

1. Batory, D.: Program refactoring, program synthesis, and model-driven develop-
ment. In: Goos, G., Harmanis, J., Leeuwen, J. (eds.) CC 2007. LNCS, vol. 4420,
pp. 156–171. Springer, Heidelberg (2007)

2. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: POPL 2005: Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 209–220. ACM Press, New York (2005)

3. Ciancia, V., Ferrari, G.L., Guanciale, R., Strollo, D.: Global coordination policies
for services. Electr. Notes Theor. Comput. Sci. 260, 73–89 (2010)

4. Ferrari, G., Guanciale, R., Strollo, D., Tuosto, E.: Coordination via types in
an event-based framework. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS,
vol. 4574, pp. 66–80. Springer, Heidelberg (2007)

5. Ferrari, G.L., Guanciale, R., Strollo, D.: Jscl: A middleware for service coordina-
tion. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 46–60. Springer, Heidelberg (2006)

6. Ferrari, G.L., Guanciale, R., Strollo, D., Tuosto, E.: Refactoring long running trans-
actions. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387, pp. 127–142.
Springer, Heidelberg (2009)

7. Garcia-Molina, H., Salem, K.: Sagas. In: SIGMOD 1987: Proceedings of the 1987
ACM SIGMOD International Conference on Management of Data, pp. 249–259.
ACM, New York (1987)



www.manaraa.com

348 V. Ciancia et al.

8. Gray, J.: The transaction concept: virtues and limitations (invited paper). In:
VLDB 1981: Proceedings of the Seventh International Conference on Very Large
Data Bases, pp. 144–154. VLDB Endowment (1981)

9. OMG. Business Process Modeling Notation (2002), http://www.bpmn.org
10. Guanciale, R.: The Signal Calculus: Beyond Message-based Coordination for Ser-

vice. PhD thesis, Institute for Advanced Studies, IMT, Lucca (2009)
11. Huang, Y., Gannon, D.: A comparative study of web services-based event notifica-

tion specifications. In: ICPP Workshops, pp. 7–14 (2006)
12. Little, M.: Transactions and web services. Commun. ACM 46(10), 49–54 (2003)
13. Montangero, C., Semini, L.: Barbed model–driven software development: A case

study. Electron. Notes Theor. Comput. Sci. 207, 171–186 (2008)
14. Strollo, D.: Designing and Experimenting Coordination Primitives for Service Ori-

ented Computing. PhD thesis, IMT Institute for Advanced Studies, Lucca (2009)
15. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M.M., Knapp, A., Koch, N., Schroeder,

A.: Semantic-based development of service-oriented systems. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–
45. Springer, Heidelberg (2006)

http://www.bpmn.org


www.manaraa.com

Hierarchical Models for Service-Oriented
Systems�

Roberto Bruni1, Andrea Corradini1,
Fabio Gadducci1, Alberto Lluch Lafuente2, and Ugo Montanari1

1 Department of Computer Science, University of Pisa, Italy
{bruni,andrea,gadducci,ugo}@di.unipi.it

2 IMT Institute for Advanced Studies Lucca, Italy
alberto.lluch@imtlucca.it

Abstract. We present our approach to the denotation and representa-
tion of hierarchical graphs: a suitable algebra of hierarchical graphs and
two domains of interpretations. Each domain of interpretation focuses
on a particular perspective of the graph hierarchy: the top view (nested
boxes) is based on a notion of embedded graphs while the side view (tree
hierarchy) is based on gs-graphs. Our algebra can be understood as a
high-level language for describing such graphical models, which are well
suited for defining graphical representations of service-oriented systems
where nesting (e.g. sessions, transactions, locations) and linking (e.g.
shared channels, resources, names) are key aspects.

1 Introduction

As witnessed by a vast literature, graphs offer a convenient ground for the spec-
ification and analysis of software systems. As an example, the use of graphs
as a suitable domain for the visualisation of a system specified by algebraic
means is pursued in various proposals, based on traditional Graph Transfor-
mation [15], Bigraphical Reactive Systems [16], and Synchronised Hyperedge
Replacement [13].

Despite their expressiveness and flexibility, the use of these formalisms to build
a graphical representation for an existing specification language involves two
major challenges. First, encoding system configurations (states), guaranteeing
that structural equivalence is preserved: i.e. equivalent (e.g. structurally congru-
ent) configurations are mapped into equivalent (e.g. isomorphic) graphs. Second,
encoding system dynamics (e.g. behaviour, reconfigurations, model transforma-
tions, refactorings), guaranteeing that the original semantics is respected.

Preserving structural equivalence has several advantages. It offers an intu-
itive normal form representation for systems, and it allows us to reuse results
and techniques from graph theory for solving specific problems. In particular,
the soundness of the encoding is necessary to use graph transformation ap-
proaches [10] to model dynamic aspects since (sub)graph isomorphism is at the
base of the rule matching mechanism.
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 349–368, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

350 R. Bruni et al.

The encoding of configurations given with an algebraic syntax (e.g. as in pro-
cess calculi) is facilitated by their structure (i.e. processes are terms) since it can
be defined inductively. In absence of an algebraic presentation for the language
under consideration, ad-hoc algebraic syntax must be developed if one wants to
benefit from structural induction in proofs, transformations or definitions. Still,
most graph models are not equipped with algebraic syntax and those that exist
require advanced skills to deal with sophisticated models involving set-theoretic
definitions of graphs with interfaces (e.g. [15]) or complex type systems (e.g. [7]),
hampering definitions and proofs. Moreover, one encounters a severe drawback:
namely, the syntax of graph formalisms are often very different from the source
language and not provided with suitable primitives to deal with features that
commonly arise in algebraic specifications, like names (e.g. references, channels),
name restrictions (e.g. hiding, nonce generation) or hierarchical aspects (e.g. am-
bients, scopes) in the case of process calculi. Identifying the right structure is
fundamental to provide scalable techniques.

Our goal is to define a simple flexible syntax for hierarchical models and to de-
velop a technique that simplifies the definition of graphical representations of lan-
guages. We think that nesting and linking must be treated as first-class concepts,
conveniently represented with a suitable syntax that allows one to express and
exploit them. Nesting and linking are two key structural aspects that arise re-
peatedly in computer systems: consider e.g. the structure of file systems, compos-
ite diagrams, networks, membranes, sessions, transactions, locations, structured
state machines or XML files. In particular, nesting plays a fundamental role for
abstracting the complexity of a system by offering different levels of detail. Var-
ious graphical models of nesting and sharing structures already exist but (as we
claim in [3,5,4]) none of them offer a simple, intuitive syntax.

Here, the gap between the different levels of abstraction at which algebraic
specifications and graphical models reside is filled by a simple algebra that en-
joys primitives for dealing with names, restriction, parallel composition and,
most importantly, nesting and that is equipped with a (sound and complete) set
of axioms equating two terms whenever they represent isomorphic graphs. Be-
sides facilitating the visual specification of configurations, the algebraic structure
facilitates definitions, transformations and proofs by induction.

Structure of this chapter. § 2 introduces the algebra of hierarchical graphs. § 3
presents our two models of hierarchical graphs. § 4 shows the expressiveness and
flexibility of our design algebra in modelling heterogeneous notations, ranging
from workflow languages to sophisticated process calculi.

2 The Syntax of Hierarchical Graphs

We introduce our algebra of hierarchical graphs that we call designs. The alge-
braic presentation of designs is mostly inspired by the graph algebra of [9].

As a matter of notation, we let �x� denote the set of elements of a list x and,
conversely, "X# the vector of elements of an ordered set X . We overload | · | to
denote both the length of a list and the cardinality of a set.



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 351

Definition 1 (design). A design is a term of sort D generated by the grammar

D ::= Lx[G] G ::= 0 | x | l〈x〉 | G | G | (νx)G | D〈x〉
where l and L are drawn from vocabularies E and D of edge and design labels,
respectively, x is taken from a global set N of nodes and x ∈ N ∗ is a list of nodes.

Terms generated by G and D are meant to represent (possibly hierarchical)
graphs and “edge-encapsulated” hierarchical graphs, respectively. The syntax
has the following informal meaning: 0 represents the empty graph, x is a discrete
graph containing node x only, l〈x〉 is a graph formed by an l-labelled (hyper)edge
attached to nodes x (the i-th tentacle to the i-th node in x, sometimes denoted
by x[i]), G | H is the graph resulting from the parallel composition of graphs
G and H (their disjoint union up to shared nodes), (νx)G is the graph G after
making node x not visible from the outside (borrowing nominal calculus jargon
we say that the node x is restricted), and D〈x〉 is a graph formed by attaching
design D to nodes x (the i-th node in the interface of D to the i-th node in x).

A term Lx[G] is a design labelled by L, with body graph G whose nodes x are
exposed in the interface. To clarify the exact role of the interface of a design, we
can use a programming metaphor: a design Lx[G] is like a procedure declaration
where x is the list of formal parameters. Then, term Lx[G]〈y〉 represents the
application of the procedure to the list of actual parameters y; of course, in this
case the lengths of x and y must be equal (more precisely, the applicability of a
design to a list of nodes must satisfy other requirements to be detailed later in
the definition of well-formedness). In the following, we shall often write L[G]〈y〉
as a shorthand for Ly[G]〈y〉.

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds x in
G. As usual, restrictions and interfaces lead to the notion of free nodes.

Definition 2 (free nodes). The free nodes of a design or a graph are denoted
by the function fn(·), defined as follows

fn(0) = ∅ fn(x) = x
fn(l〈x〉) = �x� fn(G | H) = fn(G) ∪ fn(H)

fn((νx)G) = fn(G) \ {x} fn(D〈x〉) = fn(D) ∪ �x�
fn(Lx[G]) = fn(G) \ �x�

Example 1. Let a, b ∈ E , A ∈ D, u, v, w, x, y ∈ N . We write and depict in Fig. 1
some terms of our algebra, where for helping intuition an informal, appealing
visual notation is preferred to the formal underlying graphs that will be described
in Section 3.1. Nodes are represented by circles, edges by small rounded boxes,
and designs by large shaded boxes with a top bar. The first tentacle of an edge is
represented by a plain arrow with no head, while the second one is denoted by a
normal arrow. In the examples only free nodes are annotated with their identities,
while restricted nodes are anonymous (no label). Note how the tentacles of a-
and b-labelled boxes attached to x and y do actually cross the interface and are
hence denoted by small black boxes in the border of A-labelled designs. This
does not happen for tentacles attached to w since it is shared node.



www.manaraa.com

352 R. Bruni et al.

Fig. 1. Some terms of the graph algebra and their informal visual notation

In practice, it is very frequent that one is interested in disciplining the use of
edge and design labels so to be attached only to a specific number of nodes
(possibly of specific sorts) or to contain graphs of a specific shape. To this aim it
is typically the case that: 1) nodes are sorted, in which case their labels take the
form x : s for x ∈ X the name and s ∈ S the sort of the node; 2) each label l ∈ E
(resp. L ∈ D) has a fixed rank denoted ar (l) ∈ S∗ (resp. ar(L) ∈ S∗); 3) designs
can be partitioned according to their top-level labels (i.e. the set of design labels
D can be seen as the set of sorts, with a membership predicate D : L that holds
whenever D = Lx[G] for some x and G).

We say that a design (or a graph) is well-typed if for each occurrence of a typed
operator Lx[G] we have that the (vectors of) types of x and L coincide, and sim-
ilarly for typed operators D〈x〉 and l〈x〉. From now on, we restrict our attention
to well-formed designs: all the axioms are going to preserve well-formedness and
all the derived operators used for the encodings are well-formed.

Definition 3 (well-formedness). A well-typed design or graph is well-formed
if:

1. for each occurrence of design Lx[G] we have �x� ⊆ fn(G);
2. for each occurrence of graph Lx[G]〈y〉, the substitution x/y is a function.

Intuitively, the restriction on the mapping x/y allows x to account for matching
of nodes in the interface: distinct nodes in y must correspond to distinct nodes
in x (as the list x can contain repetitions).

In order to have a notion of “structurally equivalent” designs, the algebra in-
cludes the structural graph axioms of [9] such as associativity and commutativity
for | with identity 0 (axioms DA1–DA3 in Definition 4) and name extrusion (DA4–
DA6). In addition, it includes axioms to α-rename bound nodes (DA7–DA8), an
axiom for making immaterial the addition of a node to a graph where that same
node is already free (DA9) and another one ensuring that global names are not
localised within hierarchical edges (DA10).



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 353

Definition 4 (design axioms). The structural congruence ≡D over well-
formed designs and graphs is the least congruence satisfying

G | H ≡ H | G (DA1) G | (νx)H ≡ (νx)(G | H) if x �∈ fn(G) (DA6)
G | (H | I) ≡ (G | H) | I (DA2) Lx[G] ≡ Ly [G{y/x}] if $y% ∩ fn(G) = ∅ (DA7)

G | 0 ≡ G (DA3) (νx)G ≡ (νy)G{y/x} if y �∈ fn(G) (DA8)
(νx)(νy)G ≡ (νy)(νx)G (DA4) x | G ≡ G if x ∈ fn(G) (DA9)

(νx)0 ≡ 0 (DA5) Lx[z | G]〈y〉 ≡ z | Lx[G]〈y〉 if z �∈ $x% (DA10)

where in axiom (DA7) the substitution is required to be a function (to avoid node
coalescing) and to respect the typing (to preserve well-formedness).

It is immediate to observe that structural congruence respects free nodes, i.e.
G ≡D H implies fn(G) = fn(H) for any G,H. Moreover, being ≡D a congruence,
we remark e.g. that Lx[G] ≡D Lx[H] whenever G ≡D H.

One important aspect of our algebra is allowing the derivation of standard
representatives for the equivalence classes induced by ≡D.

Definition 5 (Normalized form). A term G is in normalised form if it is 0
or it has the shape (for some n+ m+ p + q ≥ 1 and suitable nodes xj, zk and
edges lh〈vh〉, Li

yi
[Gi]〈wi〉):

(νx1) . . . (νxm)(z1 | . . . |zn | l1〈v1〉 | . . . | lp〈vp〉 | L1
y1

[G1]〈w1〉 | . . . | Lq
yq

[Gq]〈wq〉 )

where all terms Gi are in normalised form, all nodes xj are pairwise distinct, all
nodes zk are pairwise distinct and letting X = {x1, . . . , xm} and Z = {z1, . . . , zn}
we have X ⊆ Z, fn(G) = Z \X and fn(Li

yi
[Gi]〈wi〉) = Z for all i = 1...q .

Proposition 1. Any term G admits a ≡D-equivalent term norm(G) in nor-
malised form.

Roughly, in norm(G) the top-level restrictions are grouped to the left, and all
the global names zk are made explicit and propagated inside each single compo-
nent Li

yi
[Gi]〈wi〉. Up to α-renaming and to nodes and edges permutation, the

normalised form is actually proved to be unique.

3 The Models of Hierarchical Graphs

In this section we present our two models of hierarchical graphs.

3.1 Top-View Model

In [5] we have defined a new, suitable notion of hierarchical graphs with inter-
face: roughly they extend ordinary hyper-graphs with the possibility to embed
(recursively) a hierarchical graph within each edge, thus inducing a layered struc-
ture of nodes and edges. Notably, the nodes defined in one layer are also visible
below in the hierarchy (but not above). The main result of [5] is to show that



www.manaraa.com

354 R. Bruni et al.

the encoding of design terms in hierarchical graphs is surjective and that the
axiomatisation of the design algebra is sound and complete w.r.t. the encoding.
Moreover, in the presence of flattening- or extrusion-axioms (see § 4.1) the en-
coding can be slightly modified so to extend the validity of main results. The
drawing of hierarchical graphs as defined in [5] is along the informal drawing
seen in Fig. 1: to some extent they illustrate a top view of the system.

We first present the set of plain graphs and graph layers, upon which we build
our novel notion of hierarchical graphs. In the following, N and A = AE $ AD
denote the universe of nodes and edges, respectively, for A indexed over the
vocabularies E and D.

Definition 6 (graph layer). The set L of graph layers is the set of tuples
G = 〈NG, EG, tG, FG〉 where EG ⊆ A is a (finite) set of edges, NG ⊆ N a
(finite) set of nodes, tG : EG → N∗

G a tentacle function, and FG ⊆ NG a set of
free nodes. The set P of plain graphs contains those graph layers G such that
EG ⊆ AE .

Thus, we just equipped the standard notion of hypergraph with a chosen set of
free nodes, intuitively denoting those nodes that are available to the environ-
ment, mimicking free names of our algebra. Next, we build the set of hierarchical
graphs.

Definition 7 (hierarchical graph). The set H of hierarchical graphs is the
smallest set1 containing all the tuples G = 〈NG, EG, tG, iG, xG, rG, FG〉 where

1. 〈EG, NG, tG, FG〉 is a graph layer,
2. iG : EG∩AD → H is an embedding function (we say iG(e) is the inner graph

of e ∈ EG ∩ AD),
3. xG : EG ∩ AD → N ∗ is an exposure function (xG(e) tells which nodes of

iG(e) are exposed and in which order), such that for all e ∈ EG ∩ AD

(a) �xG(e)� ⊆ NiG(e) \FiG(e), i.e. free nodes of inner graphs are not exposed;
(b) |xG(e)| = |tG(e)|, i.e. exposure and tentacle functions have the same

arity;2

(c) ∀n,m ∈ N if xG(e)[n] = xG(e)[m] then tG(e)[n] = tG(e)[m], i.e. it is not
possible to expose a node twice without attaching it to the same external
node.

4. rG : EG ∩ AD → (NG ↪→ N ) is a renaming function (rG(e) tells how nodes
NG are named in iG(e)), such that for all e ∈ EG ∩AD rG(e)(NG) = FiG(e),
i.e. the nodes of the graph are (after renaming) the free nodes of inner layers.

1 Taking the least set we exclude cyclic dependencies from containment, like a graph
being embedded in one of its edges.

2 We shall not put any emphasis on the typing of the graph, but clearly if the set
of nodes is many sorted an additional requirement should force the exposure and
tentacle functions to agree on the node types.



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 355

Fig. 2. A hierarchical graph (left) and its simplified representation (right)

Thus, a hierarchical graph G is either a plain graph, or it is equipped with
a function associating to each edge in EG ∩ AD another graph. The tuple
〈NG, EG, tG, iG〉 recalls the layered model of hierarchical graphs of [11], with
iG being the function that embeds a graph (of a lower layer) inside an edge.
Node sharing is introduced by the graph component FG and the renaming func-
tion rG, inspired by the graphs with (cospan-based) interfaces of [15]. In practice,
we shall often assume that rG(e) (when defined) is the ordinary inclusion: the
general case is useful for embedding (and reuse) graphs without renaming their
nodes.

Example 2. Consider the last term of Example 1 and its informal graphical rep-
resentation on Fig. 1 (right). Its actual interpretation as a hierarchical graph
appears in Fig. 2 (left) decorated with the most relevant annotations (the ten-
tacle, exposition and renaming functions for the two hierarchical edges). As
witnessed by Fig. 2 (right), we can introduce convenient shorthands, such as
dotted lines for mapping parameters, node-sharing represented by unique nodes
and tentacles crossing the hierarchy levels, dropping the order of tentacles in
favour of graphical decorations (missing or different heads and tails) to get
a simplified notation that still retains all the relevant information. Note that
such a simplified representation is very close to the informal notation shown in
Fig. 1.

The above example should highlight that the algebra is providing a simple syntax
that hides the complexities of our hierarchical model. The syntax can then be
used in definitions, proofs and transformations in a much more friendly way than
would be the case when working directly with the actual graphs.

We now present the interpretation of terms as graphs. In the definition be-
low we assume that subscripts refer to the corresponding encoded graph. For
instance, �G� = 〈NG, EG, tG, iG, xG, rG, FG〉.



www.manaraa.com

356 R. Bruni et al.

Definition 8 (graph interpretation). The encoding �·�, mapping well-formed
terms into graphs, is the function inductively defined as

�x� = 〈{x}, ∅,⊥,⊥,⊥,⊥, {x}〉 �l〈x〉� = 〈$x%, {e′}, e′ �→ x,⊥,⊥,⊥, $x%〉
�G | H� = �G� ⊕ �H� �0� = 〈∅, ∅,⊥,⊥,⊥,⊥, ∅〉
�(νx)G� = 〈NG, EG, tG, iG, xG, rG, FG \ {x}〉

�Lx[G]〈y〉� = 〈NG, {e}, e �→ y, e �→ �G� ⊕ �$y%�, e �→ x, e �→ idN , (FG \ $x%) ∪ $y%〉

where e′ ∈ AE and e ∈ AD, ⊥ denotes the empty function, and G ⊕ H is a
graph composition operation that build the disjoint union of G and H up to their
common free nodes (see [5] for the full definition).

The encoding into (plain) graphs of the empty design, isolated nodes and single
edges is trivial. Node restriction consists of removing the restricted node from
the set of free nodes. The encoding of the parallel composition is as expected: a
disjoint union of the corresponding hierarchical graphs up to common free nodes,
plus a possible saturation of the sub-graphs with the nodes now appearing in
the top graph layer. A hierarchical edge (last two rows) is basically a graph with
a single edge (which is mapped to the corresponding body graph) and a copy of
the free nodes of the body graph (properly mapped to the corresponding copies
in the body), while adding the names �y� among the free ones.

The main result in [5] shows that the encoding is sound and complete, meaning
that equivalent terms are mapped to isomorphic graph (and vice versa).

Theorem 1 (cf. [5]). Let G1, G2 be well-formed terms generated by the design
algebra. Then, G1 ≡D G2 if and only if �G1� is isomorphic to �G2�.

Moreover, the encoding is surjective.

Proposition 2 (cf. [5]). Let G be a graph. Then, there exists a well-formed
term G generated by the design algebra such that G is isomorphic to �G�.

3.2 Side-View Model

The graphs-within-edges model corresponds, to some extent, to the top-view of
the system. Another possibility is to take a side-view of the system, where con-
tainment is traced by dependencies between items in different layers (analogous
to the representation of inheritance via arrows in UML class diagrams).

In [3] we have followed the side-view approach to interpret (a slight variation
of) the algebra in § 2 over a class of graphs already available in the literature,
called gs-graphs [14]. Roughly, gs-graphs are an extension of term-graphs [1]
tailored to many-sorted hypersignatures. Moreover, in the formalisation of the
model we have exploited the algebraic structure of gs-graph in terms of the so-
called gs-monoidal theories [8]. Here we extend [3] to the design algebra of Def. 1
that allows for a more general form of interface.

While we refer the interested reader to [3] for most technical details, the
main idea is to take a signature ΣD,E whose sorts correspond to node sorts and
whose operators correspond to the labels of edges. One additional sort • is also



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 357

(op)
f ∈ Σu,v

f : u → v
(id)

u ∈ S∗

idu : u → u
(bang)

u ∈ S∗

!u : u → ε
(dup)

u ∈ S∗

∇u : u → uu

(sym)
u, v ∈ S∗

ρu,v : uv → vu
(seq)

t : u → v t′ : v → w

t; t′ : u → w
(par)

t : u → v t′ : u′ → v′

t ⊗ t′ : uu′ → vv′

Fig. 3. Inference rules of gs-monoidal theories

introduced to represent “locations” within the hierarchy. Formally, for nodes
sorted over S and edges labelled over D∪E , we let S• = S ∪ {•}, assuming that
• 	∈ S, and let ΣD,E denote the signature over S• defined as follows:

ΣD,E={l : •, ar(l) → ε | l ∈ E}∪{L : •, ar(L) → •, ar(L) | L ∈ D}∪{νs : • → s | s ∈ S}

Thus, each hierarchical edge L ∈ D defines an operator L ∈ ΣD,E that takes as
arguments a location and the list of actual parameters and returns a location and
the list of formal parameters (i.e., it provides the inner graph with the location
where to reside and with a local environment). Of course, the type and number
of parameters corresponds to the rank of L. Plain edges l provide no result (their
co-arity is ε, the empty list).

By analogy with the well-known construction that given an ordinary signature
allows to define its initial model as the free cartesian category of terms over that
signature, starting from ΣD,E we can generate the so-called free gs-monoidal
theory GS(ΣD,E), that accounts for all the gs-graphs that can be defined over
the signature ΣD,E : differently from cartesian categories, gs-monoidal categories
account for the sharing of sub-terms/graphs and for the presence of hidden sub-
terms/graphs.

The expressions of interest are generated by the rules depicted in Fig. 3: they
are obtained from some basic (families of) terms by closing them with respect
to sequential (seq) and parallel (par) composition. By rule (op), the basic terms
include one generator for each operator of the signature: these can be considered
as the elementary bricks of our expressions, and conceptually correspond to the
hyperedges of the term graphs. All other basic terms define the wires that can
be used to build our graphs: the identities (id), the dischargers (bang), the
duplicators (dup) and the symmetries (sym).

Note that expressions t are “typed” over pairs of lists of sorts and that their
types determine the admissibility of sequential composition. For t : u → v, with
respect to our intuitive view of systems, the source u expresses the top-interface
of t, that must be matched when embedding the expression in a larger context;
the target v expresses the inner-interface, that constrains the admissible sub-
graphs that can be placed below t; sequential composition represents the placing
of one system (e.g. t′ : v → w) below another (e.g. t; t′).

Definition 9 (gs-monoidal theory). Given a hypersignature Σ over a set of
sorts S, the associated gs-monoidal theory GS(Σ) is the category whose objects



www.manaraa.com

358 R. Bruni et al.

are the elements of S∗, and whose arrows are equivalence classes of gs-monoidal
terms, i.e., terms generated by the inference rules in Fig. 3 subject to the follow-
ing conditions

– identities and sequential composition satisfy the axioms of categories:
[identity] idu ; t = t = t ; idv for all t : u → v;
[associativity] t1 ; (t2 ; t3) = (t1 ; t2) ; t3 whenever any side is defined,

– ⊗ is a monoidal functor with unit idε, i.e. it satisfies:
[functoriality] iduv = idu ⊗ idv, and
(t1 ⊗ t2) ; (t′1 ⊗ t′2) = (t1 ; t′1) ⊗ (t2 ; t′2) whenever both sides are defined,
[monoid] t⊗ idε = t = idε ⊗ t t1 ⊗ (t2 ⊗ t3) = (t1 ⊗ t2) ⊗ t3

– ρ is a natural transformation, i.e. it satisfies:
[naturality] (t⊗t′) ; ρv,v′ = ρu,u′ ; (t′⊗t) for all t : u → v and t′ : u′ → v′

and furthermore it satisfies:
[symmetry] (idu ⊗ ρv,w) ; (ρu,w ⊗ idv) = ρu⊗v,w ρu,v ; ρv,u = idu⊗v

ρε,u = ρu,ε = idu

– ∇ and ! satisfy the following axioms:
[unit] !ε = ∇ε = idε

[duplication] ∇u ; (idu ⊗∇u) = ∇u ; (∇u ⊗ idu) ∇u ; (idu⊗!u) = idu

∇u ; ρu,u = ∇u

[monoidality] ∇uv ; (idu ⊗ ρv,u ⊗ idv) = ∇u ⊗∇v !uv =!u⊗!v

We call a wiring any arrow of GS(Σ) which is obtained from the rules of Fig. 3
without using rule (op). Notice that the definition of wiring is well-given, because
any operator symbol introduced by rule (op) is preserved by all the axioms of the
theory. Notably, the wirings of GS(Σ) from u to v are in bijective correspondence
with the set of functions {k : |u| → |v| | u[k(i)] = v[i] for all 1 ≤ i ≤ |v|}, where
for an ordinal n ∈ N, we write n for the set {1, . . . , n}.

The key consequence is that when drawing gs-graphs, we can abstract away
from the way and order in which tentacles cross each other, because the axioms
of gs-monoidal theories establish the equivalence of all drawings representing the
same (set of) connections.

Then, each term G is translated to a gs-graph having • followed by (a lineari-
sation of) the sorts of free nodes fn(G) as source interface and the empty list of
sorts ε as target interface. To fix the set-to-list correspondence between fn(G)
and the source interface, we exploit the concept of an assignment.

Definition 10 (Assignment). An assignment is a function σ ∈ ⋃
n∈N

{f : n →
X×S | f is injective}. An assignment σ : n → X×S for a given n ∈ N is uniquely
determined by a list of nodes without repetitions (because it is injective), namely
σ(1), σ(2), . . . , σ(n): we shall often represent it this way and write x : s ∈ σ as a
shorthand for x : s belonging to img(σ), the image of σ.

In the following, by τ(σ) we denote τ(σ(1), σ(2), . . . , σ(n)), i.e., the sequence of
sorts of the nodes in img(σ). Furthermore, for a given list of nodes y ∈ (X ×S)∗

and an assignment σ such that |y| ⊆ img(σ), we let kσ
y : |y| → |σ| be the function

such that kσ
y (i) = σ−1(y|i) for all 0 < i ≤ |y|.



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 359

Definition 11 (GS-graph encoding). Given an assignment σ = x1 :
s1, . . . , xn : sn and a term G with fn(G) ⊆ img(σ) such that all its bound vari-
ables carry different names3 (also different from the names in σ), we define the
gs-graph �G�σ : •, τ(σ) → ε by structural induction as follows (assuming that ⊗
has conventional precedence over ;):

– �0�σ = �x : s�σ =!•,τ(σ) : •, τ(σ) → ε

– �l〈y〉�σ = id• ⊗ wir(kσ
y ) ; l : •, τ(σ) → ε, where the expres-

sion wir(kσ
y ) : τ(σ) → ar (l) is the wiring uniquely determined by

kσ
y : |ar(b)| → |σ|.

– �Lx[G]〈y〉�σ = id•⊗∇τ(σ) ; (id•⊗wir(kσ
y ) ; L)⊗idτ(σ) ; �G�x,σ : •, τ(σ) → ε,

where w.l.o.g. we assume �x� ∩ �σ� = ∅ and the expression
wir(kσ

y ) : τ(σ) → ar(L) is the wiring uniquely determined by
kσ

y : |ar(b)| → |σ|.

– �G|H�σ = ∇•,τ(σ) ; �G�σ ⊗ �H�σ : •, τ(σ) → ε

– �(ν x : s)G�σ = �G�σ : •, τ(σ) → ε if x : s 	∈ fn(G)

– �(ν x : s)G�σ = (∇• ; id• ⊗ νs) ⊗ idτ(σ) ; �G�x:s,σ : •, τ(σ) → ε otherwise,
where w.l.o.g. we assume x : s 	∈ �σ�.

Note that although �0�σ and �x : s�σ are defined in the same way, the first is
defined for any σ, while the second one is defined only if x : s ∈ σ.

Theorem 2 (cf. [3]). Let G and H be two terms such that G ≡D H iff for any
assignment σ we have �G�σ = �H�σ.

Contrary to the encoding in § 3.1 the encoding applies to a restricted class of
terms and is not surjective: The crucial fact is that the scoping discipline of
restriction restricts the visibility of a localised nodes x : s in such a way that it
cannot be used from edges outside the one where (ν x : s) appears, but such a
node scoping discipline has no counterpart in gs-graphs. This fact suggests that
our algebra can serve to characterise exactly those term graphs with well-scoped
references to nodes.

We conclude by sketching in Fig. 4 the gs-graphs corresponding to the two
hierarchical graphs in Fig. 1: A[(νw)(a〈x,w〉 | a〈w, y〉)]〈x, y〉 on the left, and
(νw)(Au,v [G]〈x, y〉 | Au,v[G]〈y, x〉 ) on the right (for G = a〈u,w〉 | a〈w, v〉).
The drawing is decorated with: an external dashed line enclosing the gs-graph
and emphasising its interface, the names of free nodes available, some dotted
lines suggesting the correspondence between actual and formal parameters of
A-labelled edges. Such a decoration is not part of the formal definition and has
the only purpose to ease the intuitive correspondence with Fig. 1.
3 This also means that in any occurrence of Lx[G] the list x has no repetitions.



www.manaraa.com

360 R. Bruni et al.

Fig. 4. Hierarchical structure as gs-monoidal terms

4 Applications to Service-Oriented Systems

This section presents one possible application of our approach, namely the graph-
ical encoding of process calculi. We first discuss some methodological aspects and
then show two examples, where the emphasis is respectively on the hierarchical
nature of transactions and sessions.

4.1 Encoding Methodology

The main idea for defining graphical encoding of process calculi is to interpret
process constructors as derived operators of our algebra. In that manner, each
process term corresponds to a graph term, and hence to a hierarchical and gs-
graph offering both a top and a side view of the same process. Moreover, if the
interpretation faithfully captures the structural congruence of the calculus with
the axioms of the graph algebra we obtain a nice result: congruent processes
uniquely correspond to isomorphic graphs, and vice versa.

Each derived operator defines thus a graph operation that introduces items
(nodes and edges). The first step of our methodology is fixing the set of node
sorts, edge labels and design labels. Nodes are typically used to represent chan-
nels and control points and are sorted accordingly, while plain edges represent
constructs such as atomic activities. Instead, inherently hierarchical constructors
like session and transaction scopes are represented by designs.

Moreover, other design sorts can be introduced (i.e. one for each syntactical
category of the calculus) to play the role of type annotations and constrain the
applicability of derived operators, but they must be removed once the graphs
are composed. For instance, parallel composition and non-deterministic choices
are typically interpreted as graph operations that do not introduce any graph
item, thus reflecting the axioms associated to such operations (associativity and
commutativity).



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 361

The removal of such annotations is done by introducing flattening axioms,
which implicitly remove (by performing some kind of hyper-edge replace-
ment [12]) those edges satisfying a specific membership predicate (i.e. being
typed with the annotation sorts).

Definition 12 (flattening axiom). The flattening axiom flatL for a design
label L is Lx[G]〈y〉 ≡ G{y/x}.
It is evident that when flatL is considered, then L-labelled edges are immaterial.
Flattening is fundamental in order to characterise classes of graphs by means
of derived operators. Indeed, flattening is used in all encondings, where some
design labels are used just for the sake of composing various classes of processes
and not really to build scopes. So nesting has two roles: as a means to enclose a
graph and as a sort of typed interface to enable disciplined graph compositions.
The presence of flattening axioms makes the first role immaterial.

Another kind of axioms that are sometimes useful to be included in the struc-
tural congruence are extrusion axioms.

Definition 13 (extrusion axiom). The extrusion axiom extrL for a design
label L is Lx[(νz)G〈y〉] ≡ (νz)Lx[G]〈y〉, where z 	∈ �x� ∪ �y�.
Extrusion axioms are needed to handle those calculi in which name restriction
is not localised inside a scope or it is allowed to cross the boundaries of some
scopes, as it may happen for some process calculi. Indeed, we shall see in § 4.3
how extrusion axioms are used to capture extrusion for some scope constructs.

Note that the addition of axiom flatL also implies the validity of axiom extrL,
hence in the following we assume that for each label L exactly one of the following
cases applies: either only the extrusion or only the flattening axiom for L is
present; or none of flatL and extrL is present. Of course the presence of such
axioms for a chosen set of labels is often fundamental for the soundness of the
encoding.

4.2 Transaction Workflows

We consider in this section the nested sagas with programmable compensations
of [6], a calculus for long running transactions that aims at providing a core
language for composing activities into sagas (atomic transactions) or processes
(non-atomic compensable activities). Formally, the syntax of sagas is as follows.

Definition 14 (sagas syntax). Let Λ be a set of atomic activities ranged over
by a. The sets S of sagas and P of compensable processes are all the terms
generated by S and P in the grammar below, respectively.

S ::= a | {P} P ::= S%S | P ;P | P | P

For the sake of simplicity, with respect to the original presentation we neglect
the introduction of nil processes and non-compensable activities. A saga is an



www.manaraa.com

362 R. Bruni et al.

Fig. 5. Type graph for sagas

atomic activity or an arbitrarily complex transaction built out from a compens-
able processes. A basic process A%B is built by declaring a sagaA as an ordinary
flow and equipping it with another saga B as its compensation flow. The cal-
culus provides also primitives for composing processes in sequence and parallel
(split&join).

Definition 15 (sagas structural congruence). The structural congruence
for sagas is the relation ≡S⊆ P×P, closed under sagas construction, inductively
generated by the following set of axioms (for any P,Q,R ∈ P):

P ; (Q;R) ≡ (P ;Q);R (sA1)
P | Q ≡ Q | P (sA2)

P | (Q | R) ≡ (P | Q) | R (sA3)

Encoding sagas. We now define the graphical encoding of sagas. As explained,
the first step is to interpret syntactical categories of the calculus as suitable
design labels and constructors as derived operators over our graph algebra. In
this case we decide to introduce design labels N for Nested sagas, S for Sagas,
P for compensable Pairs and T (Transactions) for compensable processes. Note
that N can be read as a subsort of S, while P as a subsort of T . Figure 5
illustrates the shapes of the nodes and boxes we shall exploit. We have chosen
an arity of four tentacles for pairs and transactions to denote the following control
points: entry of the ordinary flow (incoming filled arrow), exit of the ordinary
flow (outgoing filled arrow), entry of the compensation flow (incoming empty
arrow) and exit of the compensation flow (outgoing empty arrow). Activities
and sagas are represented by edges with only two tentacles (for the ordinary
flow). Note that we have actually a family of activity edges, one for each activity
in Λ. Since S and T are just used for composition, we let the flattening axioms
flatS and flatT hold (whence the dotted borders in Fig. 5).

The encoding is formally defined as follows (cf. Fig. 6).

Definition 16 (sagas encoding). The interpretation of the sagas operators
over the design algebra is given by

a def= Sp,q[a〈p, q〉]
{Q} def= Np,q[(νt)Q〈p, q, t, q〉]

A % B def= Pp,q,r,s[A〈p, q〉 | B〈r, s〉]
Q ; R def= Tp,q,r,s[(νu, v)(Q〈p, u, v, s〉 | R〈u, q, r, v〉)]
Q | R def= Tp,q,r,s[Q〈p, q, r, s〉 | R〈p, q, r, s〉]



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 363

Fig. 6. Graphical interpretation for sagas

Note again that some primitives of the calculus are considered as material in
the encoding, i.e. represented by graph items like edges. This is the case of
activities as shown in Fig. 5 and also of compensable pairs and nested sagas.
Instead, sequencing and parallel composition (see Fig. 6) are immaterial and
their associated axioms are captured by the flattening axioms.

The proposed encoding is sound and complete, i.e. equivalent processes and
sagas are mapped into isomorphic graphs as shown in [5].

Proposition 3 (cf. [5]). For any Q,R ∈ P we have Q ≡S R iff Q ≡D R.

Example 3. Consider the following example, inspired from [6] of the saga

{acceptOrder%refuseOrder ; ( updateCredit%refundOrder |
prepareOrder%updateStock) |
{addPoints%skip}%{substractPoints%skip} ) }

The saga is used for modelling a scenario for dealing with purchase orders. The
initial activity (acceptOrder) handles requests from clients. The next three pro-
cesses are executed in parallel. The first one (updateCredit) charges the amount
of the order to the balance of the client. The second one (prepareOrder) handles
the packaging of the order and updates the stock. The third one deals with point
reward activities: it is formed by a nested saga to update the reward balance
of a user (part of a program for accumulating points with purchases). All the
activities have a corresponding compensation to undo the actions performed by
the successful completion of the activities. Note that activity addPoints has a
vacuous compensation (skip) to avoid aborting the purchase when the point ac-
cumulation activity aborts due to the absence of a reward account (idem for
activity substractPoints). The corresponding hierarchical graph is in Fig. 7.



www.manaraa.com

364 R. Bruni et al.

Fig. 7. Graphical encoding of a saga

4.3 Service Sessions

This section sketches the graphical representation of CaSPiS [2], a session-
centred calculus developed within Sensoria. We have chosen this calculus since
it represents a non-trivial example of the interplay between nesting and linking
introduced by nested sessions, pipelines and communication. We briefly overview
CaSPiS and we refer the interested readers to [2] for an exhaustive description.
We remark that we focus here on the close-free fragment of the calculus and we
present a slightly simplified syntax. Both decisions are for the sake of a conve-
nient and clean presentation and constitute no limitation.

Definition 17 (CaSPiS syntax). Let Z be a set of session names, S a set of
service names and V a set of value names. The set P of processes consists of all
the terms generated by P in the grammar below

P ::= 0 | r � P | P > Q | (νw)P | P | P | A.P
A ::= s | s | (?x) | 〈u〉 | 〈u〉↑

where s ∈ S, r ∈ Z, u ∈ V, w ∈ V ∪ Z and x is a value variable.

Service definitions and invocations are written like input and output prefixes in
CCS. Thus s.P defines a service s that can be invoked by s.Q. Synchronisation
of s.P and s.Q leads to the creation of a new session, identified by a fresh
name r that can be viewed as a private, synchronous channel binding caller and
callee. Since client and service may be far apart, a session naturally comes with



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 365

two sides, written r � P , and r � Q, with r bound somewhere above them by
(νr). Rules governing creation and scoping of sessions are based on those of the
restriction operator in the π-calculus. Note that nested invocations to services
yield separate sessions and thus hierarchies of nested sessions.

When two partner sides r � P and r �Q are deployed, intra-session communi-
cation is done via input and output actions 〈u〉 and (?x): values produced by P
can be consumed by Q, and vice versa.

Values can be returned outside a session to the enclosing environment using
the return operator 〈 · 〉↑. Return values can be consumed by other sessions sides,
or used locally to invoke other services, to start new activities. Local consumption
is achieved using the pipeline operator P > Q . Here, a new instance of process
Q is activated each time P emits a value that Q can consume. Notably, the new
instance of Q runs within the same session as P > Q, not in a fresh one.

Summarising, each CaSPiS process can be thought of as running in an environ-
ment providing it different means of communication: one channel for “standard”
input, one channel for “standard” output and one channel for returning values
one level up.

Example 4. Consider the process (νa)(νb)(a�(P1|b�P2)|a�P3|b�P4). It represents
a typical situation where two sessions a and b have been created (e.g. upon two
service invocations). Agent a�(P1|b�P2) participates to sessions a and b (assume
P1 is the protocol for a and P2 the one for b), with the b side nested in a. The
counter-party protocols for a and b are P3 and P4, respectively, and they run
separately. Notably, values returned one level up by P2 can be consumed by P3.

Definition 18 (CaSPiS structural congruence). The structural congruence
for CaSPiS processes is the relation ≡C⊆ P ×P, closed under process construc-
tion, inductively generated by the following set of axioms

P | (Q | R) ≡ (P | Q) | R) (CA1) P | (νn)Q ≡ (νn)(P | Q) if n �∈ fn(P ) (CA6)
P | Q ≡ Q | P (CA2) ((νn)Q) > P ≡ (νn)(Q > P ) if n �∈ fn(P ) (CA7)
P | 0 ≡ P (CA3) A.(νn)P ≡ (νn)A.P if n �∈ A (CA8)

(νn)(νm)P ≡ (νm)(νn)P (CA4) r � (νn)P ≡ (νn)r � P if n �= r (CA9)
(νn)0 ≡ 0 (CA5) (νn)P ≡ (νm)P{m/n} if m �∈ fn(P ) (CA10)

(?x).P ≡ (?y).P{y/x} if y �∈ fn(P ) (CA11)

Encoding CaSPiS. We first define the alphabets of edge labels and nodes. The
set D of design labels is composed by P , S, D, I, F and T which respectively
stand for Parallel processes, Sessions, service Definitions, service Invocations and
pipes (From and To). The set E of edge labels contains def (service definition),
inv (service invocation), in (input), out (output) and ret (return). The node sorts
considered are ◦ (channels), • (control points), ∗ (service names, i.e. S) and 
(values, i.e. V). We assume that for each session name r there is a corresponding
channel node.

The graphical representation of each design and edge label and their respective
ranks can be found in Fig. 8. For instance, designs of type P are all of the form
Pp,t,o,i[G] where p is the control point representing the process start of execution,
t is the returning channel, o is the output channel and i is the input channel. Vice



www.manaraa.com

366 R. Bruni et al.

Fig. 8. Type graph for CaSPiS

versa, designs of type D and I only expose the starting point of execution: they
are not strictly necessary for the encoding, but can be very useful for visualisation
purposes (they enclose the interaction protocols between callers and callees). We
let the flattening axiom flatP hold, together with extrusion axioms extrS, extrD,
extrI, extrF. Hence, edges of type P are immaterial (they can be considered as
type annotations) and edges of type T define the only rigid hierarchy w.r.t.
containment and name scoping. Other explicit hierarchies for edge containment
are given by session nesting (S), service definition (D), service invocation (I)
and pipelining (F ). As usual, flattening processes allows for getting rid of the
axioms for parallel composition (see [15]). The presence of extrusion axioms is
motivated by the structural congruence axioms of CaSPiS, namely CA7 motivates
extrF, CA8 motivates both extrD and extrI, and CA9 motivates extrS. Note that we
use dashed border for designs for which the extrusion axiom hold, while designs
to be flattened are depicted with dotted borders.

Definition 19 (CaSPiS encoding). The interpretation of CaSPiS operators
over the design algebra is given by

s.Q def= Pp,t,o,i[ t|o|i|D[ (νq, t′, o′, i′)(def〈p, s, q〉|Q〈q, t′, o′, i′〉) ]〈p〉 ]
s.Q def= Pp,t,o,i[ t|o|i| I[ (νq, t′, o′, i′)(inv〈p, s, q〉|Q〈q, t′, o′, i′〉) ]〈p〉 ]

r � Q def= Pp,t,o,i[ t|i|S[Q〈p, o, r, r〉 ]〈p, o〉 ]
Q > R def= Pp,t,o,i[ o | (νm)(F[Q〈p, t,m, i〉 ]〈p, t,m, i〉 |

T[ (νq, t′, o′)R〈q, t′, o′,m〉 ]〈m〉 ) ]
Q|R def= Pp,t,o,i[Q〈p, t, o, i〉|R〈p, t, o, i〉 ]

(νw)Q def= Pp,t,o,i[(νw)Q〈p, t, o, i〉]
0 def= Pp,t,o,i[ p|t|o|i ]

〈u〉.Q def= Pp,t,o,i[ (νq)(out〈p, q, u, o〉 |Q〈q, t, o, i〉) ]
〈u〉↑.Q def= Pp,t,o,i[ (νq)(ret〈p, q, u, t〉 |Q〈q, t, o, i〉) ]
(?x).Q def= Pp,t,o,i[ (νq, x)(in〈p, q, x, i〉 |Q〈q, t, o, i〉) ]

Proposition 4 (cf. [5]). For any Q,R ∈ P we have Q ≡C R iff Q ≡D R.



www.manaraa.com

Hierarchical Models for Service-Oriented Systems 367

Fig. 9. Example of session nesting

Instead of providing the visualisation of the encoding and a detailed explanation
(for which we refer to [4]) we prefer to concentrate on the representation of ses-
sion nesting with the typical session situation presented before. Figure 9 depicts
the graphical representation of our example, where the graph has been further
simplified (e.g. fusing nodes, removing isolated nodes and irrelevant tentacles)
to focus on the main issues and make immediate the correspondence with the
process term. The figure evidences the hierarchy introduced by session nesting
and how it is crossed by intra-session communication. It is also worth to note
that the graph highlights the fact that the return channel of a nested session is
pipelined into the output channel of the enclosing session. More precisely, the
return channel of the immediate session where P2 lives (i.e. b) is connected to
the output channel of the session containing it, i.e. the session channel a.

5 Conclusion

This chapter collects results from [3,5,4]. We presented our specification formal-
ism based on a convenient algebra of hierarchical graphs: its features make it
well-suited for the specification of systems with inherently hierarchical aspects
and in particular, process calculi with notions of scope and containment (like
ambients, membranes, sessions and transactions). Some advantages of our ap-
proach are due to the graph algebra, whose syntax resembles standard algebraic
specifications and, in particular, it is close to the syntax found in nominal cal-
culi. The key point is to exploit the algebraic structure of both designs and
graphs when proving properties of an encoding, facilitating proofs by structural
induction.

References

1. Barendregt, H., van Eekelen, M., Glauert, J., Kennaway, J., Plasmeijer, M., Sleep,
M.: Term graph reduction. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C.
(eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158. Springer, Heidelberg (1987)



www.manaraa.com

368 R. Bruni et al.

2. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

3. Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Montanari, U.: On
GS-Monoidal Theories for Graphs with Nesting. In: Engels, G., Lewerentz, C.,
Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Graph Transformations and Model-
Driven Engineering-Essays Dedicated to Manfred Nagl on the Occasion of his 65th
Birthday. LNCS, vol. 5765, pp. 59–86. Springer, Heidelberg (2010)

4. Bruni, R., Gadducci, F., Lluch Lafuente, A.: A graph syntax for processes and
services. In: Jianwen, S., Laneve, C. (eds.) WS-FM 2009. LNCS, vol. 6194, pp.
46–60. Springer, Heidelberg (2010)

5. Bruni, R., Gadducci, F., Lluch Lafuente, A.: An algebra of hierarchical graphs and
its application to structural encoding. Scientific Annals of Computer Science 20,
53–96 (2010)

6. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensa-
tions in flow composition languages. In: Palsberg, J., Abadi, M. (eds.) Proceedings
of the 32nd International Symposium on Principles of Programming Languages
(POPL 2005), pp. 209–220. ACM, New York (2005)

7. Bundgaard, M., Sassone, V.: Typed polyadic pi-calculus in bigraphs. In: Bossi, A.,
Maher, M.J. (eds.) Proceedings of the 8th International Symposium on Principles
and Practice of Declarative Programming (PPDP 2006), pp. 1–12. ACM, New York
(2006)

8. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-
monoidal categories. Applied Categorical Structures 7(4), 299–331 (1999)

9. Corradini, A., Montanari, U., Rossi, F.: An abstract machine for concurrent mod-
ular systems: CHARM. Theoretical Computer Science 122(1-2), 165–200 (1994)

10. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout
Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing
by Graph Transformation, pp. 163–246. World Scientific, Singapore (1997)

11. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. Journal
on Computer and System Sciences 64(2), 249–283 (2002)

12. Drewes, F., Kreowski, H.-J., Habel, A.: Hyperedge replacement, graph gram-
mars. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by
Graph Transformations, Foundations, vol. 1, pp. 95–162. World Scientific, Singa-
pore (1997)

13. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hy-
peredge replacement as a model for service-oriented computing. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 22–43. Springer, Heidelberg (2006)

14. Ferrari, G.L., Montanari, U.: Tile formats for located and mobile systems. Infor-
mation and Computation 156(1-2), 173–235 (2000)

15. Gadducci, F.: Term graph rewriting for the pi-calculus. In: Ohori, A. (ed.) APLAS
2003. LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)

16. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computa-
tion 204(1), 60–122 (2006)



www.manaraa.com

Analysing Protocol Stacks for Services�

Han Gao, Flemming Nielson, and Hanne Riis Nielson

DTU Informatics, Technical University of Denmark
{hg,nielson,riis}@imm.dtu.dk

Abstract. We show an approach, CaPiTo, to model service-oriented
applications using process algebras such that, on the one hand, we can
achieve a certain level of abstraction without being overwhelmed by the
underlying implementation details and, on the other hand, we respect the
concrete industrial standards used for implementing the service-oriented
applications. By doing so, we will be able to not only reason about ap-
plications at different levels of abstractions, but also to build a bridge
between the views of researchers on formal methods and developers in
industry. We apply our approach to the financial case study taken from
Chapter 0-3. Finally, we develop a static analysis to analyse the security
properties as they emerge at the level of concrete industrial protocols.

1 Introduction

Service-oriented systems are becoming the leading edge of IT Systems. The most
common implementation of service-oriented systems is protocol-based web ser-
vices, where security of interactions between clients and services is ensured by
means of industrial protocols, e.g. TLS [10], SOAP [19], HTTP, TCP/IP.

In the service-oriented environment, our view of a system can be divided into
different levels; at the abstract level (as is usually the view found in academia),
the system is independent of the underlying communication protocols, and at
the concrete level (as is usually the view found in industry), the system must
be understood in connection with how it makes use of industrial communication
protocols. Motivated by this separation of concerns, we present a specification
approach called CaPiTo to facilitate modelling systems at both the abstract and
the concrete level. To bridge the gap between the two levels, we further define
an intermediary level that connects them.

The CaPiTo approach has the advantage that, on the one hand, we can achieve
certain level of abstraction without being overwhelmed by the underlying imple-
mentation details and, on the other hand, we fully respect the industrial com-
munication protocols used for implementing the service-oriented systems. The
main illustration of our approach is by means of the financial Credit Request
case study taken from Chapter 0-3. Finally, we apply a protocol analysis tool
LySa to the case study and verify it works as expected.

In this paper we introduce the CaPiTo approach of modelling service-oriented
applications at different levels in Section 2 (abstract level), Section 3 (protocol
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 369–389, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

370 H. Gao, F. Nielson, and H.R. Nielson

stack plug-in level) and Section 4 (concrete level). The Credit Request example
is considered in detail in Section 5 and fully illustrates the use of the three levels
of CaPiTo. The static analysis is developed in Section 6. Our conclusion and
outlook on further work is presented in Section 7.

2 Abstract Level

The CaPiTo-approach of modelling service-oriented applications involves a total
of three levels. At the abstract level, we abstract away from both cryptography
and industrial communication protocols, and this allows us to concentrate on the
interaction of the services themselves. At the concrete level, the notion of services
is hidden, while we model both cryptography and the industrial communication
protocols used for implementing the service-oriented application. To bridge be-
tween these levels, we introduce an intermediary level where the abstract speci-
fication is augmented with plug-ins for identifying the industrial protocol stacks
to be used.

In the abstract specification, the basic building blocks are values, v, w ∈ V al,
which correspond to closed expressions, i.e. expressions without free variables.
Values are used to represent keys, nonces, messages, etc. Syntactically, they are
described by expressions e ∈ Expr. We will use n to range over names, x to
range over variables, and e to range over expressions. We use �v as a short-hand
for v1, . . . , vk. In addition, we allow the use of functions f (as opposed to the
constructors and destructors that will be used in the other levels for modelling
cryptography).

Communication is facilitated by means of pattern matching and the binding
of values to variables. We distinguish between defining occurrences and applied
occurrences of variables. A defining occurrence is an occurrence where the bind-
ing of a variable is performed, while an applied occurrence is an occurrence of
a variable where the value bound to it is being requested. We perform this dis-
tinction syntactically: the defining occurrence of x is denoted by ?x, while in the
scope of the declaration, the applied occurrences appear as x. Services are built
from basic activities, including the service invocation (n[ ].P ) and service provi-
sion (n[ ].P ), where n[ ].P defines a service that can be invoked by n[ ].P . After
a service has been invoked there is a sequence of communication steps taking
place. The empty holes [ ] after the service invocations and responses (e.g. n and
n) serve as place-holders for plugging in a list of the underlying security protocols
to be used to protect the communication steps in the intermediate level (to be
presented in the next section). The reader familiar with [7] will notice that our
abstract level has been inspired by the CaSPiS process calculus developed in the
Sensoria project. Other activities for building up services include restriction
((ν n)P ), nondeterministic choice (P1 +P2), parallel composition (P1|P2), repli-
cation (!P ), and service return (↑ 〈�e〉.P ), where values �e are returned outside a
service to the enclosing environment. The syntax is in Table 1.



www.manaraa.com

Analysing Protocol Stacks for Services 371

Table 1. Syntax of abstract specifications in CaPiTo

v, w ::= n | f(�v)
e ::= x | n | f(�e)
p ::= ?x | x | n
P ::= 〈�e〉.P | (�p).P | (ν n)P | P1|P2 | !P | P1 + P2 | 0 | n[ ].P | n[ ].P | ↑ 〈�e〉.P

Table 2. Syntax of plug-in specifications (general) in CaPiTo

v, w ::= n | f(�v)
e ::= x | n | f(�e)
p ::= ?x | x | n
P ::= 〈�e〉.P | (�p).P | (ν n)P | P1|P2 | !P | P1 + P2 | 0 | n[ps].P | n[ps].P | ↑ 〈�e〉.P
ps ::= pi | pi; ps
pi ::= name, param1, · · · , paramk

3 Protocol Stack Plug-ins

Plug-in Specification. In the abstract modelling of service-oriented applications,
certain details are often abstracted away, for example, the underlying industrial
protocols to be used to protect the communication steps. From the point of view
of the OSI model [20], messages have to pass several layers before reaching the
physical link layer and actually being transmitted. Each layer receives informa-
tion from the layer above, modifies it and passes it down to the next layer. The
operation of each layer is controlled by different protocols — hence the layers
are said to constitute a protocol stack.

We now introduce an intermediate plug-in level in CaPiTo where we can retain
part of the abstract view of service-oriented applications but where we can also
begin to be precise about which protocols we intend to use. This takes the form
of providing a list of protocols to be placed in the place-holders mentioned above
as shown in Table 2. Here ps is a protocol stack, which we take to be a non-empty
list (separated by semi-colons) of the protocols to be used. Each protocol pi is
identified by its name and a number of auxiliary parameters (k ≥ 0).

Transformations of the Plug-in Level. In this section, we shall define a system-
atic transformation of processes from plug-in level into the concrete level. The
transformation is crucial as it works as a bridge between the abstract system
model and the industrial realisation and implementation. The primary goal is
to remove the service invocation and provision constructs (e.g. n and n) and ex-
pand away the protocol stack plug-ins by applying each protocol in the protocol
stack to all the communication steps that it supposes to protect. This is done in
two steps.

The first step is to distinguish between different services as well as different
sessions of each service by unique session identifiers. This is taken care of by
a transfer function T . The transfer function takes two arguments; the first one



www.manaraa.com

372 H. Gao, F. Nielson, and H.R. Nielson

Table 3. The transfer function T

T (s[ps].P, rl) � (ν r)〈renv, s, r〉.r[ps] � T (P, r :: rl)
T (s[ps].P, rl) � (renv, s, ?r).r[ps] � T (P, r :: rl)
T (〈�e〉.P, r :: rl) � 〈r,�e〉.T (P, r :: rl)
T ((�p).P, r :: rl) � (r, �p).T (P, r :: rl)
T (↑ 〈�e〉.P, r1 :: r2 :: rl) � 〈r2, �e〉.T (P, r1 :: r2 :: rl)
T ((ν n)P, rl) � (ν n)T (P, rl)
T (P1|P2, rl) � T (P1, rl)|T (P2, rl)
T (P1 + P2, rl) � T (P1, rl) + T (P2, rl)
T (!P, rl) � !T (P, rl)

Table 4. Syntax of plug-in specifications (session identifer explicit) in CaPiTo, where
the rest of syntatical categories remain the same as in Table 2

P ::= 〈r,�e〉.P | (r, �p).P | (ν n)P | P1|P2 | !P | P1 + P2 | 0 | r[ps] � P | r[ps] � P

is a plug-in specification to be transferred and the second one is a stack for
recording all the session identifiers that are generated along the way, with the
topmost identifier being the most recent one. Initially the function is called with
environment, a special constant, as the second argument, i.e. T (P, [renv ]). The
result of applying the transfer function is a plug-in specification, of which the
syntax is in Table 4. The definition of the transfer function is shown in Table 3.
Each service invocation s[ps].P leads to the creation of a new session, identified
by a fresh session identifier r, that is sent to the corresponding service provider
s[ps].Q for synchronisation. At both invocation and provider sides, the identifier
r is systematically attached to each communication that belongs to the session,
which imposes all the output (〈�e〉) and input operations((�p)) to take the form
〈r, �e〉 and (r, �p), respectively. Note that in the first two lines, the messages for the
communication of r have renv included, e.g. 〈renv , s, r〉 and (renv, s, ?r). We do
this to ensure that a search for matching service invocation and service provider
is performed in the entire system (due to the use of renv); it also ensures that
outputs and inputs have the required form.

Note that multiple invocations to services will yield separate sessions, as iden-
tified by different choice of r, and the hierarchy of nested sessions, which is re-
flected by the position of each session identifer r in the identifier stack. In fact,
when values are returned outside the current session using the return operator,
↑ 〈�e〉, the second topmost identifer in the stack is adopted, which gives 〈r2, �e〉
(see the fifth line of the function definition).

Example 1. Consider P = s1[pi1].(s2[pi2].(〈A,B〉. ↑ 〈A〉.0)). Applying the trans-
fer function on P , as in T (P, [renv ]), gives the following result:

(ν r1)〈renv , s1, r1〉.r1[pi1] � (
(ν r2)〈renv , s2, r2〉.r2[pi2] � (
〈r2, A,B〉.〈r1, A〉.0))



www.manaraa.com

Analysing Protocol Stacks for Services 373

After the transformation, the service s1 is identified by r1 and s2 by r2. The
communication 〈A,B〉 belongs to the session r2 hence 〈r2, A,B〉. The last mes-
sage ↑ 〈A〉 returns the value A to the session outside r2, i.e. r1. This is reflected
by its transformation into 〈r1, A〉.
The second step is to unfold the protocol stack that is used by each service.
When a protocol stack contains a sequence of protocols we first expand away the
leftmost (topmost) protocol in the stack and then continue with the subsequent
layers. This is formally defined as follows:

r[pi1; . . . ; pik] � P � r[pik] � (r[pik−1] � (. . . (r[pi1] � P )))
r[pi1; . . . ; pik] � P � r[pik] � (r[pik−1] � (. . . (r[pi1] � P )))

The protocol unfolding makes use of protocol definitions which are specified in
the concrete level. We shall introduce it in the next section.

4 Concrete Level

Concrete Specifications. At the concrete level of CaPiTo we fully model com-
munication protocols and the use of asymmetric and symmetric cryptography.
As defined in Table 5, we write Pv+

0
(�v) for asymmetric encryption and Sv−

0
(�v)

for digital signatures; we write Pv−
0

(�v) for asymmetric decryption and Sv+
0
(�v)

for the validation of digital signatures. Symmetric cryptography is modelled as
communications through an encrypted tunnel, e.g. r : e � P , with r being the
session identifier and e being the symmetric key shared between the sending and
receiving principals involved in the communications within P . We also admit a
function H for producing hash values.

Semantics of the Concrete Level. The concrete level semantics consists of a struc-
tural congruence and a labelled transition system. The structural congruence ≡
is defined as the least congruence relation induced by the laws in Table 6. The
last rule P1 ≡ P2 if P1 � P2 is more general than the usual rule A ≡ P if A � P
for unfolding recursive definitions; this is essential to the CaPiTo approach of
unfolding protocol stacks thereby passing from the plug-ing level to the concrete
level. We shall provide several examples of this in Section 5.

Let λ→ be the labelled transition relation induced by the rules in Table 7,
where λ ::= τ | (r, �v) | 〈r, �v〉 | 〈r,Ew(�v)〉 | (r,Ew〈�v〉). Here the labels 〈r, �v〉 and
(r, �v) result from applying rules for output (out) and input (in), respectively;
Ew〈�v〉 and Ew(�v) indicate encryption and decryption using the key w; finally,
we use τ to denote a silent transaction.

Rules (out) and (in) describe how a list of values �v is output and how it is then
input and matched to a pattern �p creating new variable bindings recorded in the
substitution σ that is then applied to the continuation of the input operation
using the following auxiliary definition:

M(�v, �p) =
{
σ if switch(�pσ) = �v and dom(σ) = fv(�p)
undef otherwise



www.manaraa.com

374 H. Gao, F. Nielson, and H.R. Nielson

Table 5. Syntax of concrete specifications in CaPiTo

v, w ::= n | n+ | n− | Pn+ (�v) | Sn− (�v) | H(�v) | f(�v)
e ::= x | n | n+ | n− | Pn+(�e) | Sn− (�e) | H(�e) | f(�e)
p ::= ?x | x | n | n+ | n− | Pn−(�p) | Sn+ (�p)
P ::= 〈r,�e〉.P | (r, �p).P | (ν n)P | !P | r : e � P | (ν± n)P | P1 + P2 | P1|P2 | 0

Table 6. Structural congruence (for all of CaPiTo)

(ν m)(ν n)P ≡ (ν n)(ν m)P (ν m)0 ≡ 0
(ν± m)(ν± n)P ≡ (ν± n)(ν± m)P (ν± m)0 ≡ 0
P1|(ν m)P2 ≡ (ν m)(P1|P2) if m /∈ fn(P1) r : e � 0 ≡ 0
P1|(ν± m)P2 ≡ (ν± m)(P1|P2) if {m+, m−} ∩ fn(P1) = ∅ !P ≡ P |!P
r : e � (ν m)P ≡ (ν m)(r : e � P ) if m /∈ fn(P ) P1|P2 ≡ P2|P1

r : e � (ν± m)P ≡ (ν± m)(r : e � P )if {m+, m−} ∩ fn(P ) = ∅ P |0 ≡ P

(P1|P2)|P3 ≡ P1|(P2|P3) P1 ≡ P2 if P1 � P2

Table 7. Labelled transition systems of the concrete specifications in CaPiTo

(out) 〈r, �v〉.P 〈r,�v〉→ P (in)
M(�v, �p) = σ

(r, �p).P (r,�v)→ Pσ

(t-out)
P 〈r,�v〉→ P ′

r : w � P 〈r,Ew〈�v〉〉→ r : w � P ′
(t-in)

P (r,�v)→ P ′

r : w � P (r,Ew(�v))→ r : w � P ′

(sync)
P1

〈r,�v〉→ P ′
1 P2

(r,�v)→ P ′
2

P1|P2
τ→ P ′

1|P ′
2

(t-sync)
P1

〈r,Ew〈�v〉〉→ P ′
1 P2

(r,Ew(�v))→ P ′
2

P1|P2
τ→ P ′

1|P ′
2

(r-pass1)
P λ→ P ′

(ν n)P λ→ (ν n)P ′

if n /∈ n(λ)

(r-pass2)
P λ→ P ′

(ν± n)P λ→ (ν± n)P ′

if {n+, n−} ∩ n(λ) = ∅
(t-pass)

P λ→ P ′

r : w � P λ→ r : w � P ′

λ ::= 〈r′, �v〉|(r′, �v)
| 〈r′, Ew〈�v〉〉|(r′, Ew(�v))|τ

and r �= r′

(par)
P λ→ P ′

P |P1
λ→ P ′|P1

if fn(P1) ∩ bn(λ) = ∅

(congr)
P ≡ P ′ P ′ λ→ P ′′ P ′′ ≡ P ′′′

P λ→ P ′′′ (choice)
P1

λ→ P ′
1

P1 + P2
λ→ P ′

1

The substitution M(�v, �p) = σ resulting from matching �v against �p is intended
to ensure that �v and �pσ only differ in their use of asymmetric keys: a public
key in one should relate to the corresponding private key in the other. We write
switch(K+

A ) = K−
A and switch(K−

A ) = K+
A .

Rules (t-out) and (t-in) model communications inside a tunnel protected by
the symmetric key w. Rule (t-sync) describes the communication inside the
tunnel; finally, rule (t-pass) propagates all the activities that are transparent to
tunnels. Rules (choice), (par), (r-pass1), (r-pass2) and (congr) are the standard
ones for choice, parallel composition, restriction and structural congruence.



www.manaraa.com

Analysing Protocol Stacks for Services 375

Table 8. Transformation of tunnels into LySa

r : e0 � 〈r′, �e〉l0 [dest {�l}].P � 〈r′, {�e}l0
e0 [dest {�l}]〉.r : e0 � P if r = r′

r : e0 � 〈r′, �e〉l0 [dest {�l}].P � 〈r′, �e〉l0 [dest {�l}].r : e0 � P if r �= r′

r : e0 � (r′, �p)l0 [orig {�l}].P � (r′, {�p}l0
e0 [orig {�l}]).r : e0 � P

if r = r′ and fn(e0) ∩ ∩k
i=1fn(pi) = ∅

r : e0 � (r′, �p)l0 [orig {�l}].P � (r′, �p)l0 [orig {�l}].r : e0 � P if r �= r′

r : e0 � (ν n)P � (ν n)r : e0 � P if n /∈ fn(e0)
r : e0 � (ν± n)P � (ν± n)r : e0 � P if {n+, n−} ∩ fn(e0) = ∅
r : e0 �!P �!r : e0 � P
r : e0 � P1 | P2 � r : e0 � P1 ∧ r : e0 � P2

r : e0 � P1 + P2 � r : e0 � P1 ∧ r : e0 � P2

r : e0 � 0 � 0

In Section 6 we will use the protocol analysis tool LySa [6] to analyse concrete
specifications in CaPiTo. In order to be syntactically compatible with LySa, there
are some issues to be addressed.

Adding Annotations. In order to express our intentions with the protocols, we
follow the work of LySa [6] and manually add annotations about the origin and
destination of encrypted messages; this modification is performed in the concrete
specification of CaPiTo. The idea is that each encryption occurring in a process
is annotated with a crypto-point l defining its position as well as a set of crypto-
points L specifying the destination positions where the encryption is intended
to be decrypted. Similarly, each decryption is annotated with a crypto-point
defining its position as well as a set of crypto-points specifying the potential
origins of encrypted messages to be decrypted. For example, consider the process:

r : e � 〈r, V1, V2〉l1 [dest {l2}].0 | r : e � (r, V1, x)l2 [orig {l1}].0

Here the first parallel process specifies that the encryption is created at crypto-
point l1 and is intended for decryption at crypto-point l2, whereas the second
parallel process specifies that the message to be decrypted at crypto-point l2
must come from crypto-point l1. Similar annotations are made to asymmetric
cryptography.

From Tunnels to LySa. The main difference between concrete specifications in
CaPiTo and LySa is the way symmetric encryptions and decryptions are handled;
LySa has a slightly different syntax and semantics: encryptions (e.g. {M}K) and
decryptions (e.g. decrypt V as {;m}K ) are explicitly specified. One way of solving
this problem is to transform tunnels into LySa constructs. This is done in an
inductive way such that the semantics is preserved. The transformation rules are
listed in Table 8.



www.manaraa.com

376 H. Gao, F. Nielson, and H.R. Nielson

5 A Service-Oriented Example

To illustrate the use of the CaPiTo approach to specification of service-oriented
systems we shall now look at the financial Credit Request case study in Chapter
0-3. In the case study a client C requests a credit from the validation service VS
of a bank. Once the bank has obtained the request it will invoke a service at one of
two specialised departments, one taking care of smaller enterprises SerE and one
taking care of larger corporates SerC . The overall system is specified as follows at
the abstract CaPiTo level. First the client C invokes the service req at the bank
by sending its Balance Total Assets (Bta). The validation service VS will handle
the request by invoking a validation service val either at SerE or at SerC . This
invocation forwards the balance Bta obtained from the client and the response
(recorded in the variable yr) will tell whether or not the enquiry was valid.
Having obtained this answer the validation service VS will send a message back
to the client using the construct ↑ 〈ybta, yr〉. The whole system is thus obtained
as the parallel composition of the four processes System � C | VS | SerC | SerE .

C � ! (ν Bta)req[ ].(〈Bta〉.(Bta, ?xr). ↑ 〈xr〉.0)

VS � ! req[ ].((?ybta).(val[ ].(〈ybta〉.(?yr). ↑ 〈ybta, yr〉.0)
+ val[ ](〈ybta〉.(?yr). ↑ 〈ybta, yr〉.0))

SerE � ! val[ ].((?zbta).〈isValid(zbta)〉.0)

SerC � ! val[ ].((?wbta).〈isValid(wbta)〉.0)

The case study goes one step further and gives details about the various protocols
needed to secure the communication [17] as shown in Fig. 1: The service req
provided by the validation service VC and invoked by the client C would be
protected by the TLS protocol. The validation service delegates the validation
of the balance to the correct service via WS-Security [21] and makes use of a
SOAP-Mediator (SM ) [19] that works as an application level router (using WS-
Addressing), and is responsible for invoking the service val offered by the two
specialised departments.

C � ! (ν Bta)req[TLS , C,R,CA].(〈Bta〉.(Bta, ?xr). ↑ 〈xr〉.0)

VS � ! req[TLS , C,R,CA].((?ybta).(
val[P2P+, S,R;SOAP,VS ,SM ,SerE ].(〈ybta〉.(?yr). ↑ 〈ybta, yr〉.0)

+ val[P2P+, S,R;SOAP,VS ,SM ,SerC ].(〈ybta〉.(?yr). ↑ 〈ybta, yr〉.0))

SerE � ! val[P2P+, S,R;SOAP,VS ,SM ,SerE ].((?zbta).〈isValid(zbta)〉.0)

SerC � ! val[P2P+, S,R;SOAP,VS ,SM ,SerC ].((?wbta).〈isValid(wbta)〉.0)

where CA = K±
CA, S = (VS ,K±

V S) and R = (SerE ,K
±
SerE

). Using the CaPiTo
approach we can get a much more modular specification of the scenario than
the one given in [17] where all of this is mixed together in a single narration.
The idea is simply to specify the relevant plug-ins and then extend the abstract
specification with the required information as shown above.



www.manaraa.com

Analysing Protocol Stacks for Services 377

Fig. 1. The credit request case study

Table 9. TLS protocol for the service between C and S, where R = (S, K±S ) and
CA = K±CA

r[TLS , C, R,CA] � (〈r,�v〉.P ) �
(ν NC)〈r, C, S, NC〉.

(r, S, C, ?nS ,S
K+

CA
(S, ?xks))

(ν N)〈r, C, S,Pxks(N)〉.
r : H(NC , nS , N) � (〈r,�v〉.P )

r[TLS , C, R,CA] � ((r, �p).P ) �
(r,C, S, ?nC).

(ν NS)〈r, S, C, NS ,S
K−

CA
(S, K+

S )〉
(r, C, S,P

K−
S

(?n)).
r : H(nC , NS , n) � ((r, �p).P )

The TLS protocol is used to secure the communication between C and VS
and the communications between the validation service VS and the services SerE

and SerC are to be protected by Web-Service Security (WS-Security) and to be
routed by a SOAP mediator. Now let us have a closer look at these protocols.

The TLS protocol takes place between a client and a server holding a certifi-
cate issued by a mutually trusted Certificate Authority. The certificate is then
used to prove the identity of the server to the client so that a common master key
can be agreed upon; this key is obtained as the hash value of the three nonces
exchanged between the client and the server. All further messages are encrypted
using this key. The protocol is defined in Table 9.

WS-Security [21] is a communication protocol suite providing security to Web
Services, while guaranteeing end-to-end integrity and authenticity. In this case
study its use is restricted to signing and encrypting message content, while leav-
ing the message header as plain text, so as to allow SOAP-routing. SOAP (Sim-
ple Object Access Protocol) [19] is used to exchange data in a decentralised dis-
tributed scenario and only defines the message format. In this case study, SOAP
works by incorporating a few additional fields (i.e. sender, receiver) in messages.
The protocol stack used in the case study therefore contains WS-Security and
SOAP . The structure of the stack and what WS-Security (having two variants
P2P and P2P+) and SOAP do to the messages passing down from the upper
layer are illustrated in Fig. 2.



www.manaraa.com

378 H. Gao, F. Nielson, and H.R. Nielson

Fig. 2. Protocol stack of the credit request case study

Table 10. Point-to-point protocol for the service s between A and B, where S =
(A,K±A ), R = (B, K±B ), and CA = K±CA

r[P2P+, S, R, CA] � (〈r,�e〉.P ) � (ν SN)〈r,S
K−

A
(P

K+
B

(SN,�e,S
K−

CA
(A,K+

A )))〉.
r[P2P, S, R, SN ] � P

r[P2P+, S, R, CA] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[P2P+, S, R, CA] � P if r �= r′

r[P2P+, S, R, CA] � ((r, �p).P ) � (r,S
K+

A
(P

K−
B

(?sn, �p,S
K+

CA
(A, ?k+

a )))).
r[P2P, (A, k+

a ), R, sn] � P

r[P2P+, S, R, CA] � ((r′, �p).P ) � (r′, �p).r[P2P+, S, R, CA] � P if r �= r′

r[P2P, S, R,SN ] � ((r, �p).P ) � (r,S
K+

A
(P

K−
B

(SN, �p))).r[P2P, S, R, SN ] � .P

r[P2P, S, R,SN ] � ((r′, �p).P ) � (r′, �p).r[P2P, S, R,SN ] � P if r �= r′

r[P2P, S, R, sn] � (〈r,�e〉.P ) � 〈r,S
K−

A
(P

K+
B

(sn,�e))〉.r[P2P, S, R, sn] � P

r[P2P, S, R, sn] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[P2P, S, R, sn] � P if r �= r′

These protocols are modelled as parameters to the service requests and re-
sponses. The whole system is defined as

System � (ν± KV S)(ν± KSerE )(ν± KSerC ) C|VS |SM |SerE |SerC

where the SOAP mediator SM is given by:

SM � ! (?r, ?A,SM , A, ?B, ?M).〈r,SM , B,A,B,M〉

and where we assume that the public key of the Certificate Authority CA, K+
CA,

is known to all parties involved.
The protocols are defined in Table 10 and Table 11. Protocols P2P+, P2P and

SOAP are all defined in an inductive way such that each protocol is able to deal
with a sequence of messages. The protocol P2P+ deals with outgoing messages
(e.g. 〈r, �v〉.P ) in the following way: it first generates a sequence number SN for
correlating relevant messages, then it encrypts and signs the sequence number
SN , the message M and the sender’s certificate, using the receiver’s public key,
and finally it invokes P2P to handle the next message. Reverse actions are
taken for incoming messages (e.g. (r, �p).P ). Similarly for P2P except that here
no sender’s certificate is included. The definition of SOAP is parameterised on
three principals, R for sender, SM for mediator, and S for receiver. It includes a



www.manaraa.com

Analysing Protocol Stacks for Services 379

Table 11. SOAP protocol for service s between R and S using SM as SOAP Mediator

r[SOAP , S,SM , R] � (〈r,�e〉.P ) � 〈r, S,SM , S, R,�e〉.r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[SOAP , S,SM , R] � P if r �= r′

r[SOAP , S,SM , R] � ((r, �p).P ) � (r,SM , S, R, S, �p).r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � ((r′, �p).P ) � (r′, �p).r[SOAP , S,SM , R] � P if r �= r′

r[SOAP , S,SM , R] � (〈r,�e〉.P ) � 〈r,R,SM , R, S,�e〉.r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[SOAP , S,SM , R] � P if r �= r′

r[SOAP , S,SM , R] � ((r, �p).P ) � (r,SM , R, S, R, �p).r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � ((r′, �p).P ) � (r′, �p).r[SOAP , S,SM , R] � P if r �= r′

few additional fields to messages for specifying the intended sender and receiver.
Here we only show the more relevant entries of the definitions. For complete
definitions please see the Appendix.

6 Static Analysis

In this section we specify a static control flow analysis for concrete specifications
in CaPiTo. That is we shall focus on the analysis of fully expanded processes,
i.e. processes without the use of service invocation (s[ps]) or service response
(s[ps]).

6.1 Outline of the LySa Analysis

Instead of developing a new analysis for analysing concrete level specifications,
we shall use the protocol analysis tool LySa [6]. The aim of the analysis is
to give a safe over-approximation of the protocol behaviour. The control flow
analysis describes a protocol behaviour by collecting all the communications
that a process may participate in. In particular, the analysis records the tuples
that may flow over the network and the values that the variables may be bound
to. The information is collected in the following main components:

– ρ : P(V ar × V al) is a “global” component recording for each variable the
set of names it may be bound to.

– κ : P(V al∗) is a “global” component recording all the tuples that have been
communicated.

– ψ : P(Lab × Lab) is a “local” error component containing an over-
approximation of the potential origin/destination violations. If (l, l′) ∈ ψ
then something encrypted at crypto-point l might unexpectedly be decrypted
at crypto-point l′, or something decrypted at l′ might have been expected
to be encrypted at another place than l.

Formally, the approximation is represented by a triple (ρ, κ, ψ) called an analysis
estimate of a given process; for an expression a pair (ρ, ϑ) suffices where ϑ :
P(V al) is an over-approximation of the set of values to which the expression can
evaluate.



www.manaraa.com

380 H. Gao, F. Nielson, and H.R. Nielson

Table 12. Flattened pattern matching

ρ |=i ε : V̂ � Ŵ : ψ iff {�v ∈ V̂ | |�v| = i − 1} ⊆ Ŵ

ρ |=i n, �p : V̂ � Ŵ : ψ iff {�v ∈ V̂ | πi(�v) = n} ⊆ V̂ ′∧
ρ |=i+1 �p : V̂ ′ � Ŵ : ψ

ρ |=i x, �p : V̂ � Ŵ : ψ iff {�v ∈ V̂ | πi(�v) ∈ ρ(x)} ⊆ V̂ ′∧
ρ |=i+1 �p : V̂ ′ � Ŵ : ψ

ρ |=i?x, �p : V̂ � Ŵ : ψ iff ρ |=i+1 �p : V̂ � Ŵ : ψ∧
∀�v : �v ∈ Ŵ ⇒ (πi(�v) ∈ ρ(x))

ρ |=i {p1, . . . , pk}l
n[orig L], �p : V̂ � Ŵ : ψ

iff {v1, . . . , vk | {v1, . . . , vk}l′
n [dest L′] ∈ πi(V̂ )} ⊆ V̂ ′∧

ρ |=1 p1, . . . , pk : V̂ ′ � Ŵ ′ : ψ∧
{�w ∈ V̂ | ∃�v ∈ Ŵ ′ : πi(�w) = {�v}n} ⊆ V̂ ′′∧
ρ |=i+1 �p : V̂ ′′ � Ŵ : ψ∧
(l /∈ L′ ∨ l′ /∈ L) ⇒ (l, l′) ∈ ψ

ρ |=i Pn−(p1, . . . , pk)l[orig L], �p : V̂ � Ŵ : ψ

iff {v1, . . . , vk | Pn+(v1, . . . , vk)l′ [dest L′] ∈ πi(V̂ )} ⊆ V̂ ′∧
ρ |=1 p1, . . . , pk : V̂ ′ � Ŵ ′ : ψ∧
{�w ∈ V̂ | ∃�v ∈ Ŵ ′ : πi(�w) = Pn+ (�v)} ⊆ V̂ ′′∧
ρ |=i+1 �p : V̂ ′′ � Ŵ : ψ∧
(l /∈ L′ ∨ l′ /∈ L) ⇒ (l, l′) ∈ ψ

ρ |=i Sn+ (p1, . . . , pk)l[orig L], �p : V̂ � Ŵ : ψ

iff {v1, . . . , vk | Sn−(v1, . . . , vk)l′ [dest L′] ∈ πi(V̂ )} ⊆ V̂ ′ : ψ∧
ρ |=1 p1, . . . , pk : V̂ ′ � Ŵ ′ : ψ∧
{�w ∈ V̂ | ∃�v ∈ Ŵ ′ : πi(�w) = Sn− (�v)} ⊆ V̂ ′′∧
ρ |=i+1 �p : V̂ ′′ � Ŵ : ψ
(l /∈ L′ ∨ l′ /∈ L) ⇒ (l, l′) ∈ ψ

Before going into details with the analysis rules, we shall introduce an aux-
iliary function for dealing with pattern matching. We define a judgement for
pattern matching, namely ρ |=i �p : V̂ � Ŵ : ψ as shown in Table 12. It traverses
the candidate tuple space first in a forward direction, where the tuples in V̂
are tested and only tuples satisfying the requirements are carried forward, and
then in a backward direction, where the tuples in Ŵ are those that passed all
the requirements. As part of the backward traversal, the judgement also collects
orig, dest annotation violations and records them in the error component ψ as
needed.

The judgement for analysing expressions takes the form ρ |= e : ϑ. Basically,
the clauses defining the judgement demand that ϑ contains all the values as-
sociated with the components of a term, e.g. a name n evaluates to the set ϑ,
provided that n belongs to ϑ; similarly for a variable x, provided that ϑ includes
the set of values ρ(x) to which x is associated. The judgement for analysing



www.manaraa.com

Analysing Protocol Stacks for Services 381

Table 13. Analysis judgements for expressions and processes

(Name) ρ |= n : ϑ iff n ∈ ϑ

(Pri) ρ |= n− : ϑ iff n− ∈ ϑ

(Pub) ρ |= n+ : ϑ iff n+ ∈ ϑ

(Var) ρ |= x : ϑ iff ρ(x) ⊆ ϑ

(Enc) ρ |= {v1, . . . , vk}l
v0 [dest L] : ϑ iff ∧k

i=0ρ |= vi : ϑi∧
∀w0, w1, . . . , wk : ∧k

i=0wi ∈ ϑi ⇒
{w1, . . . , wk}l

w0 [dest L] ∈ ϑ

(AEnc) ρ |= P
v+
0

(v1, . . . , vk)l[dest L] : ϑ iff ∧k
i=0ρ |= vi : ϑi∧

∀w0, w1, . . . , wk : ∧k
i=0wi ∈ ϑi ⇒

P
w+

0
(w1, . . . , wk)l[dest L] ∈ ϑ

(Sig) ρ |= S
v−
0

(v1, . . . , vk)l[dest L] : ϑ iff ∧k
i=0ρ |= vi : ϑi∧

∀w0, w1, . . . , wk : ∧k
i=0wi ∈ ϑi ⇒

S
w−

0
(w1, . . . , wk)l[dest L] ∈ ϑ

(Fun) ρ |= f(v1, . . . , vk) : ϑ iff ∧k
i=1ρ |= vi : ϑi∧

∀w1, . . . , wk : ∧k
i=1wi ∈ ϑi ⇒

f(w1, . . . , wk) ∈ ϑ

(Out) ρ, κ |= 〈e1, . . . , ek〉.P : ψ iff ∧k
i=1ρ |= ei : ϑi∧

∀w1, . . . , wk : ∧k
i=1wi ∈ ϑi ⇒ (

〈w1, . . . , wk〉 ∈ κ∧
ρ, κ |= P : ψ)

(Inp) ρ, κ |= (p1, . . . , pk).P : ψ iff ρ |=1 p1, . . . , pk : κ � Ŵ : ψ∧
Ŵ �= ∅ ⇒ ρ, κ |= P : ψ

(New) ρ, κ |= (ν n)P : ψ iff ρ, κ |= P : ψ

(ANew) ρ, κ |= (ν± n)P : ψ iff ρ, κ |= P : ψ

(Rep) ρ, κ |=!P : ψ iff ρ, κ |= P : ψ

(Par) ρ, κ |= P1 | P2 : ψ iff ρ, κ |= P1 : ψ ∧ ρ, κ |= P2 : ψ

(Chs) ρ, κ |= P1 + P2 : ψ iff ρ, κ |= P1 : ψ ∧ ρ, κ |= P2 : ψ

(Nil) ρ, κ |= 0 : ψ iff true

processes is ρ, κ |= P : ψ. For each process P , the analysis mainly collects
information into ρ, κ and annotation violations into ψ.

The analysis rules are defined as in Table 13. The (Inp) clause makes use of
the auxiliary judgement for pattern matching ρ |=i �p : V̂ � Ŵ . It requires that
the continuation service P is analysed only when pattern matching returns a
non-empty result. The (Out) clause evaluates all the expressions, e1, . . . , ek, and
requires that all the combinations of these values are recorded in κ. Indeed these
are the values that may be communicated. Finally, the continuation service P
must be analysed. The rest of the rules are straightforward.



www.manaraa.com

382 H. Gao, F. Nielson, and H.R. Nielson

6.2 Properties of the Analysis

We establish the formal correctness of our analysis by showing a subject reduc-
tion theorem.

Lemma 1. If ρ |= e : ϑ and v ∈ ρ(x) then ρ |= e[x �→ v] : ϑ.

Proof. By induction on the structure of e.

Lemma 2. If ρ, κ |= P and v ∈ ρ(x) then ρ, κ |= P [x �→ v].

Proof. By applying the induction hypothesis on any subservices and Lemma 1
on any subexpressions.

We define an extended version of substitution. Let σ be an arbitrary substitution,
we then define p • σ as follows:

v • σ = v (p1, . . . , pk) • σ = (p1 • σ, . . . , pk • σ)

(?x) • σ = σ(x) x • σ = undefined

Lemma 3 (Substitution result). ∀�v, �p, σ : M(�v, �p) = σ iff (�v) = (�p) • σ.

Proof. By induction on the structure of M(�v, �p).

Lemma 4 (Pattern matching result). If M(�v, �p) = σ and �v ∈ V̂ then there
exists Ŵ such that ρ |=1 �p : V̂ � Ŵ and �p • σ ∈ Ŵ .

Proof. By induction on the structure of ρ |=1 �p : V̂ � Ŵ .

Lemma 5. Let P1 and P2 be services. The following statements hold:

(a) if ρ, κ |= P1 and P1
〈r,�v〉→ P2 then ρ, κ |= P2 and 〈r, �v〉 ∈ κ

(b) if ρ, κ |= P1 and P1
(r,�v)→ P2 and 〈r, �v〉 ∈ κ then ρ, κ |= P2

(c) if ρ, κ |= P1 and P1
〈r,Ew〈�v〉〉→ P2 then ρ, κ |= P2 and 〈r, {�v}w〉 ∈ κ

(d) if ρ, κ |= P1 and P1
(r,Ew(�v))→ P2 and 〈r, {�v}w〉 ∈ κ then ρ, κ |= P2

Proof. All four parts of Lemma 5 are proved by induction on the inference tree
used to establish the semantics reduction.

We start with the statement (a) by using the analysis rule (Out). Let
〈r, �v〉.P r,〈�v〉→ P such that ρ, κ |= 〈r, �v〉.P , which gives us 〈r, �v〉 ∈ κ and ρ, κ |= P
according to the analysis rule (Out).

When we prove statement (b) of Lemma 5, it suffices to concentrate on the
analysis rule (Inp). So assume the following conditions hold

ρ, κ |= (r, �p).P (1) (r, �p).P (r,�v)→ Pσ (2) 〈r, �v〉 ∈ κ (3)

Condition (2) gives M((r, �v), (r, �p)) = σ. Applying Lemma 4 to
M((r, �v), (r, �p)) = σ and condition (3), we have ρ |=1 (r, �p) : κ � Ŵ and



www.manaraa.com

Analysing Protocol Stacks for Services 383

(r, �p)σ ∈ Ŵ , which means that Ŵ 	= ∅. This together with the analysis rule
(Inp) gives us the expected result.

Now we shall prove statement (c). We assume the following conditions hold

r : w � 〈r, �v〉.P 〈r,Ew(�v)〉→ r : w � P (1)

ρ, κ |= r : w � 〈r, �v〉.P (2)

Condition (1) gives 〈r, �v〉.P 〈r,�v〉→ P . According to Table 8, we have

r : w � 〈r, �v〉.P � 〈r, {w}�v〉.r : w � P (3)

Condition (2) together with (3) give ρ, κ |= 〈r, {�v}w〉.r : w � P . Applying the
analysis rule (Out) then gives the expected result.

Proving statement (d) is similar.

Theorem 1 (Subject reduction). If P1
λ→ P2 and ρ, κ |= P1 then ρ, κ |= P2.

Proof. The proof is by induction on the inference of P1
λ→ P2 and makes use of

Lemma 5.
Consider the case (t-sync) and assume the following conditions hold:

P1
〈r,Ew〈�v〉〉→ P ′

1 (4) P2
(r,Ew(�v))→ P ′

2 (5) ρ, κ |= P1|P2 (6)

The assumptions (4) and (5) give P1|P2
τ→ P ′

1|P ′
2. Applying the analysis rule

(Par) to (6), we get ρ, κ |= P1 and ρ, κ |= P2. Lemma 5 then gives ρ, κ |= P ′
1

and ρ, κ |= P ′
2. We get the desired result ρ, κ |= P ′

1|P ′
2.

The remaining cases are similar or straightforward.

6.3 Modelling the Attacker

Protocols are executed in an environment where there may exist malicious at-
tackers. For most process algebras, this is modelled as Psys|Q with Psys being
the implementation of the protocol and Q representing the actual environment,
and this is the scenario we consider as well. Following the work of [6], we say that
a process P is of type (Nf ,Aκ,AEnc,A+

Enc) whenever: (1) it is closed (no free
variables), (2) its free names are in Nf , (3) all the arities used for sending or re-
ceiving are in Aκ, (4) all the arities used for symmetric encryption or decryption
are in AEnc, and (5) all the arities used for asymmetric encryption or decryp-
tion are in A+

Enc. Clearly one can inspect Psys to find minimal Nf ,Aκ,AEnc and
A+

Enc such that Psys is of type (Nf ,Aκ,AEnc,A+
Enc). We also postulate a new

name n•, a new variable z•, and a new crypto-point l• that are not occurring in
Psys. We then define the Dolev-Yao attacker’s ability as the conjunction of the
7 components in Table 14.



www.manaraa.com

384 H. Gao, F. Nielson, and H.R. Nielson

Table 14. Dolev-Yao attacker’s abilities

(1) ∧k∈Aκ ∀〈v1, . . . , vk〉 ∈ κ : ∧k
i=1 vi ∈ ρ(z•)

(2) ∧k∈Aκ ∀v1, . . . , vk : ∧k
i=1 vi ∈ ρ(z•) ⇒ 〈v1, . . . , vk〉 ∈ κ

(3) ∧k∈AEnc ∀{v1, . . . , vk}l
v0 [dest L] ∈ ρ(z•) :

v0 ∈ ρ(z•) ⇒ (∧k
i=1vi ∈ ρ(z•) ∧ ∀l ∈ L : (l, l•) ∈ ψ)

(4) ∧k∈AEnc ∀v0, v1, . . . , vk : ∧k
i=0 vi ∈ ρ(z•) ⇒ {v1, . . . , vk}l•

v0 [dest {l•}] ∈ ρ(z•)

(5) ∧
k∈A+

Enc
∀(Pn+ (v1, . . . , vk)l[dest L] ∈ ρ(z•) ∧ n− ∈ ρ(z•))∨

(Sn− (v1, . . . , vk)l[dest L] ∈ ρ(z•) ∧ n+ ∈ ρ(z•)) :
⇒ (∧k

i=1vi ∈ ρ(z•) ∧ ∀l ∈ L : (l, l•) ∈ ψ)

(6) ∧
k∈A+

Enc
∀v1, . . . , vk : ∧k

i=1 vi ∈ ρ(z•) ⇒ (
(n+ ∈ ρ(z•) ⇒ Pn+(v1, . . . , vk)l• [dest {l•}] ∈ ρ(z•))∧
(n− ∈ ρ(z•) ⇒ Sn− (v1, . . . , vk)l• [dest {l•}] ∈ ρ(z•)))

(7) {n•} ∪ Nf ⊆ ρ(z•)

6.4 Example Revisited

Let us consider the general scenario that a number of Clients may simultaneously
request services from VS and SerE (or SerC).

((ν K−
V S)(ν K−

SerE
)(ν K−

SerC
) |ni=1 Client i | VS | SM | SerE | SerC)

| Attacker

We shall use i to refer to the instance of the protocol where the i’th Client is
communicating with VS and SerE . The index i is added to all variables, crypto-
points and constants thereby allowing the analysis to distinguish between the
various instances. This scenario form reflects the fact that VS , SM , SerE and
SerC are ready to interact with legitimate Clients as well as the attacker, and the
attacker has no knowledge of the principals’ private keys. One may also include
a dishonest Client , who shares long-term keys with the Certificate Authority .
However such an inside attacker is so powerful in this case study that it is able
to interfere with almost all the communications. So for simplicity, we concentrate
on the outside attacker. The analysis itself is carried out for n= 2, which amounts
to partitioning the infinite number of Clients into two groups, with each group
communicating with the rest of the principals. This allows the analysis to see if
any two instances of communications can interfere with each other. The concrete
level specification is shown in Table 15.

Analysing the case study gives an empty ψ component (i.e. ψ = ∅) which
means that no authentication annotations are violated. For example, one can
draw the conclusion that once the decision has been whether the request has to
be validated by the service for enterprises or corporate, it cannot be tricked into
being processed by the wrong one, because (b4i, d1i) /∈ ψ. Inspecting the analysis
result more closely, the following entries may be of interest:

ρ(xr1) = {isValid(Bta1)} ρ(xr2) = {isValid(Bta2)}



www.manaraa.com

Analysing Protocol Stacks for Services 385

Table 15. Concrete level specification of credit request case study

let X ⊆ {1, 2} in
(|i∈X(ν± Kca)(ν± KSerE )(ν± Kvs)(

/ ∗ Client ∗ /
((ν Btai)(ν r1i)〈renv, req, r1〉.
(ν Nxi)〈r1, Ci, VS , Nxi〉.
(r1,VS , Ci, ?nyi, SKca+(VS , ?kvs) : [at a1i orig {b1i}]).
(ν Ni)〈r1, Ci, VS , PKvs+ (Ni) : [at a2i dest {b2i}]〉.
r1 : H(Nxi, nyi, Ni) � 〈r1, Btai〉[at a3i dest {b3i}].
(r1, Btai, ?xri)[at a4i orig {b6i, b9i}].〈renv , xri〉.0)

| / ∗ VS ∗ /
(renv , req, ?r′1)((r′1, Ci,VS , ?nxi).(ν Nyi)
〈r′1,VS , Ci, Nyi,SKca− (VS , Kvs+) : [at b1i dest {a1i}]〉.
(r′1, Ci, VS , PKvs− (?ni) : [at b2i orig {a2i}]).
r′1 : H(nxi, Nyi, ni) � (r′1, ?btai)[at b3i orig {a3i}].(ν r2)〈renv , val, r2〉.

((ν SNi)
〈r2VS ,SM ,VS ,SerE,

SKvs− (P
K+

SerE

(SNi, bta,SKca− (VS , Kvs+)) : [at b4i dest {c1i}])〉.
(r2,SM ,VS ,SerE ,VS ,S

K+
SerE

(PKvs+ (SNi, ?vri) : [at b5i orig {c2i}])).
〈r′1, btai, vri〉[at b6i dest {a4i}].0+

(ν SNi)
〈r2VS , SM , VS , SerC ,

SKvs− (P
K+

SerC

(SNi, bta,SKca−(VS , Kvs+)) : [at b7i dest {d1i}])〉.
(r2,SM ,VS , SerC , VS ,S

K+
SerC

(PKvs+ (SNi, ?vri) : [at b8i orig {d2i}])).
〈r′1, btai, vri〉 : [at b9i dest {a4i}].0)

| / ∗ SM ∗ /
(?r,VS ,SM ,VS , ?ser, ?x1).〈r,SM , ser,VS , ser, x1〉.

(?r′, ?ser,SM , ser,VS , ?x2).〈r′,SM ,VS , ser,VS , x2〉.0
| / ∗ SerE ∗ /
(renv , val, ?r′2).
(r′2,SM ,SerE ,VS ,SerE ,
SKvs+(P

K−
SerE

(?sni, ?btasi,SKca+(VS , ?kvs)) : [at c1i orig {b4i}])).
〈r′2,SerE,SM ,SerE ,VS ,S

K−
SerE

(Pkvs+(sni, isV alid(btasi)) : [at c2i dest {b5i}])〉.0
| / ∗ SerC ∗ /
(renv , val, ?r′2).
(r′2,SM ,SerC ,VS ,SerC ,
SKvs+(P

K−
SerC

(?sni, ?btasi,SKca+(VS , ?kvs)) : [at d1i orig {b7i}])).
〈r′2,SerC ,SM ,SerC ,VS ,S

K−
SerC

(Pkvs+(sni, isV alid(btasi)) : [at d2i dest {b8i}])〉.0))

This confirms that the evaluation results of the form isValid(Btai) are correctly
returned back from SerE to Client , via VS and SM . Furthermore, the analysis
results also suggest that no sensitive data is leaked to the attacker, i.e. the
attacker’s knowledge ρ(z•) does not contain any important information (recall



www.manaraa.com

386 H. Gao, F. Nielson, and H.R. Nielson

that z• is the variable used by the attacker). In summary, both authentication
and confidentiality hold in this case study.

7 Conclusion

In this paper, we presented the CaPiTo approach, which is able to model service-
oriented systems at different levels of abstractions, e.g. with or without taking
the underlying protocol stack into consideration. To the best of our knowledge
this is a novel contribution.

We formally developed the abstract, the plug-in and the concrete levels of
CaPiTo together with the semantics of the concrete level and showed how to
transform the plug-in level to the concrete level. Throughout the paper we il-
lustrated our approach on the Credit Request case study. In our view the main
contribution of the CaPiTo approach, compared to that of other service-oriented
calculi (e.g. CaSPiS [7]), is that the CaPiTo-approach, on the one hand, allows to
perform an abstract modelling of service-oriented applications and, on the other
hand, facilitates dealing with existing industrial protocols. It is due to this abil-
ity that we believe CaPiTo overcomes a shortcoming identified in Sensoria—
that there is some gap between the level of models and analyses performed by
the academic partners and the realisations and implementations performed by
the industrial partners.

From a more theoretical perspective we could equip the abstract level of
CaPiTo with a semantics in the same style as the one given to CaSPiS [7] and
we could then study equivalences between specifications at the various levels of
CaPiTo. Similarly we could develop static analyses at several levels of CaPiTo
and compare their relative precision. However, in our view this is not what the
industrial partners are likely to benefit from; rather we believe that an analysis
performed as close as possible to the concrete specification level is more valuable
in practice. (Indeed, it reduces the risks of attacks at the level below the level of
formalisation.)

Acknowledgement. This work is inspired by earlier discussion with Chiara Bodei
about analysis of service-oriented calculi, in particular CaSPiS [7].

References

1. Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Cal-
culus. Information and Computation 148(1), 1–70 (1999)

2. Armando, A., Carbone, T., Compagna, L.: LTL model checking for security pro-
tocols. In: Proc. 20th CSFW (2007)

3. Armando, A., Carbone, T., Compagna, L., Cuellar, J., Tobarra, L.: Formal anal-
ysis of SAML 2.0 web browser single sign-on: breaking the SAML-based sign on
for Google appa. In: Proc. 6th ACM Workshop on Formal Methods in Security
Engineering (2008)

4. Bella, G., Longo, C., Paulson, L.: Verifying second-level security protocols. In:
Theorem Proving in Higher Order Logics (2003)



www.manaraa.com

Analysing Protocol Stacks for Services 387

5. Broadfoot, P., Lowe, G.: On distributed security transactions that use secure transf-
port protocols. In: Proc. 16th CSFW (2003)

6. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static Validation
of Security Protocols. Journal of Computer Security 13(3), 347–390 (2005)

7. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and Pipelines for Struc-
tured Service Programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

8. Boyd, C.: Security architectures using formal methods. IEEE Journal on Selected
Areas in Communications 11(5) (1993)

9. Bugliesi, M., Focardi, R.: Language based secure communication. In: Proc. 21st
CSFS (2008)

10. Dierks, T., Allen, C.: The TLS protocol version 1.0. RFC 2246, Internet Engineer-
ing Task Force (January 1999)

11. Dilloway, C., Lowe, G.: Specifying secure channels. In: Proc. 21st CSFS (2008)
12. Dilloway, C.: On the Specification and Analysis of Secure Transport Protocols.

PhD Thesis, Oxford University (2008)
13. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE TIT IT-

29(12), 198–208 (1983)
14. Hansen, S., Skriver, J., Riis Nielson, H.: Using static analysis to validate the SAML

Single Sign-On protocol. In: Proceedings of Workshop on Issues in the Theory of
Security (WITS 2005) (2005)

15. Maurer, U., Schmid, P.: A Calculus for secure channel establishment in open net-
works. In: Gollmann, D. (ed.) ESORICS 1994. LNCS, vol. 875. Springer, Heidelberg
(1994)

16. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, Cambridge (1999)

17. Nielsen, C.R., Alessandrini, M., Pollmeier, M., Nielson, H.R.: Formalising the S&N
Credit Request. Confidential Sensoriainternal report (Only for use within the
Consultion) (2007)

18. Organization for the Advancement of Structured Information Standards,
http://www.oasis-open.org/

19. Simple Object Access Protocol (SOAP). W3C, http://www.w3.org/TR/soap/
20. X.200 : Information technology - Open Systems Interconnection - Basic Reference

Model: The basic model
21. OASIS Web Services Security (WSS) TC, http://www.oasis-open.org/

http://www.oasis-open.org/
http://www.w3.org/TR/soap/
http://www.oasis-open.org/


www.manaraa.com

388 H. Gao, F. Nielson, and H.R. Nielson

A Complete Protocol Definitions of SOAP

Table 16. SOAP protocol for service s between R and responder S using SM as SOAP
Mediator

r[SOAP , S,SM , R] � (〈r,�e〉.P ) � 〈r, S,SM , S, R,�e〉.r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[SOAP , S,SM , R] � P if r �= r′

r[SOAP , S,SM , R] � ((r, �p).P ) � (r,SM , S, R, S, �p).r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � ((r′, �p).P ) � (r′, �p).r[SOAP , S,SM , R] � P if r �= r′

r[SOAP , S,SM , R] � ((ν n)P ) � (ν n)r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � (P1 + P2) � (r[SOAP , S,SM , R] � P1)+
(r[SOAP , S,SM , R] � P2)

r[SOAP , S,SM , R] � (P1|P2) � (r[SOAP , S,SM , R] � P1)|
(r[SOAP , S,SM , R] � P2)

r[SOAP , S,SM , R] � (!P ) � !(r[SOAP , S,SM , R] � P )
r[SOAP , S,SM , R] � 0 � 0

r[SOAP , S,SM , R] � (〈r,�e〉.P ) � 〈r,R,SM , R, S,�e〉.r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[SOAP , S,SM , R] � P if r �= r′

r[SOAP , S,SM , R] � ((r, �p).P ) � (r,SM , R, S, R, �p).r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � ((r′, �p).P ) � (r′, �p).r[SOAP , S,SM , R] � P if r �= r′

r[SOAP , S,SM , R] � ((ν n)P ) � (ν n)r[SOAP , S,SM , R] � P

r[SOAP , S,SM , R] � (P1 + P2) � (r[SOAP , S,SM , R] � P1)+
(r[SOAP , S,SM , R] � P2)

r[SOAP , S,SM , R] � (P1|P2) � (r[SOAP , S,SM , R] � P1)|
(r[SOAP , S,SM , R] � P2)

r[SOAP , S,SM , R] � (!P ) � !(r[SOAP , S,SM , R] � P )
r[SOAP , S,SM , R] � 0 � 0



www.manaraa.com

Analysing Protocol Stacks for Services 389

B Complete Protocol Definitions of P2P + and P2P

Table 17. Point-to-point protocol for the service s between A and B, where S =
(A,K±A ), R = (B, K±B ), and CA = K±CA

r[P2P+, S, R, CA] � (〈r,�e〉.P ) � (ν SN)〈r,S
K−

A
(P

K+
B

(SN,�e,S
K−

CA
(A, K+

A )))〉.
r[P2P, S, R,SN ] � P

r[P2P+, S, R, CA] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[P2P+, S, R, CA] � P if r �= r′

r[P2P+, S, R, CA] � ((ν n)P ) � (ν n)r[P2P+, S, R, CA] � P

r[P2P+, S, R, CA] � (P1 + P2) � (r[P2P+, S, R, CA] � P1)+
(r[P2P+, S, R, CA] � P2)

r[P2P+, S, R, CA] � (P1|P2) � (r[P2P+, S, R, CA] � P1)|(r[P2P+, S, R, CA] � P2)
r[P2P+, S, R, CA] � (!P ) � !(r[P2P+, S, R, CA] � P )
r[P2P+, S, R, CA] � 0 � 0

r[P2P+, S, R, CA] � ((r, �p).P ) � (r,S
K+

A
(P

K−
B

(?sn, �p, S
K+

CA
(A, ?k+

a )))).
r[P2P, (A,k+

a ), R, sn] � P

r[P2P+, S, R, CA] � ((r′, �p).P ) � (r′, �p).r[P2P+, S, R, CA] � P if r �= r′

r[P2P+, S, R, CA] � ((ν n)P ) � (ν n)r[P2P+, S, R, CA] � P

r[P2P+, S, R, CA] � (P1 + P2) � (r[P2P+, S, R, CA] � P1)+
(r[P2P+, S, R, CA] � P2)

r[P2P+, S, R, CA] � (P1|P2) � (r[P2P+, S, R, CA] � P1)|(r[P2P+, S, R, CA] � P2)
r[P2P+, S, R, CA] � (!P ) � !(r[P2P+, S, R, CA] � P )
r[P2P+, S, R, CA] � 0 � 0

r[P2P, L, M, SN ] � (〈r,�e〉.P ) � 〈r,S
K−

A
(P

K+
B

(SN,�e))〉.r[P2P, L, M, SN ] � P

r[P2P, L, M, SN ] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[P2P, L, M, SN ] � P if r �= r′

r[P2P, L, M, SN ] � ((r, �p).P ) � (r,S
K+

A
(P

K−
B

(SN, �p))).r[P2P, L, M, SN ] � .P

r[P2P, L, M, SN ] � ((r′, �p).P ) � (r′, �p).r[P2P, L, M, SN ] � P if r �= r′

r[P2P, L, M, SN ] � ((ν n)P ) � (ν n)r[P2P, L, M, SN ] � P

r[P2P, L, M, SN ] � (P1 + P2) � (r[P2P, L, M, SN ] � P1) + (r[P2P, L, M, SN ] � P2)
r[P2P, L, M, SN ] � (P1|P2) � (r[P2P, L, M, SN ] � P1)|(r[P2P, L, M, SN ] � P2)
r[P2P, L, M, SN ] � (!P ) � !(r[P2P, L, M, SN ] � P )
r[P2P, L, M, SN ] � 0 � 0

r[P2P, L, M, sn] � (〈r,�e〉.P ) � 〈r,S
K−

A
(P

K+
B

(sn,�e))〉.r[P2P, L, M, sn] � P

r[P2P, L, M, sn] � (〈r′, �e〉.P ) � 〈r′, �e〉.r[P2P, L, M, sn] � P if r �= r′

r[P2P, L, M, sn] � ((r, �p).P ) � (r,S
K+

A
(P

K−
B

(sn, �p))).r[P2P, L, M, sn] � P

r[P2P, L, M, sn] � ((r′, �p).P ) � (r′, �p).r[P2P, L, M, sn] � P if r �= r′

r[P2P, L, M, sn] � ((ν n)P ) � (ν n)r[P2P, L, M, sn] � P

r[P2P, L, M, sn] � (P1 + P2) � (r[P2P, L, M, sn] � P1) + (r[P2P, L, M, sn] � P2)
r[P2P, L, M, sn] � (P1|P2) � (r[P2P, L, M, sn] � P1)|(r[P2P, L, M, sn] � P2)
r[P2P, L, M, sn] � (!P ) � !(r[P2P, L, M, sn] � P )
r[P2P, L, M, sn] � 0 � 0



www.manaraa.com

An Abstract, on the Fly Framework for the Verification
of Service-Oriented Systems�

Stefania Gnesi and Franco Mazzanti

Istituto di Scienza e Tecnologia dell’Informazione “A. Faedo” - CNR

Abstract. In this chapter we present (some of) the design principles which have
inspired the development of the CMC/UMC verification framework. The first of
these is the need of an abstraction mechanism which allows to observe a model
in terms of an abstract L2T S , therefore hiding all the unnecessary underlying de-
tails of the concrete computational model, while revealing only the details which
might be important to understand the system behavior. The second of these is
the need a Service-Oriented Logic (SocL ) which is an event and state based,
branching-time, efficiently verifiable, parametric temporal logic, for the formal
encoding of service-oriented properties. The third principle is the usefulness of an
on-the-fly, bounded model-checking approach for an efficient, interactive analysis
of service-oriented systems which starts from the early stages of the incremental
system design.

1 Introduction

CMC (COWS Model Checker) and UMC (UML Model Checker) [22,16] are two pro-
totypical instantiations of a common logical verification framework for the verification
of functional properties of service-oriented systems. They differ just for the underlying
computational models which are built out from COWS [14,13] specifications in the case
of CMC, and out from UML [9] statecharts in the case of UMC.

For verification of service-oriented models we do not intend just the final “valida-
tion” step of a completed architecture design, but rather a formal support during all the
steps of the incremental design phase (hence when running designs are still likely to be
incomplete and with high probability to contain mistakes).

Indeed CMC/UMC have been developed having in mind the requirements of the
system designer which intends to take advantage of formal approaches to achieve an
early validation of the system requirements and an early detection of design errors.
From this point of view the design of UMC/CMC has been driven by the desire to
achieve the following goals, (or at least, to experiment in the following directions):

– To support a good user experience in the computer-aided application of formal
methods.

– The support of abstraction mechanisms allowing to observe the system at an high
level of abstraction hiding all the unrelevant and unnecessary computational details.

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 390–407, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 391

– The possibility to manually explore the possible system evolutions and the possi-
bility to generate a “summary” of system behavior in terms of minimal abstract
traces.

– The possibility to investigate detailed and complex system properties using a para-
metric branching time temporal logic supported by an on-the-fly model checker.

– And, in this last case, the possibility of obtaining an understandable explanation of
the model-checking results.

In this chapter we present in detail the way in which three of the above design principles,
those which actually constitute the foundations of our framework, have been put into
practice. These are: the abstraction mechanism, the SocL specification logic, and its on
the fly verification approach.

2 Abstraction Mechanisms

In our context, services are considered as entities which have some kind of abstract
internal state and which are capable of supporting abstract interactions with their
clients, like for example accepting requests, delivering corresponding responses and,
on-demand, canceling requests.

On the other side, we have (more then one) concrete operational models, with a
specific concrete operational semantics, which describe in detail according to their lan-
guage the structure of the system states and their possible evolution steps. This means
that an abstraction mechanism needs to be applied to the system state description and
to the system evolutions information, which allows to extract from the operational se-
mantics of the specific computational model the relevant aspects we want to observe.

In our tools this abstraction step is achieved through the definition of a list of para-
metric rules which allow to specify which state properties and which transition events
we want to observe, and which allow to present them as structured actions of the form
mainlabel( f lag, f lag, ..). When this abstraction step is performed, the semantic model
of a service-oriented system can be seen as a doubly labelled transitions system (L2TS ),
where both the states and the edges are labelled with sets of the above described struc-
tured actions. This abstract L2TS associated to the operational semantics of the system
will constitute the reference structure used by the logic as interpretation domain and by
the full-trace minimization algorithms to generate and display the abstract minimized
views of the system.

CMC is the instantiation of our verification framework with respect to the COWS
process calculus. COWS ha been explicitly defined for the specification and orchestra-
tion of services and combines in an original way constructs and well known features
like asynchronous communication, polyadic synchronization, pattern matching, pro-
tection, delimited receiving and killing activities. The abstraction rules of CMC allow
to “intercept” the communication actions occurring between two COWS processes and
present them as request/response events in the context of some client-server interaction.
The corresponding abstract labels will therefore appear on the edges of the L2TS as
they represent the abstract events occurred during an evolution step. The CMC abstrac-
tion rules moreover allow to observe the willingness of a COWS term to participate to



www.manaraa.com

392 S. Gnesi and F. Mazzanti

a communication synchronization (e.g. to their willingness to perform the input side
of the synchronization) and present it as a state property reflecting the willingness of a
service to accept operation requests. In this case this abstract property will appear as a
abstract label associated to some states of the L2TS . In Fig. 1 we show an example of
such rules: lines starting with the Action keyword identify rules which give rise to the
abstract labels on the L2TS edges, and lines starting with the State keyword identify
rules which give rise to the abstract labels associated to the L2TS states. Notice that the
“*” and the “$i” in the left part of the rules allow to apply a pattern matching schema to
the corresponding COWS events or actions, in order to extract the relevant details from
the synchronizations and export them into the desired abstract labels.

Abstractions {
Action charge<*,*,*,$1>   -> request(bankcharge,$1)
Action chargeOK<$1>     -> response(bankcharge,$1)
Action chargeFail<$1>    -> fail(bankcharge,$1)
State charge?                   -> accepting_request(bankcharge)

}

Fig. 1. CMC Abstraction rules for COWS

UMC is instead the instantiation of our verification framework with respect to UML
statecharts. These have a standard presentation and semantics as defined by the OMG
[9]. The communication events which can be observed in this case are based on the no-
tion of message passing and indeed we can distinguish the event of sending an operation
request (on the client side) from the event of accepting that request (on the server side).
Moreover UML statecharts are built over the concept of local attribute of objects, and
during the execution of a system transition (beyond multiple communication actions)
several update whether of the local object attributes can be executed. The abstraction
rules of UMC allow to observe all these events (acceptance of a message, sending of
an event, update of a local attribute) as abstract events representing relevant aspects of
the service-oriented behavior of the system, and represent them as abstract labels asso-
ciated to the L2TS edges. Other abstraction rules of UMC allow instead to observe the
specific value of selected object attributes, and wether or not an object is in a specific
state, and present these information as abstract state predicates labeling the states of the
L2TS .

Abstractions {
Action $1:requestCardCharge($*) -> request(bankcharge,$1)
Action $1.chargeResponseFail      -> fail(bankcharge,$1)
Action $1.chargeResponseOK       -> response(bankcharge,$1)

    --
State inState(bank1.s1) -> accepting_request(bankcharge)

}

Fig. 2. UMC Abstraction rules for UML Statecharts



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 393

In Fig. 2 we show an example of such rules (and we refer to [17] for a complete
presentation of them): as in the previous case lines starting with the Action keyword
identify rules which give rise to the abstract labels on the L2TS edges, and lines starting
with the State keyword identify rules which give rise to the abstract labels associated
the L2TS states. Also in this case the “*” and the “$i” in the left part of the rules allow to
apply a pattern matching schema to the corresponding UMC events or state structures,
in order to extract the relevant details from the underlying communication mechanism
and export them into the desired abstract labels.

In Fig 3 we show an example of what could be the abstract L2TS resulting from
a model specified in COWS or UMC. Actually the shown L2TS is just a minimized
version of the L2TS obtained in the case of the Sensoria automotive case study (of
which only two kinds of interactions and no state properties are observed).

1

{request(bankcharge,car1)}

2

{fail(bankcharge,car1)}

{response(bankcharge,car1)}

7

#final

3

{revoke(bankcharge,car1)}

{request(garage,car1)}

4

{fail(garage,car1)}

{response(garage,car1)}

6

{revoke(bankcharge,car1)}

5          #final

{revoke(bankcharge,car1)} {revoke(garage,car1)}

8

{revoke(garage,car1)}

Fig. 3. A minimized version of the automotive L2T S

The really important fact of our approach is that, independently from the details of
the underlying selected computational model, it is just this abstract L2TS associated to
the operational semantics of the system what will constitute the reference structure used
by the SocL logic (described in the next section) as interpretation domain.



www.manaraa.com

394 S. Gnesi and F. Mazzanti

3 The Logic SocL

SocL [6] is a service-oriented temporal logic derived from UCTL [19,8,7] which has
the following characteristics:

– It is a branching time logic, built over the classical intuitive “eventually”, “always”,
“until”, “next” temporal operators drawn from mainstream logics like CTL [3],
ACTL [4] and ACTLW [18]. The evaluation of this logic is known [1] to be achiev-
able with a computational complexity which is linear with respect to the size of the
formula and the size of the model.

– It is an event and state based logic. Being its interpretation domain our abstract
state/event based L2TS structures, SocL allows to directly express state predicates
to be evaluated over the abstract labels associated to the states of the L2TS , and
action expressions to be evaluated over the abstract labels associated to the edges
of the L2TS .

– It is a parametric temporal logic, in which the values of the arguments of an ab-
stract event occurring during a transition can be used to dynamically instantiate a
parametric subformula to be evaluated in the target state of the transition itself.

In this section, we first introduce some preliminary definitions, then formally define
syntax and semantics of SocL and finally show how the logic can be used to formalize
typical service properties.

3.1 Preliminary Definitions

In this section we report the definitions of the semantic structures which the logic rely
on. They permit to characterize a service in terms of states and predicates that are true
over them, and of state changes and actions performed when moving from one state to
another.

Let Act be a set of elements called observable actions. We will use η to range over
2Act.

Definition 1 ([Labelled Transition System]). A Labelled Transition System (LTS)
over the set of observable actions Act is a quadruple 〈Q, q0,Act,R〉, where:

– Q is a set of states;
– q0 ∈ Q is the initial state;
– R⊆Q × 2Act × Q is the transition relation.

Now, if we extend an LTS with a labeling function from states to sets of atomic proposi-
tions we get a system with also labels over states, namely a Doubly Labelled Transition
S ystem.

Definition 2 ([Doubly Labelled Transition System]). A Doubly Labelled Transition
System (L2TS) over the set of observable actions Act and the set of atomic propositions
AP is a tuple 〈Q, q0,Act,R,AP, L〉, where:



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 395

– Q is a set of states;
– q0 ∈ Q is the initial state;
– R ⊆ Q × 2Act × Q is the transition relation
– L : Q −→ 2AP is the labeling function.

The main difference between the above definitions and the usual ones (as found e.g. in
[5]) is that transitions are labelled by a set of actions rather than by a single action. Those
transitions labelled by the empty set, i.e. ∅, correspond to execution of ‘unobservable’
internal actions. In the sequel, as a matter of notation, instead of (q, η, q′) ∈ R we may

write q
η−→ q′.

3.2 SocL Syntax and Semantics

We start introducing the set of observable actions which SocL is based upon. As we said
in the Introduction, the actions of the logic should correspond to the actions performed
by service providers and service consumers, and are characterized by three attributes:
type, interaction name, and correlation data1. Moreover, to enable capturing correlation
data used to link together actions executed as part of the same interaction, they may
also contain variables, that we call correlation variables. In the sequel, we will usually
write val to denote a generic correlation value and var to denote a generic correlation
variable. For a given correlation variable var, its binding occurrence will be denoted by
var; all remaining occurrences, that are called f ree, will be denoted by var.

Definition 3 ([SocL Actions]). SocL Actions have the form t(i, c), where t is the type
of the action, i is the name of the interaction which the action is part of, and c is a tuple
of correlation values and variables identifying the interaction (i and c can be omitted
whenever they do not play any role). We assume that variables in the same tuple are
pairwise distinct. We will say that an action is closed if it does not contain variables.
We will use Act v to denote the set of all actions, α as a generic element of Act v (notation
· emphasizes the fact that the action may contain variable binders), and α as a generic
action without variable binders. We will use Act to denote the subset of Act v that only
contains closed actions (i.e. actions without variables) and η as a generic subset of Act.

Example 1. Action request(charge, 1234, 1) could stand for an action of type request
starting an (instance of the) interaction charge which will be identified through the
correlation tuple 〈1234, 1〉. A response action corresponding to the request above, for
example, could be written as response(charge, 1234, 1). Moreover, if some correlation
value is unknown at design time, e.g. the identifier 1, a (binder for a) correlation vari-
able id can be used instead, as in the action request(charge, 1234, id). A corresponding
response action could be written as response(charge, 1234, id), where the (free) occur-
rence of the correlation variable id indicates the connection with the action where the
variable is bound.

To define the syntax of SocL we rely on an auxiliary logic of actions.

1 Notice that correlation data are simply regarded as literals and, for such data, the logic supports
the equality test only. In fact, we do not need to deal with data types.



www.manaraa.com

396 S. Gnesi and F. Mazzanti

Definition 4 ([Action formulae]). The languageAF (Act v) of the action formulae on
Act v is defined as follows:

γ ::= α | χ χ ::= tt | α | τ | ¬χ | χ ∧ χ
As usual, we will use ff to abbreviate ¬tt and χ ∨ χ′ to abbreviate ¬(¬χ ∧ ¬χ′).

According to the syntax above, an action formula γ can be either an action α, which
may contain variable binders, or an action formula χ, which is a boolean composition
of unobservable internal actions τ and observable actions α without variable binders.
As we shall also clarify later, the distinction between action formulae γ and χ is mo-
tivated by two reasons: (1) some logical operators can accept as argument only action
formulae without variable binders, and (2) actions containing variable binders cannot
be composed.

Satisfaction of an action formula is determined with respect to a set of closed actions
that represent the observable actions actually executed by the service under analysis.
Therefore, since action formulae may contain variables, to define their semantics we
introduce the notion of substitution and the partial function match that checks matching
between an action and a closed action and, if it is defined, returns a substitution.

Definition 5 ([Substitutions]). S ubstitutions, ranged over by ρ, are functions map-
ping correlation variables to values and are written as collections of pairs of the form
var/val. The empty substitution is denoted by ∅. Application of substitution ρ to a for-
mula φ, written φ ρ, has the effect of replacing every free occurrence of var in φ with
val, for each var/val ∈ ρ.
Definition 6 ([Matching function]). The partial function match from Act v × Act to
substitutions is defined by structural induction by means of auxiliary partial functions
defined over syntactic subcategories of Act v through the following rules:

match(t(i, c), t(i, c′)) = matchc(c, c′)
matchc((e1, c1), (e2, c2)) = matche(e1, e2) ∪ matchc(c1, c2)
matchc(〈〉, 〈〉) = ∅
matche(var, val) = {var/val}
matche(val, val) = ∅

where (e, c) stands for a tuple with first element e, and 〈〉 stands for the empty tuple. No-
tably, an action containing free variable occurrences cannot match any closed action.

Example 2. Let us consider again the actions introduced in Example 1. Then,
we have match(response(charge, 1234, 1), response(charge, 1234, 1)) = ∅ and
also match(request(charge, 1234, id), request(charge, 1234, 1)) = {id/1}. Instead
match(request(charge, 1234, id), response(charge, 1234, 1)) is not defined since the
actions have different types.

Definition 7 ([Action formulae semantics])
The satisfaction relation for action formulae is defined over a set of closed actions and
a substitution.



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 397

– η |= α � ρ iff ∃α′ ∈ η such that match(α, α′) = ρ;
– η |= χ � ∅ iff η |= χ, where the relation η |= χ is defined as follows:
• η |= tt holds always;
• η |= α iff α ∈ η;
• η |= τ iff η = ∅;
• η |= ¬χ iff not η |= χ;
• η |= χ ∧ χ′ iff η |= χ and η |= χ′.

Notation η |= γ � ρ means: the formula γ is satisfied over the set of closed actions η
under substitution ρ. Since the matching function is undefined when its first argument
contains free variables, the semantics of actions containing free occurrences of correla-
tion variables is undefined as well. Notice also that a non-empty substitution ρ can be
generated only in the first case of the above definition, because the remaining cases only
deal with formulae that do not contain variable binders. Finally, the action formula τ is
satisfied over the empty set only, which corresponds to the execution of unobservable
internal actions.

The last ingredient we need to define the syntax of the logic is the set of atomic
propositions. They correspond to the properties that can be true over the states of
services.

Definition 8 ([Atomic propositions]). SocL atomic propositions have the form p(i, c),
where p is the name, i is an interaction name, and c is a tuple of correlation values and
free variables identifying i (i and c can be omitted whenever they do not play any role).
We will use AP to denote the set of all atomic propositions and π as generic element of
AP.

Notably, atomic propositions cannot contain variable binders.

Example 3. Proposition accepting request(charge) indicates that a state can accept re-
quests for interaction charge, while proposition accepting cancel(charge, 1234, 1) in-
dicates that a state permits to cancel those requests for interaction charge identified by
the correlation tuple 〈1234, 1〉.
Definition 9 ([SocL syntax]). The syntax of SocL formulae is defined as follows:

(state f ormulae) φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ
(path f ormulae) Ψ ::= Xγφ | φ χUγ φ′ | φ χWγ φ′

E and A are existential and universal (resp.) path quanti f iers. X, U and W are the next,
(strong) until and weak until operators drawn from those firstly introduced in [4] and
subsequently elaborated in [18]. Intuitively, the formula Xγφ says that in the next state
of the path, reached by an action satisfying γ, the formula φ holds.

The formula φ χUγ φ′ says that φ′ holds at some future state of the path reached by
a last action satisfying γ, while φ holds from the current state until that state is reached
and all the actions executed in the meanwhile along the path satisfying χ.

The formula φχWγ φ′ holds on a path either if the corresponding strong until operator
holds or if for all the states of the path the formula φ holds and all the actions of the
path satisfy χ.



www.manaraa.com

398 S. Gnesi and F. Mazzanti

Notice that the weak until operator (also called unless) is not derivable from the
until operator since disjunction or conjunction of path formulae is not expressible in the
syntax of SocL, similarly to any other pure branching-time temporal logic.

The interpretation domain of SocL formulae are L2TS over the set of actions Act
and the set of atomic propositions AP. The semantics of SocL formulae is only defined
for closed formulae, namely those formulae where any free occurrence of a correlation
variable is syntactically preceded by its binding occurrence. Given the formulae Xγφ′,
φ χUγ φ′ and φ χWγ φ′, variables occurring in γ syntactically precede the variables
occurring in φ′.

Paths within L2TSs represent service computations and are defined as follows:

Definition 10 ([Path]). Let 〈Q, q0, Act,R,AP, L〉 be an L2TS and q ∈ Q.

– σ is a path from q if σ is a (non empty, possibly infinite) sequence
(q0, η1, q1)(q1, η2, q2) · · · with q0 = q and (qi−1, ηi, qi) ∈ R for all i > 0.

– If σ = (q0, η1, q1)(q1, η2, q2) · · · then
qi is denoted by σ(i) for all i >= 0, and ηi is denoted by σ{i} for all i >= 1.

– We write path(q) for the set of all paths from q.

Definition 11 ([SocL semantics]). Let 〈Q, q0, Act,R,AP, L〉 be an L2TS, q ∈ Q, and
σ ∈ path(q′) for some q′ ∈ Q. The satisfaction relation of closed SocL formulae is
defined as follows:

– q |= true holds always;
– q |= π iff π ∈ L(q);
– q |= ¬φ iff not q |= φ;
– q |= φ ∧ φ′ iff q |= φ and q |= φ′;
– q |= EΨ iff ∃σ ∈ path(q) : σ |= Ψ ;
– q |= AΨ iff ∀σ ∈ path(q) : σ |= Ψ ;
– σ |= Xγφ iff ∃ ρ : σ{1} |= γ � ρ and σ(1) |= φ ρ;
– σ |= φ χUγφ′ iff there exists j > 0 such that

for all 0 <= i < j: σ(i) |= φ,
for all 0 < i < j: σ{i} |= χ,
∃ ρ : σ{ j} |= γ � ρ and σ( j) |= φ ρ;

– σ |= φ χWγφ′ iff either σ |= φ χUγφ′ or
for all j >= 0 : σ( j) |= φ and σ{ j + 1} |= χ

Other useful logic operators can be derived as usual. In particular, the ones that we use
in the sequel are:

– false stands for ¬ true.
– <γ>φ stands for EXγ φ; this is the diamond operator introduced in [10] and, in-

tuitively, states that it is possible to perform an action satisfying γ and thereby
reaching a state satisfy formula φ.

– [γ] φ stands for ¬<γ>¬ φ; this is the box operator introduced in [10] and states
that no matter how a process performs an action satisfying γ, the state it reaches in
doing so will necessarily satisfy the formula φ.



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 399

– Variants of until operators, which do not specify the last action leading to the state
at which the formula on the right hand side holds, can be defined as follows:
• E(φ χU φ′) stands for φ′ ∨ E(φχUχ φ′);
• A(φ χU φ′) stands for φ′ ∨ A(φχUχ φ′);
• E(φ χW φ′) stands for φ′ ∨ E(φχWχ φ′);
• A(φ χW φ′) stands for φ′ ∨ A(φχWχ φ′).

– EFφ stands for E(true tt Uφ) and means that there is some path that leads to a state
at which φ holds; that is, φ potentially holds.

– EFγ φ stands for E(true tt Uγ φ) and means that there is some path that leads to a
state at which φ holds reached by a last action satisfying γ; if φ is true, we say that
an action satisfying γ will eventually be performed.

– AFγ φ stands for A(true tt Uγ φ) and means that an action satisfying γ will be per-
formed in the future along every path and at the reached states φ holds; if φ is true,
we say that an action satisfying γ is inevitable.

– AG φ stands for ¬ EF ¬ φ and states that φ holds at every state on every path; that
is, φ holds globally.

3.3 A Few Patterns of Service Properties

First we characterize the set of actions Act v and the set of atomic propositions AP which
the logic is based upon. This characterization formalizes the intuitive abstract events
and predicates we conceptually need in order to express the service-oriented properties
shown below, that we later want to verify.

– Act v contains (at least) the following five types of actions: request, responseOk,
responseFail, cancel and undo. The intended meaning of the actions is:
request(i, c) indicates that the action performed by the service starts the interac-
tion i which is identified by the correlation tuple c; similarly, responseOk(i, c),
responseFail(i, c), and cancel(i, c) correspond to actions that provide a successful
response, an unsuccessful response, a cancellation, respectively, of the interaction
i identified by c; undo(i, c) corresponds to an action that unmakes the effects of a
previous request.

– AP contains (at least) the atomic propositions accepting request(i, c),
accepting cancel(i, c) and accepting undo(i, c), whose meaning is obvious.

Now we show how several typical service-oriented properties can be expressed as for-
mulae in SocL.

1. - - Available service - -

AG (accepting request(i)).
This formula means that in every state the service may accept a request. A weaker
interpretation of service availability, meaning that the service accepts a request in-
finitely often, is given by the formula AG AF (accepting request(i)).

2. - - Parallel service - -

AG [request(i, var)]
E(true¬ (responseOk(i,var)∨responseFail(i,var) )U accepting request(i)).



www.manaraa.com

400 S. Gnesi and F. Mazzanti

This formula means that the service can serve several requests simultaneously. In-
deed, in every state, if a request is accepted then, in some future state, a further
request for the same interaction can be accepted before giving a response to the
first accepted request. Notably, the responses belong to the same interaction i of the
accepted request and they are correlated by the variable var.
This is a clear example of the usefulness of the combined approach based on both
actions and propositions. In fact the action request(i, var) corresponds to the ac-
ceptance of a request sent by a client, while the proposition accepting request(i)
indicates that in the current state the service is able to accept a request from some
client (but it has not received such request yet). In this way, SocL can easily deal
with both performed and potential actions.

3. - - S equential service - -

AG [request(i, var)]
A(¬ accepting request(i) tt UresponseOk(i,var)∨responseFail(i,var)true).

In this case, the service can serve at most one request at a time. Indeed, after ac-
cepting a request, it cannot accept further requests for the same interaction before
replying to the accepted request.

4. - - One − shot service - -

AG [request(i)] AG ¬ accepting request(i).
This formula states that the service is not persistent because, after accepting a re-
quest, in all future states, it cannot accept any further request.

5. - - O f f − line service - -

AG [request(i, var)] AFresponseFail(i,var) true.
This formula states that whenever the service accept a request, it always eventually
provides an unsuccessful response.

6. - - Cancelable service - -

AG [request(i, var)]
A(accepting cancel(i, var) ttWresponseOk(i,var)∨responseFail(i,var)true).

This formula means that the service is ready to accept a cancellation required by
the client (fairness towards the client) before possibly providing a response to the
accepted request. A different formulation is given by the formula

AG [responseOk(i, var)]¬EF <cancel(i, var)>true
meaning that the service cannot accept a cancellation after responding to a request
(fairness towards the service).

7. - - Revocable service - -

EFresponseOk(i,var) EF(accepting undo(i, var))
Again, we can have two interpretations. While the previous formula expresses a
sort of weak revocability (i.e., after a successful response has been provided, the
service can eventually accept an undo of the corresponding request), the following
one corresponds to a stronger interpretation

AG [responseOk(i, var)] A(accepting undo(i, var) ttWundo(i,var)true)
since it guarantees that the service can always accept an undo of the request after
providing the response.

8. - - Responsive service - -

AG [request(i, var)] AFresponseOk(i,var)∨responseFail(i,var) true.



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 401

The formula states that whenever the service accepts a request, it always eventually
provides at least a (successful or unsuccessful) response.

9. - - S ingle − response service - -

AG [request(i, var)]
¬EFresponseOk(i,var)∨responseFail(i,var) EFresponseOk(i,var)∨responseFail(i,var) true.

The formula means that whenever the service accepts a request, it cannot provide
two or more correlated (successful or unsuccessful) responses, i.e. it can only pro-
vide at most a single response.

10. - - Multiple − response service - -

AG [request(i, var)]
AFresponseOk(i,var)∨responseFail(i,var) AFresponseOk(i,var)∨responseFail(i,var) true.

Differently from the previous formula, here the service always eventually provides
two or more responses.

11. - - No − response service - -

AG [request(i, var)] ¬EFresponseOk(i,var)∨responseFail(i,var) true.
This formula means that the service never provides a (successful or unsuccessful)
response to any accepted request.

12. - - Reliable service - -

AG [request(i, var)] AFresponseOk(i,var) true.
This formula guarantees that the service always eventually provides a successful
response to each accepted request.

The SocL formulation of the above properties is instructive in that it witnesses that the
natural language descriptions of the properties can sometimes be interpreted in differ-
ent ways: therefore, formalization within the logic enforces a choice among different
interpretations. Notably, the formulation is given in terms of abstract actions and state
predicates thus, rather than specific properties, the properties we have considered so far
represent sorts of generic patterns or classes of properties.

4 The On-the-Fly Verification Approach

The CMC/UMC framework adopts an “on-the-fly” approach to generate the L2TS from
a UML specification, meaning that the L2TS corresponding to the model is generated
“on-demand”, following either the interactive requests of a user while exploring the
system, or the needs of the logical verification engine. The set of generated system
configurations and (possibly) their immediate “next-step” evolutions are incrementally
saved into a “Configurations” database and their abstract view is computed. The overall
structure of the framework is shown in Fig. 4.

The logical verification engine is the part that best exploits the on-the-fly approach of
the L2TS generator. It maintains an archive of computation fragments; this is not only
useful to avoid unnecessary duplications in the evaluation of subformulae, but necessary
to deal with recursion in the evaluation of a formula arising from the presence of loops
in L2TSs. Computation fragments have the form:

〈subformula, rootstate, curstate〉 → computationprogress



www.manaraa.com

402 S. Gnesi and F. Mazzanti

ground/abstract
on-the-fly
L2TS generator

ground/abstract
 interactive
L2TS explorer and
visualizer

     model configurations management

Configurations
DB

abstract L2TS 
exporter and minimizer

 L2TS to LTS encoder

minimized LTS to L2TS
extractor and visualizer

external
  LTS
minimizers

external
  graph
visualizers

CMC / UMC framework

             Socl 
logical computation engine

Socl on-the-fly
logical verifier

Computations
DB

proof / counter-example
 visualizer

User
Interface

Fig. 4. The architecture of the CMC/UMC framework

and associate a subformula to the state in which its recursive evaluation has started
(rootstate), to the current state in which it is being evaluated (curstate) and to
its current computation status (computationprogress): this last item will in the end
be the final True or False value. To each computation fragment is also associated a
reference to a further set of subcomputation fragments which serve to explain the final
result.

In general, given a state of an L2TS, the validity of a SocL formula in that state is
evaluated by analyzing the transitions allowed in that state, and by analyzing the validity
of the necessary subformulae possibly in some of the necessary next reachable states,
all this in a recursive “depth-first” way.

In case of infinite state spaces, the above approach may fail to produce a result
even when a result could actually be deduced in a finite number of steps. This is a
consequence of the algorithm’s “depth-first” recursive structure. The solution taken to
solve this problem consists of adopting a bounded model-checking approach [2], i.e.
the evaluation is started assuming a certain value as limit of the maximum depth of
the evaluation. In this case, if the evaluation of a formula reaches a result within the
requested depth, the result holds for the whole system; otherwise the maximum depth
is increased and the evaluation is subsequently retried (preserving all useful subresults
already found). This approach, initially introduced in CMC/UMC to address infinite
state spaces, happens to be quite useful also for another reason: by setting a small initial
maximum depth and a small automatic increment of this bound at each re-evaluation
failure, once we finally find a result then we also have a reasonable (almost minimal)
explanation for it. This is very useful also in case of finite state spaces.

We show in Figure 5 a simplified schema of the algorithm for the evaluation of
the ‘universally quantified next’, i.e. formulae of the form AXγφ. This is a particularly
simple logic operator since it does not involve the complexity induced by recursion; it
is however sufficient to give an idea of how the on-the-fly approach of the evaluation
mechanism behaves.



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 403

Evaluate(AX , StartState, CurrentState) is
if we have already done this computation and its result is available,

i.e. <AX , StartState, CurrentState> Result
has already been computed then

return the already known Result
end
if there are no outgoing transitions from CurrentState then

set <AX , StartState, CurrentState> False
return False

end
Result := True
foreach Transition in OutgoingTransitions(CurrentState) do

if Satisfies(Transition.Label, ) then
TargetState := Transition.TargetState

:= TransitionBindings(Transition.Label, )
TmpResult := False
foreach substitution in do

' := ApplySubstitution( , )
TmpResult := Evaluate( ', TargetState, TargetState)
if TmpResult = True then

exit
end

end loop
if TmpResult = False then

Result := False
exit

end
else

Result := False
exit

end
end loop
set <AX , StartState, CurrentState> Result
return Result

end Evaluate;

Fig. 5. Evaluation process for AXγφ formula

In Figure 6 we present instead a simplified schema of the algorithm for the evaluation
of the existentially quanti f ied until operator, i.e. formulae of the form E(φ χUγ φ′),
which shows how recursive operators are handled.

The above two schemas illustrate how the on-the-fly approach deals with the com-
positional structure of SocL formulae and with the on-demand generation of the model
in order to minimize the number of subformulae that need to be evaluated. The shown
schemas are actually simplified because they do not show neither the data-collection



www.manaraa.com

404 S. Gnesi and F. Mazzanti

Evaluate(E 1 U 2, StartState, CurrentState) is
if we have already done this computation and its definitive result is available,

i.e. <E 1 U 2, StartState, CurrentState> Result
has already been computed then

return the already known Result
end
if we have already started this computation which is still in progress

         i.e. <E 1 U 2, StartState, CurrentState> InProgress then
return False      -- according to the min fixpoint semantics of until

end
set <E 1 U 2, StartState, CurrentState> InProgress
if there are no outgoing transitions from CurrentState then

set <E 1 U 2, StartState, CurrentState> False
return False

end
Result := Evaluate( 1, CurrentState, CurrentState)
if Result := False then

set <E 1 U 2, StartState, CurrentState> False

return False
end

  -- check for possible structural induction
Result := False
foreach Transition in OutgoingTransitions(CurrentState) do

if Satisfies(Transition.Label, ) then
TargetState := Transition.TargetState

:= TransitionBindings(Transition.Label, )
foreach substitution in do

' := ApplySubstitution( 2, )
Result := Evaluate( ', TargetState, TargetState)
if Result = True then

set <E 1 U 2, StartState, CurrentState> True

return True
end

end loop
end

end loop
  -- check for possible continuation of recursion

foreach Transition in OutgoingTransitions(CurrentState) do
if Satisfies(Transition.Label, ) then

TargetState := Transition.TargetState
Result := Evaluate(E 1 U 2, TargetState, TargetState)
if Result = True then

set <E 1 U 2, StartState, CurrentState> True
return True

end
end

end loop
set <E 1 U 2, StartState, CurrentState> False

return False
end Evaluate;

Fig. 6. Evaluation process for E(φ χUγ φ′) formula



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 405

Evaluate(AX , StartState, CurrentState, Depth) is
if Depth = MaxDepth then

return Aborted
end
if we have already done this computation and its result is available,

i.e. <AX , StartState, CurrentState> Result
has already been computed then

return the already known Result
end
if there are no outgoing transitions from CurrentState then

set <AX , StartState, CurrentState> False
return False

end
Result := True
foreach Transition in OutgoingTransitions(CurrentState) do

if Satisfies(Transition.Label, ) then
TargetState := Transition.TargetState

:= TransitionBindings(Transition.Label, )
TmpResult := False
foreach substitution in do

' := ApplySubstitution( , )
TmpResult := Evaluate( ', TargetState, TargetState, Depth+1)
add_subcomputation

<AX , StartState, CurrentState>
(Transition.Label,< ', TargetState, TargetState>)

if TmpResult = True then
exit

end
if TmpResult = Aborted then

Result := Aborted
continue the analysis in case we can still prove a failure

end
end loop
if TmpResult = False then

set_unique_subcomputation
<AX , StartState, CurrentState>

(Transition.Label,< ', TargetState, TargetState>)
Result := False
exit

end
else

set_unique_subcomputation
 <AX , StartState, CurrentState>

(Transition.Label,<>)
Result := False
exit

end
end loop
set <AX , StartState, CurrentState> Result
return Result

end Evaluate;

Fig. 7. Complete evaluation process for AXγφ formula



www.manaraa.com

406 S. Gnesi and F. Mazzanti

activities needed to produce at the end of the evaluation process a clear and detailed ex-
planation of the returned results (e.g. a counterexample), nor the additional complexity
introduced by the bounded approach.

In Figure 7 we finally present a more detailed schema of the algorithm for the evalu-
ation of the formula AXγφ that shows also the activities we have omitted in the previous
schemas. With respect to the simplified version shown in Figure 5, an Aborted result
can be returned if the current maximal depth for the evaluation is reached. If such a
value is returned by the top level evaluation procedure, then all aborted computations
are discarded and evaluation is called again with an increased maximal depth (while
preserving all already successfully completed subcomputations). In case a subcompu-
tation returns an Aborted value, such value is not immediately returned as definitive
but the iterations on the possible subevolutions still continue to find a negative result.
Finally, when an outgoing transition that does not satisfy the required subformula is
found, that negative subcomputation replaces all partial subcomputations recorded up
to that point. The explanation of the final result, in fact, does no longer depend on the
subcomputations performed in the previous steps.

5 Conclusions

The design and development of our framework has greatly taken advantage from the
early experiences gained through its application to the Sensoria case studies. The first of
these applications has been the use of UMC for the analysis of communication protocols
for service-oriented applications ([19,21]). Subsequently the Sensoria automotive case
study has been the stimulus for the first experimentations with the SocL logics and the
COWS language [6]. The same case study has also been specified in terms of UML
statecharts and verified with UMC [20], thus experimenting with the Sensoria UML
profile for SOA [12,15]. Finally both COWS/CMC and UML/UMC have been applied
for the formalization and verification of the Sensoria “credit portal” case study [11].

The experience gained so far by the application of our framework to the Sensoria
case studies has allowed us to fully confirm the soundness of our approach, to a level
even beyond the initial expectations and we really believe that abstract L2TS as se-
mantic models, state and event based parametric logics, and on the fly model checking
constitutes an extremely flexible though powerful approach to system verification.

References

1. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for CTL*. In:
LICS, pp. 388–397. IEEE Computer Society, Los Alamitos (1995)

2. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg
(1999)

3. Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching-
time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71.
Springer, Heidelberg (1982)

4. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition systems. In:
Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)



www.manaraa.com

An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems 407

5. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM 42(2), 458–
487 (1995)

6. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking
approach for verifying COWS specifications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE
2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)

7. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state machines.
In: Proc. of SERA 2004, pp. 331–338. ACIS (2004)

8. Gnesi, S., Mazzanti, F.: A model checking verification environment for UML statecharts. In:
Proc. of XLIII Annual Italian Conference AICA. AICA (2005)

9. OMG (Object Management Group). Unified Modeling Language, http://www.uml.org/
10. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.

ACM 32(1), 137–161 (1985)
11. Koch, N., et al.: Relations among case studies and theme 3 results. SENSORIA Deliverable

D8.7 (section: credit portal) (2008)
12. Koch, N., Mayer, P., Heckel, R., Gönczy, L., Montangero, C.: UML for Service-Oriented

Systems, Sensoria deliverable D1.4a (2007)
13. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services (full

version). Technical report, Dipartimento di Sistemi e Informatica, Univ. Firenze (2007),
http://rap.dsi.unifi.it/cows

14. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. Technical
Report, DSI, Università di Firenze (2008),
http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf ;
An extended abstract appeared in De Nicola, R. (ed.): ESOP 2007. LNCS, vol. 4421, pp.
33–47. Springer, Heidelberg (2007)

15. Mayer, P., Schroeder, A., Koch, N.: Mdd4soa: Model-driven service orchestration. In: EDOC,
pp. 203–212. IEEE Computer Society, Los Alamitos (2008)

16. Mazzanti, F.: UMC User Guide v3.3. Technical report, Technical Report 2006-TR-33, Istituto
di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR (2006),
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf

17. Mazzanti, F.: Designing uml models with umc. Technical report, Technical Report 2009-TR-
43, Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR (2009)

18. Meolic, R., Kapus, T., Brezocnik, Z.: ACTLW - an action-based computation tree logic with
unless operator. Elsevier Information Sciences 178(6), 1542–1557 (2008)

19. ter Beek, M., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-checking
approach for the analysis of communication protocols for service-oriented applications. In:
Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 133–148. Springer, Heidelberg
(2008)

20. ter Beek, M., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an automotive scenario
in service-oriented computing. In: Proc. of ICSE 2008, pp. 613–622. ACM Press, New York
(2008)

21. ter Beek, M., Gnesi, S., Mazzanti, F., Moiso, C.: Formal modelling and verification of an
asynchronous extension of soap. In: Proc. of ECOWS 2006, pp. 287–296. IEEE Computer
Society, Los Alamitos (2006)

22. ter Beek, M., Mazzanti, F., Gnesi, S.: Cmc-umc: A framework for the verification of ab-
stract service-oriented properties. In: Proc. of the 24th Annual ACM Symposium on Applied
Computing (SAC 2009), pp. 2111–2117. ACM Press, New York (2009)

http://www.uml.org/
http://rap.dsi.unifi.it/cows
http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf


www.manaraa.com

Tools and Verification�

Massimo Bartoletti1, Lúıs Caires2, Ivan Lanese3, Franco Mazzanti4,
Davide Sangiorgi3, Hugo Torres Vieira2, and Roberto Zunino5

1 Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Italy
bart@unica.it

2 CITI and Dep. de Informatica, FCT, Universidade Nova de Lisboa, Portugal
luis.caires@di.fct.unl.pt, htv@fct.unl.pt

3 Focus Team, Università di Bologna/INRIA, Italy
{lanese,davide.sangiorgi}@cs.unibo.it

4 ISTI-CNR, Pisa, Italy
franco.mazzanti@isti.cnr.it

5 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento, Italy
zunino@disi.unitn.it

Abstract. This chapter presents different tools that have been devel-
oped inside the Sensoria project. Sensoria studied qualitative analysis
techniques for verifying properties of service implementations with re-
spect to their formal specifications. The tools presented in this chapter
have been developed to carry out the analysis in an automated, or semi-
automated, way.

We present four different tools, all developed during the Sensoria

project, exploiting new techniques and calculi from the Sensoria project
itself.

1 Introduction

This chapter presents a set of tools that have been developed inside the Sensoria

project for analysis and verification of service-oriented systems. The tools allow
the application of novel analysis techniques for service-oriented systems that
have been studied inside the project. Those tools are (partly) based on calculi
and models described in Chapter 2-1. Also, they have been validated by applying
them to the Sensoria case studies (described in Chapter 0-3), as illustrated in
Chapter 7-4 for the COWS Model Checker (CMC). This experimentation has
provided useful feedback for improving the tools themselves.

We describe four different tools in detail, all developed within the Sensoria

project and based on new techniques and calculi introduced in the project itself.
While referring to the next sections and to the publications in the bibliography
for a more detailed description of the tools and of the underlying theory, we give
here a short outline of each of them.

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 408–427, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Tools and Verification 409

CMC and UMC model checkers: CMC (COWS Model Checker) and UMC
(UML Model Checker) are two prototypical instantiations of a common
logical verification framework for the analysis of functional properties of
service-oriented systems. Both tools have the goal of model-checking prop-
erties specified in Socl (the Service Oriented Computing Logic), and they
differ just for the underlying computational models, which are built out
from COWS (see Chapter 2-1) specifications in the case of CMC, and UML
statecharts in the case of UMC. In both cases, the specifications are mapped
onto Doubly Labeled Transition Systems, in which transitions are labeled by
sets of observable events. The on-the-fly model checking technique is used to
avoid statespace explosion. In this chapter we describe the tools themselves,
while the underlying logic and the algorithms exploited by them have been
described in Chapter 4-2.

ChorSLMC: ChorSLMC (Choreography Spatial Logic Model Checker) is a
verification tool for service-based systems implemented as an extension to
SLMC, a framework for model checking distributed systems against proper-
ties expressible in dynamic-spatial logic. Descriptions of participants may be
specified either in the Conversation Calculus [29] (see also Chapter 2-1), a
core calculus for service-oriented computing developed within the Sensoria

project, or in a fragment of WS-BPEL [1], while choreographic descriptions
may be specified in an abstract version of WS-CDL [33]. The tool may also
be used on service-based systems to check other interesting properties of
typical distributed systems, using the core dynamic-spatial logic available in
SLMC.

LocUsT: the LocUsT tool is a model checker for usages, abstract descriptions of
the behavior of services. Usages are expressed in a simple process calculus.
They over-approximate all the possible execution traces of a service, focusing
on resource creation and access. Usage policies are then used to express
constraints on the use of resources, by identifying the forbidden patterns.
A policy is represented through a finite state automaton parametrized over
resources. LocUsT takes as input a usage and a policy, and decides whether
a trace of the usage that violates some instantiation of the policy exists.

The CMC and UMC tools are strongly related, just differing on the format of
the description of the model of the system to be analyzed, and concentrate on
verifying behavioral properties expressed in Socl logic. ChorSLMC also concen-
trates on behavioral properties, but they are verified by checking conformance
to a choreographic description. LocUsT instead tackles a different problem, con-
centrating more on the security aspects, and allowing to check that resources
are used according to a specified policy.

2 CMC-UMC Verification of Service-Oriented Models

CMC (COWS Model Checker) and UMC (UML Model Checker) [23, 27] are
two prototypical instantiations of a common logical verification framework for
the verification of functional properties of service-oriented systems. They differ



www.manaraa.com

410 M. Bartoletti et al.

just for the underlying computational models which are built out from COWS
[20, 21] specifications in the case of CMC, and out from UML [28] statecharts
in the case of UMC. For verification of service-oriented models we do not intend
just the final “validation” step of a completed architecture design, but rather a
formal support during all the steps of the incremental design phase (hence when
running designs are still likely to be incomplete and with high probability to
contain mistakes). Indeed CMC/UMC have been developed having in mind the
needs of a system designer which intends to take advantage of formal approaches
to achieve an early validation of the system requirements and an early detection
of design errors. From this point of view the design of CMC/UMC has been
driven by the desire to achieve the following goals (or, at least, to experiment in
the following directions):

– The support of a good user experience (easiness of use) in the computer-aided
application of formal methods.

– The support of abstraction mechanisms allowing to observe the system at
an high level of abstraction, hiding all the irrelevant and unnecessary com-
putational details.

– The possibility to explore step by step the possible system evolutions and the
possibility to generate a “summary” of system behavior in terms of minimal
abstract traces.

– The possibility to investigate detailed and complex system properties using a
parametric branching time temporal logic supported by an on-the-fly model
checker.

– The possibility of obtaining an understandable explanation of the model-
checking results.

In the following we will briefly present the achieved results with respect to the
above five points.

User Experience. Several kinds of user interfaces have been experimented in
the attempt to make possible the access to verification facilities also by non
technical people. This without losing the possibility to tune and control the
verification environment in a more advanced way. In particular:

– CMC/UMC are accessible as web applications to allow their experimentation
and use without any kind of local installation, and exploiting the friendliness
and flexibility of hypertextual documents to support the interactions with
the user.

– CMC/UMC are usable with a simple, platform independent, java-based,
graphical interface to achieve offline model exploration and verification.

– CMC/UMC are available as binary, platform-specific, command line oriented
applications (for Mac, Windows, Linux and Sun systems) to exploit the
simplest, most efficient, and finest level of interaction and control of the
system verification and exploration.

– Models can be edited as simple textual documents.



www.manaraa.com

Tools and Verification 411

– UML Statechart models can also be edited through a dedicated graphical
interface.

– UML Statechart models can be extracted from standard UML XMI docu-
ments.

Abstraction Mechanisms. In our context, services are considered as entities
which have some kind of abstract internal state and which are capable of support-
ing abstract interactions with their clients, like for example accepting requests,
delivering corresponding responses and, on-demand, canceling requests. More-
over, concrete operational models, with a specific concrete operational semantics,
are used to describe the details of the system states and their possible evolution
steps. This means that an abstraction mechanism needs to be applied to the sys-
tem state description and to the system evolution information. This mechanism
allows to extract from the operational semantics of the specific computational
model the relevant aspects we want to observe. In our tools this abstraction step
is achieved via a list of pattern matching rules which allow to specify which
state properties and which transition events we want to observe. These rules are
presented as structured actions of the form “mainlabel(flag,flag,..)”. When this
abstraction step is performed, the semantic model of a service-oriented system
can be seen as a doubly labeled transitions system (L2TS), where both the states
and the edges are labeled with sets of the above described structured actions.
This abstract L2TS induced by the operational semantics of the system will con-
stitute the reference structure used by the logic as interpretation domain and
by the full-trace minimization algorithm to generate and display the abstract
minimized views of the system.

CMC is the instantiation of our verification framework with respect to the
COWS process calculus. COWS ha been explicitly defined for the specifica-
tion and orchestration of services and combines in an original way constructs
and well known features like asynchronous communication, polyadic synchro-
nization, pattern matching, protection, delimited receiving and killing activities.
The abstraction rules of CMC allow to “intercept” the communication actions
occurring between two COWS processes and present them as request/response
events in the context of some client-server interaction. The corresponding ab-
stract labels will therefore appear on the edges of the L2TS as they represent the
abstract events occurred during an evolution step. The CMC abstraction rules
moreover allow to observe the willingness of a COWS term to participate to a
communication synchronization (e.g., its willingness to perform the input side of
the synchronization) and present it as a state property reflecting the willingness
of a service to accept operation requests. In this case this abstract property will
appear as an abstract label associated to some states of the L2TS.

UMC is instead the instantiation of our verification framework with respect to
UML statecharts. These have a standard presentation and semantics as defined
by the OMG (Object Management Group). The communication events which
can be observed in this case are based on the notion of message passing. Indeed,
we can distinguish the event of sending an operation request (on the client side)
from the event of accepting that request (on the server side). Moreover UML



www.manaraa.com

412 M. Bartoletti et al.

Fig. 1. UMC manual model exploration page

statecharts are built over the concept of local attribute of objects, and during
the execution of a system transition (beyond multiple communication actions)
several updates of the local object attributes can be executed. The abstraction
rules of UMC allow to observe all these events (acceptance of a message, sending
of a message, update of a local attribute) as abstract events representing relevant
aspects of the service-oriented behavior of the system, and represent them as
abstract labels associated to the L2TS edges. Other abstraction rules of UMC
allow instead to observe the specific value of selected object attributes, and
whether or not an object in a specific state, and present this information as
abstract state predicates labeling the states of the L2TS.

Step by Step Exploration. The first and simpler way to explore a CMC/UMC
model is to manually navigate through its L2TS structure, observing at each
step the set of possible immediate evolutions, the set of abstract events occurring
during these evolutions, the set of abstract properties holding in the current state
and, if desired, also all the ground details of the underlying computational model
with respect to the current state structure and evolutions. The web application
interface (shown in Fig. 1), thanks to the use of tooltips, colors and hyperlinks,
makes this exploration experience more immediate.

Abstract Minimized Traces. The possibility of selecting a small set of ab-
stract events of interest and, starting from them, compute and observe the min-
imized full-trace abstract view of the system is an extremely powerful way of



www.manaraa.com

Tools and Verification 413

checking whether the system behavior matches the intended requirements. This
works even in the case in which the requirements themselves are not fully clear
or well formalized. Let us consider, for example, the automotive case study de-
scribed in [25]. This is formalized as a collection of UMC statecharts, which is
a model constituted by several hundreds of states. Suppose we are interested in
observing only the “bank” related events and the “garage” related events. Us-
ing the appropriate abstractions and using UMC to build the minimized model
with respect to them we obtain the L2TS shown in Fig. 2, which summarizes
all the possible system traces with respect to the observed set of events. It is
extremely easy to become confident of the correctness of the model just looking
at the L2TS, without being forced to identify a priori a complete set of require-
ments and formalize them in terms of logic formulas for being separately model
checked. Unfortunately the abstract minimization approach to system verifica-
tion has also some drawbacks:

– It is computationally expensive: for very large models it might be too much
resource consuming to compute its abstract, minimal full-trace view.

– If the L2TS is not finite, it is not even a matter of available computing
resources. Building the abstraction is not possible.

– The abstract view completely lost the connection with the original “con-
crete” computational model. If the system behavior is not the expected one,
no immediate way is available to reconstruct unexpected computations in
the concrete model.

– If the resulting chart is rather complex, relying on just the intuition to assess
its correctness is unreliable and lacks of concrete formal evidence.

Socl Model Checking. To overcome the drawbacks of the previous approach,
as well as to directly formalize and check specific functional / safety / liveness
requirements of a system, a verification technique based on on-the-fly, bounded
model checking of Socl formulas is considered. This approach also permits to
reduce the average verification time and, at the same time, performing some
verification also in the case of non finite-state systems. Socl [15] is a service-
oriented temporal logic derived from UCTL [16, 17, 24] of which we recall here
the most important characteristics:

– It is a branching time logic, built over the classical intuitive “eventually” (F),
“always” (G), “until” (U), “next” (X) temporal operators. The evaluation
of this logic is known [7] to be achievable with a computational complexity
which is linear with respect to the size of the formula and the size of the
model.

– It is an event and state based logic. Being its interpretation domain our
abstract state/event based L2TS structures, Socl allows to directly express
state predicates to be evaluated over the abstract labels associated to the
states of the L2TS, and action expressions to be evaluated over the abstract
labels associated to the edges of the L2TS.



www.manaraa.com

414 M. Bartoletti et al.

1

{request(bankcharge,car1)}

2

{fail(bankcharge,car1)}

{response(bankcharge,car1)}

7

#final

3

{revoke(bankcharge,car1)}

{request(garage,car1)}

4

{fail(garage,car1)}

{response(garage,car1)}

6

{revoke(bankcharge,car1)}

5          #final

{revoke(bankcharge,car1)} {revoke(garage,car1)}

8

{revoke(garage,car1)}

Fig. 2. An abstract view of the automotive case study

– It is a parametric temporal logic, in which the values of the arguments of
an abstract event occurring during a transition can be used to dynamically
instantiate a parametric subformula to be evaluated in the target state of
the transition itself.

Socl is supported in CMC/UMC by an on-the-fly model checking algorithm
which generates the model statespace on demand according to the flow of the
evaluation. The UCTL formula is evaluated adopting a top-down traversal of
the structure of the formula itself minimizing the need of the model statespace
generation (which is explored in a depth-first way); a bounded [8] model checking
approach is also used to try to produce an evaluation result also in the case of
infinite state models.

The Socl verification engine is exactly the same in both CMC and UMC
since it is based on the abstract L2TS computed from the models, and not on
the specific concrete computational models defined by input model specification
languages. In the following we show some examples of Socl formulas, just to give
an intuition of its structure, referring to [15] for the details of its definition and
for its formal presentation. These examples are written with respect to the same
abstraction rules used to generate the abstract minimized traces shown in Fig.
2. With respect to the above scenario we can check, for example, that: “It is
always true (AG) that an unsuccessful response from the garage to a client is al-
ways eventually (AF) followed by a revoke operation to the bank, on behalf of the



www.manaraa.com

Tools and Verification 415

same client”. This property can be formalized in Socl (following the CMC/UMC
syntax) as:

AG [fail(garage, $client)] AF{revoke(bankcharge,%client)} true.

Another general property that we can check with respect to the same scenario is
that: “It is always true (AG) that a request for an operation is always followed
(AF) either by a successful response to that operation or by a failure notification”.
In this case the property can be formalized as:

AG [request($operation,$client)]

AF {response(%operation,%client)
or fail (%operation,%client)}.

Proofs and Counterexamples. It is well known that providing a counterex-
ample for a given temporal logic formula is quite easy in the case of linear time
logics and quite complex in the case of branching time logics. The problems to be
solved for the generation of useful proofs/counterexamples are essentially three:

– The proof/counterexample is not (in general) based on a single execution
path of the system, but may be based on a subgraph of the L2TS modeling
the system.

– Not all the L2TS states needed by the proof/counterexample are in general
“useful” from the point of view of the user.

– The information on the set of L2TS states needed by the proof/counter-
example is sometimes not sufficient to produce usable feedback to the user.
We might need to provide feedback also on which subformula was being
evaluated when the L2TS states have been explored.

Let us consider, for example, a simple formula of the kind: “(AG predicate1) or
(AG predicate2)”. If this formula does not hold, its counterexample has the form
of a pair of paths, one leading to a state in which predicate1 does not hold, and
another leading to a state in which predicate2 does not hold.

Let us consider, moreover, the formula: “EF predicate”. If this formula does
not hold, its counterexample would coincide with the full system statespace,
however it would be completely pointless to provide the user with an exhaustive
list of all the states for which the predicate does not hold. On the contrary, if the
formula holds the user might be interested in the sequence of steps which would
prove it.

Let us consider, as third example, the formula “EF AG predicate”. If the
formula holds for a certain system, the user might be interested in the proof for
the first part of the formula, showing an execution path which, starting from
the initial state would lead to an intermediate state for which the subformula
“AG predicate” holds; once identified that intermediate state all the other states
reachable from it belonging to the proof of the subformula “AG predicate” would
probably add only irrelevant noise and complexity to the original information.
The “useful” part of the proof, would be constituted by a fragment of the full
proof. CMC/UMC tries to convey to the user what is supposed to be the “useful”
part of a proof or counterexample, but only more experience might consolidate
the identification of the “best” reasonable behavior.



www.manaraa.com

416 M. Bartoletti et al.

Application to the Case Studies. The design and development of the pro-
totypes has greatly taken advantage from the early experiences gained through
their application to the Sensoria case studies. The first of these applications
has been the use of UMC for the analysis of communication protocols for service-
oriented applications [24, 26]. Subsequently the Sensoria automotive case study
has been the stimulus for the first experimentations with the Socl logic and the
COWS language [15]. The same case study has also been specified in terms of
UML statecharts and verified with UMC [25], thus experimenting with the Sen-

soria UML profile for SOA [19, 22]. Finally both COWS/CMC and UML/UMC
have been applied for the formalization and verification of the Sensoria Credit
Portal case study (see Chapter 0-3).

3 Model-Checking Service Conversations with
ChorSLMC

A service-based system is a decentralized coordinated distributed system, where
independent partners interact by message passing. It is then useful to consider
the extension of automated verification techniques, based on model-checking,
to service-oriented models, able to certify the general “standard properties” of
concurrent distributed systems, such as reachability, termination, liveness, race-
freedom, just to refer a few. We may also be interested in domain specific in-
variants. This class of properties is easily expressible in some kind of temporal
logic. Adding to these, it is well known that to describe interactions among part-
ners in a service relationship two viewpoints are considered particularly useful:
orchestration and choreography.

“Orchestration” focuses on the coordination of several partners from the local
viewpoint of a single participant, for the purpose of providing a new functionality
or service to the external world, “choreography” describes the global behavior of
a system that emerges from the interaction of several independent participants.
An orchestration can be seen as the description of a workflow process, with
its own control flow graph, while a choreography, just like a message sequence
chart, describes the message exchanges between a group of partners involved
in a complex transaction. Orchestration specification languages are program-
ming languages, with a definite operational semantics (cf. WS-BPEL [1] and
various service-oriented calculi described in Chapter 2-1), while choreography
languages (cf. WS-CDL [33] and the calculus of [13]) define global behaviors of
composite systems “without a single point of control”, and are not intended to
be “executable”. Therefore, in addition to common behavioral-temporal prop-
erties, an important analysis problem in service-oriented computing is to check
conformance of local descriptions (orchestrations) with respect to choreographies
(cf. [9, 14]). Specifying (and checking) conformance of localized process interac-
tions against choreographies requires a specification language able to talk about
the internal spatial structure of a concurrent system, and its dynamic evolution.
Such expressiveness falls out of the scope of extensional behavioral logics such
as Hennessy-Milner logic and variants (and supporting tools).



www.manaraa.com

Tools and Verification 417

We have developed a fairly simple, yet powerful, technique, building on
dynamic-spatial logics and model-checking [10, 11], particularly appropriate for
this class of analysis problems. We have also implemented a supporting tool
ChorSLMC, which is an extension of SLMC, a dynamic-spatial logic model-
checker. The tool may be used to check not only choreography conformance, but
many other key properties of service-oriented systems, such as race-freedom and
deadlock absence, and system invariants, that may be easily expressed in the
underlying logical framework.

Approach. Our approach to the choreographic analysis problem relies on lan-
guage translations, and on the reuse of previously developed model-checking
techniques for spatial logic and related tools. More concretely, we have developed
provably correct encodings, allowing local descriptions of partner sites, expressed
in a service-oriented calculus, to be adequately translated into a lower level
analysis language (a dialect of the π-calculus), and global descriptions (chore-
ographies), to be adequately translated into dynamic-spatial logic formulas. The
correctness of our translation ensures that a system System, expressed in the
core Conversation Calculus [29] (described in Chapter 2-1 and referred below by
CC) or, alternatively, in a simple dialect of WS-BPEL, conforms to a choreogra-
phy Choreography , expressed in a WS-CDL dialect, if and only if its π-calculus
translation satisfies the corresponding dynamic-spatial logic formula.

[[System ]] |= [[Choreography ]]

The correctness of the translation between the source language (either CC or
WS-BPEL) is obtained by observing that for model-checking purposes, we don’t
really need full abstraction but just some suitable operational correspondence.
The encoding of choreographies in the logic is supported by the structural
observational power of spatial logics, that allow observation of internal mes-
sage exchanges, unobservable by purely behavioral logics such as those sup-
ported by other existing model checking tools. Choreography conformance of
service-oriented systems is then reduced to a model-checking problem that may
be easily handled by existing tools, namely the Spatial Logic Model Checker
(SLMC) [31, 32] (started to be developed in Global Computing 1 Project Pro-
fundis, and extended during Global Computing 2 Project Sensoria). The struc-
tural observation power of spatial logics turns out to be essential in this applica-
tion to choreographic verification, since, e.g., the message exchanges mentioned
in a choreographic description are not observable by traditional process logics
invariant under behavioral equivalences. Thus, general process logics and tools
that cannot observe internal message exchanges in a system would not be appro-
priate for the service verification problem we consider here. Both local descrip-
tions of services, expressed in suitable orchestration languages, and the global
choreographic descriptions, expressed in a WS-CDL dialect, are translated by
ChorSLMC into π-calculus / dynamic-spatial logic specifications, respectively,
which are directly fed to the SLMC verification engine.



www.manaraa.com

418 M. Bartoletti et al.

Input Specification Languages. The ChorSLMC tool supports two modeling
languages for defining the behavior of partners in a service collaboration: a core
fragment of the Conversation Calculus, obtained by removing exception handling
primitives, and a fragment of WS-BPEL. The specification syntax is depicted
below, and includes the basic constructors presented in Chapter 2-1. Both the
CC model and the WS-BPEL model are detailed in [30].

α ::= LABEL!(õ) (send here)
| LABEL?(̃i) (receive here)
| LABEL̂!(õ) (send up)
| LABEL̂?(̃i) (receive up)

P ::= end (inaction)
| context n {P} (site)
| α.P (action)
| switch {α1.P1; . . . ;αk.Pk} (select)
| def LABEL ⇒ P (service definition)
| new n.LABEL ⇐ P (service instantiation)
| join n.LABEL ⇐ P (conversation join)
| P1 | P2 (parallel)
| Id (process identifier)
| if (bool expr) then P1 else P2 (conditional)

To describe choreographies, a fairly simplified version of the WS-CDL language is
also considered, defined as an extension of the dynamic-spatial logic available in
SLMC with specialized choreography operators as shown below. In such a way, it
is possible to freely mix choreography operators with propositional and first order
name quantification, spatial operators and fixpoint operators. The choreography
fragment is close to the languages of global types introduced by [13, 18], and is
also processed directly by the ChorSLMC tool.

A ::= end (no action)
| exchange(n,LABEL, A) (may interaction in conversation n)
| exchanges(n,LABEL, arg, A) (may interaction in conversation n)
| aexchange(n,LABEL, A) (all interaction in conversation n)
| aexchanges(n,LABEL, arg, A) (all interaction in conversation n)
| parallel(A′, A′′) (parallel activities)
| choice(A′, A′′) (choice)
| F (spatial logic formulae)

The language contains constructs to express parallel / choice flow and primitives
to express message exchanges: exchange(n,LABEL, A) asserts that there is a
message interaction on label LABEL between two partners in conversation n
and A specifies the behavior of the continuation; exchanges(n,LABEL, arg, A)
specifies an extra argument arg which captures the conversation name exchanged
in the communication; aexchange(n,LABEL, A) asserts that after all interactions
on label LABEL in conversation n the continuation satisfies behavior A. We



www.manaraa.com

Tools and Verification 419

Client

RateCalc

userData

rateValue

Bank FinancePortal Clerk Manager

CreditRequest

login

request
login

show

deny

ReviewApp

approved
requestEval

branch{
denied

pass

login

AuthCredit

requestApp
show

accept

reject
approved

denied

branch{

Fig. 3. Credit request message sequence chart

refer to [30] for a detailed explanation of our orchestration and choreography
description language semantics, and the formal specification of their translation
into the π-calculus and logic understood by the SLMC framework.

Simple Examples. We now illustrate the usage of the specification languages
and of our tool. Consider the credit request scenario from the Sensoria Fi-
nancial Case Study described in Chapter 0-3, whose choreographic specification
may be graphically depicted by the message sequence chart in Fig. 3. We specify
the part of the choreography related to the interaction between the client, the
finance portal and the bank as follows, using the basic choreographic language
for CC systems (actually the input syntax for ChorSLMC).

defprop clientInteraction =

maxfix Loop.

hidden clientConv.

exchanges(financePortal, creditRequest, clientConv,

exchange(clientConv, login,

exchange(clientConv, request,

exchanges(bank, rateCalc, clientConv,

exchange(clientConv, userData,

exchange(clientConv, rateValue,

choice(

exchange(clientConv, approved, exchange(client,approved,Loop)),

may_tau(clerkInteraction(clientConv,Loop)))))))))));

Notice that the exchange specification may be used not only to specify “regu-
lar” message exchanges, but also conversation initiation (creditRequest) and



www.manaraa.com

420 M. Bartoletti et al.

conversation join (rateCalc) messages (see [12]). The behavior of each partner
/ role is then specified using the appropriate modeling language. We show the
code for the creditRequest service definition:

defproc cc FinancePortalSpec1 =

context financePortal {

def creditRequest => (

login?(uid).request?(data).

join bank.rateCalc <= (

userData!(data).rateValue?(rate).

if (rate=aaa) then approved!().end

else this(clientChat).

requestEval^!(clientChat,uid,data).end))};

We specify the whole system as the composition of the roles of the finance
portal, bank, client, clerk and manager. Also we specify that clientInteraction is
the entry point of the global choreography.

defproc cc System = FinancePortalSpec1 | BankSpec | BankSpec2

| ClientSpec | FinancePortalSpec2 | ClerkSpec

| FinancePortalSpec3 | ManagerSpec;

defprop chor = clientInteraction;

After all definitions have been loaded into the ChorSLMC tool we may verify
that the CC credit request system conforms to the prescribed choreography.

check System(up,here) |= chor;

Processing...

* Process System(up,here) satisfies the formula chor *

Notice that the tool may be used to automatically verify (for finite state mod-
els) not only choreographic conformance of composite service systems, but also
common safety and liveness properties, such as invariant satisfaction, race and
deadlock absence. For example:

check System(up,here) |= eventually(exchange(bank,rateCalc,true));

Processing...

* Process System(up,here) satisfies the formula

eventually (exchange(bank,rateCalc,true)) *

To conclude, the ChorSLMC tool provides a very flexible and powerful instru-
ment to analyze general structural safety and liveness properties of service-
oriented systems, expressed in languages which are familiar to software engineers,
while building in solid process calculi and specification logic based foundations.

4 The LocUsT Tool

A fundamental concern of service-oriented applications is to ensure that re-
sources are used correctly. Devising expressive, flexible and efficient mechanisms



www.manaraa.com

Tools and Verification 421

to control resource usages is therefore a major issue in the design and imple-
mentation of languages for services. In [6], a comprehensive framework has been
proposed for safely protecting code with usage policies, within a linguistic setting.
Resource usage control is made feasible by suitably extending and integrating
techniques from type theory and model-checking.

The LocUsT tool is the verification core of our framework. It takes as input a
usage policy and a program abstraction (called a usage), and statically checks
whether the abstraction complies with the policy. More precisely, LocUsT decides
in polynomial time whether a trace of the given usage exists that violates the
policy [5].

Usage Policies. Usage policies define safety properties on sequences of re-
source accesses and creations. We will define below our usage policies, and the
compliance of a trace with a policy. First, we introduce some basic notions.

Resources are denoted with r, r′, . . . ∈ Res, and they can be accessed through
actions α, α′, . . . ∈ Act. An event α(r1, . . . , rk) ∈ Ev models the action α (with
arity |α| = k) being fired on the target resources r1, . . . , rk. The special ac-
tion new represents the creation of a resource. Traces η, η′, . . . ∈ Ev∗ are finite
sequences of events.

Usage policies are an extension of finite state automata. Their edges have
the form α(ρ), where ρ ∈ (Res ∪ Var)|α|. We use final states to represent policy
violations: a trace leading to a final state suffices to produce a violation. Two
examples of usage policies are in Fig. 4.

Formally, a usage policy ϕ is a 5-tuple 〈S,Q, q0, F, E〉, where:

– S ⊆ Act × (Res ∪ Var)∗ is the input alphabet,
– Q is a finite set of states,
– q0 ∈ Q \ F is the start state,
– F ⊂ Q is the set of final “offending” states,
– E ⊆ Q× S ×Q is a finite set of edges, written q

α(ρ)−−−� q′

Each usage policy ϕ denotes a set of traces, i.e. the traces that obey ϕ. The
semantics of ϕ considers all the possible instantiations of its variables to actual
resources: a trace η respects ϕ when η leads no instantiations of ϕ (on the
resources in η) to an offending state.

Usage policies were first introduced in [3], where a block of code B could be
sandboxed by a policy ϕ, so to require that ϕ must hold through the execu-
tion of B. The definition of policies has since then been revised several times,
so to make them more expressive. In the original formulation, policies could
only inspect sequences of actions, neglecting resources. In [4] policies can be
parametrized over a single resource, and resources can be dynamically created; [5]
deals with the general case of an arbitrary number of parameters.

Examples. Consider a Web application that allows for editing documents, stor-
ing them on a remote site, and sharing them with other users. The editor is



www.manaraa.com

422 M. Bartoletti et al.

implemented as an applet run by a local browser. The user can tag any of her
documents as private. To avoid direct information flows, the policy requires that
private files cannot be sent to the server in plain text, yet they can be sent
encrypted. This policy is modeled by ϕIF(x) below. After having tagged the file
x as private (edge from q0 to q1), if x was to be sent to the server (edge from
q1 to q2), then the policy would be violated: the double circle around q2 marks
it as an offending state. Instead, if x is encrypted (edge from q1 to q3), then x
can be freely transmitted: indeed, the absence of paths from q3 to an offending
state indicates that once state q3 is reached, the policy will not be violated on
file x. A further policy is applied to our editor, to avoid information flow due to
covert channels. It requires that, after reading a private file, any other file must
be encrypted before it can be transmitted. This is modeled by ϕCC(x, y) below.
A violation occurs if after some private file x is read (path from q′0 to q′2), then
some other file y is sent (edge from q′2 to the offending state q′4).

send(x)

q2q3

q′
1

q′
4 q′

3q′
2

q′
0

private(x)

encrypt(y)send(y)

read(x)

q0 q1
private(x)

encrypt(x)

ϕIF(x) ϕCC(x, y)

Fig. 4. The information flow policy ϕIF(x) and the covert channels policy ϕCC(x, y)

Here is how the policies ϕIF(x) and ϕCC(x, y) are expressed in the LocUsT
syntax. The field tagged name defines the name of the policy. The remaining
fields describe the logic of the automaton. The tag states is for the set of states,
start is for the initial state, and final is for the list of the final (offending)
states. The tag trans preludes to the transition relation of the automaton.

name: phi_IF name: phi_CC

states: q0 q1 q2 q3 states: q0 q1 q2 q3 q4

start: q0 start: q0

final: q2 final: q4

trans: trans:

q0 -- private(x) --> q1 q0 -- private(x) --> q1

q1 -- encrypt(x) --> q3 q1 -- read(x) --> q2

q1 -- send(x) --> q2 q2 -- send(y) --> q4

q2 -- encrypt(y) --> q3

Usages. Usages are program abstractions, expressed in a simple process calcu-
lus. They over-approximate all the patterns of resource accesses and creations
of the service itself. Formally, usages have the following syntax:



www.manaraa.com

Tools and Verification 423

U, U′ ::= 0 empty
α(ρ) event (ρ ∈ Res|α|)
nu n.U resource creation
U . U’ sequence
U + U’ choice
ϕ[U] policy framing
mu h.U recursion
h recursion variable

The usage 0 represents a computation not affecting resources. The usage α(ρ) is
for a computation that executes the action α on the resources mentioned in ρ.
The usage nu n.U represents the creation of a resource n, which can then be used
in U with the requirement that the first action on n must be a new(n) event.
The operators . and + denote sequentialization and non-deterministic choice of
usages, respectively. The usage ϕ[U] represents the fact that the policy ϕ has
to be enforced on the usage U. The usage mu h.U stands for a recursion; the
recursion variable h may occur in U.

For instance, consider the following usage:

phi_IF[nu n. new(n).private(n).(send(n)+encrypt(n))]

This usage will be rejected by the LocUsT model-checker, because a send(n)

may occur in a trace after a private(n), so violating the policy ϕIF.
The following usage will instead pass the model-checking, because the action

send is not fired on a private document.

phi_IF[nu n. nu f. new(n).new(f).private(n).read(n).send(f)]

The following usage is rejected by the model-checker, because it violates the
policy ϕCC. Note in fact that a file f is sent unencrypted after the private file n

has been read.

phi_CC[nu n. nu f. new(n).new(f).private(n).read(n).send(f)]

The following trace is detected to attempt a violation of the policy ϕCC.

nu n. new(n).private(n).nu f. new(f).

(mu h. phi_CC[ send(f) ] + read(n) . h)

After having read the private file n an arbitrary number of times, it may acti-
vate the policy ϕCC , within which sending the unencrypted file f is no longer
permitted.

Finally, the following usage passes the model-checking, since the file f can
only be sent after it has been encrypted:

nu n. new(n).private(n).nu f. new(f).

(mu h. phi_CC[ send(f) . h ] + read(n) . encrypt(f) . h)

Service Call-by-Contract. So far, we have shown how LocUsT can verify
that an abstraction of the service behavior does not violate a given policy. This



www.manaraa.com

424 M. Bartoletti et al.

technique can serve as a foundation for a service composition framework, where
services are orchestrated according to their behavioral properties.

In our framework, each service publishes the abstraction of its behavior (i.e.
its usage) in a repository. Then, a client can ask for a service that respects
a given property (expressed as a usage policy). This is done by querying the
repository with that usage policy. Upon such request, the repository matches
the given policy against the usages of the registered services. This task can
be accomplished by the LocUsT tool. When LocUsT finds that the property
requested by the client matches the usage of a service, the name of that service
is forwarded to the client, which can then invoke the service using standard
mechanisms.

Summing up, our technique allows for defining a call-by-contract invocation
mechanism, which allows clients to abstract from the actual service names, and
just consider the properties these services have to offer.

The theory underlying our call-by-contract invocation mechanism was origi-
nally introduced in [2]. There, a type and effect system and a model-checker were
exploited to define a call-by-contract orchestrator. Call-by-contract is described
in detail in Chapter 2-4.

Verification Technique. We now briefly recap the verification technique de-
scribed in detail in [5], which is the one implemented in the LocUsT tool. Our
algorithm is composed of several phases, summarized below.

1. Regularization. First, the usage is regularized, i.e. transformed so that
in no trace a policy framing ϕ[−] is entered twice: for instance ϕ[U . ϕ[U′]]
becomes ϕ[U . U′]. Particular care must be exercised when handling recursive
usages such as mu h. ϕ[h + U].

2. Conversion into BPA. The usage is transformed in a process of Basic Pro-
cess Algebras. Dynamic creation caused by nu n is handled by instantiating
n with a finite number of static witnesses. Note that this transformation re-
stricts the resources to be considered by the model-checker from an infinite
to a finite set. Yet, this phase is correct, as shown in [5]. Some spurious traces
might however be introduced by this transformation, so invalidating com-
pleteness. For instance, in some trace of the BPA associated to nu n.U.(nu

m.U’) the same witness might be chosen for both n and m. This would cause
the model-checker to report a violation, so over-approximating the predicted
behavior. The “Weak Until” phase described below will allow for recovering
completeness.

3. Framing the Policy. The policy is duplicated in two layers, so that the
first layer handles the transitions made by the usage when outside the pol-
icy framing, and the second handles them when inside the policy framing.
Thanks to the regularization phase, this phase only needs to consider two
layers.

4. Instantiating the Policy. The usage policies are instantiated, by non-
deterministically assigning to each variable some known resource, including
the witnesses generated in the “Conversion into BPA” phase.



www.manaraa.com

Tools and Verification 425

5. Weak Until. Policies are adapted so to correctly handle traces where the
same witness # happens to be generated twice, i.e. those having a double
new(#) event. As noticed above, these traces do not correspond to any trace
of the original usage, so they must never trigger a policy violation. In [5] this
is proved enough to guarantee the completeness of model checking, while
preserving its correctness.

6. Model-Checking. Finally, the traces of the BPA generated at phase 2 are
matched against all the policies obtained after phase 5. Our model-checking
algorithm decides whether there exists a policy violated by some BPA trace.
Our model-checking procedure is complete, and it always terminates even
though the BPA may have an infinite number of traces, possibly of infinite
length (for instance, mu h. c + h.h + a.h.b).

The complexity of our model-checking algorithm is polynomial in the size of
the usage and on the size of the policy. There is an exponential factor in the
number of policy parameters, only. From a pragmatic point of view, we expect
the number of parameters to be very small in practice. This exponential factor
is mainly due to the policy instantiation step above, which is non-deterministic.

5 Conclusion

We have reported on four tools that have been developed within the Senso-

ria project, providing practical support for the application of Sensoria tech-
niques to service-oriented systems, including the Sensoria case studies. The
tools tackle, in particular, the problems of model checking service-oriented sys-
tems, including multiparty systems, of checking conformance of orchestrations
with respect to choreographic descriptions, and of ensuring that systems access
resources according to specified policies.

The tools are at different stages of development. The CMC/UMC framework
is more mature, and has been integrated in the Sensoria Development Envi-
ronment (see Chapter 6-5), thus allowing to use it in an integrated way inside
the software development process. The other tools are less mature, and their in-
tegration is part of our future plans. However all the tools are publicly available:
CMC and UMC at http://fmt.isti.cnr.it/cmc and http://fmt.isti.cnr.

it/umc respectively, ChorSLMC at http://ctp.di.fct.unl.pt/SLMC/ and Lo-
cUsT at http://www.di.unipi.it/~zunino/software/locust.

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
Technical report, OASIS (2006)

2. Bartoletti, M., Degano, P., Ferrari, G.L.: Enforcing secure service composition.
In: Proc. of CSFW-18 2005, pp. 211–223. IEEE Computer Society, Los Alamitos
(2005)

3. Bartoletti, M., Degano, P., Ferrari, G.L.: History-based access control with lo-
cal policies. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 316–332.
Springer, Heidelberg (2005)

http://fmt.isti.cnr.it/cmc
http://fmt.isti.cnr.it/umc
http://fmt.isti.cnr.it/umc
http://ctp.di.fct.unl.pt/SLMC/
http://www.di.unipi.it/~zunino/software/locust


www.manaraa.com

426 M. Bartoletti et al.

4. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Types and effects for resource
usage analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47.
Springer, Heidelberg (2007)

5. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Model checking usage policies.
In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 19–35.
Springer, Heidelberg (2009)

6. Bartoletti, M., Degano, P., Ferrari, G.L., Zunino, R.: Local policies for resource
usage analysis. ACM Trans. Program. Lang. Syst. 31(6) (2009)

7. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL*. In: Proc. of LICS 1995, pp. 388–397. IEEE Computer Society, Los Alamitos
(1995)

8. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bdds.
In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer,
Heidelberg (1999)

9. Bravetti, M., Zavattaro, G.: Towards a unifying theory for choreography confor-
mance and contract compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC 2007.
LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

10. Caires, L.: Behavioral and spatial observations in a logic for the pi-calculus. In:
Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–89. Springer, Hei-
delberg (2004)

11. Caires, L., Cardelli, L.: A Spatial Logic for Concurrency (Part I). Information and
Computation 186(2), 194–235 (2003)

12. Caires, L., Vieira, H.T.: Conversation types. In: Castagna, G. (ed.) ESOP 2009.
LNCS, vol. 5502, pp. 285–300. Springer, Heidelberg (2009)

13. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

14. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.:
A theoretical basis of communication–centred concurrent programming. Technical
report, W3C (2006)

15. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
model checking approach for verifying COWS specifications. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg
(2008)

16. Gnesi, S., Mazzanti, F.: On the fly model checking of communicating UML state
machines. In: Proc. of SERA 2004, pp. 331–338. ACIS (2004)

17. Gnesi, S., Mazzanti, F.: A model checking verification environment for UML stat-
echarts. In: Proc. of XLIII Annual Italian Conference AICA. AICA (2005)

18. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. of POPL 2008, pp. 273–284. ACM, New York (2008)

19. Koch, N., Mayer, P., Heckel, R., Gönczy, L., Montangero, C.: UML for Service-
Oriented Systems. SensoriaDeliverable 1.4a (September 2007)

20. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007)

21. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices (full version). Technical report, Dipartimento di Sistemi e Informatica, Univ.
Firenze (2007), http://rap.dsi.unifi.it/cows

22. Mayer, P., Schroeder, A., Koch, N.: Mdd4soa: Model-driven service orchestration.
In: Proc. of EDOC 2008, pp. 203–212. IEEE Computer Society, Los Alamitos
(2008)

http://rap.dsi.unifi.it/cows


www.manaraa.com

Tools and Verification 427

23. Mazzanti, F.: UMC User Guide v3.3. Technical Report 2006-TR-33, Istituto di
Scienza e Tecnologie dell’Informazione “A. Faedo”. CNR (2006),
http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf

24. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

25. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: Proc. of ICSE 2008, pp. 613–622.
ACM Press, New York (2008)

26. ter Beek, M.H., Gnesi, S., Mazzanti, F., Moiso, C.: Formal modelling and verifica-
tion of an asynchronous extension of soap. In: Proc. of ECOWS 2006, pp. 287–296.
IEEE Computer Society, Los Alamitos (2006)

27. ter Beek, M.H., Mazzanti, F., Gnesi, S.: CMC-UMC: A framework for the verifica-
tion of abstract service-oriented properties. In: Proc. of SAC 2009, pp. 2111–2117.
ACM Press, New York (2009)

28. Unified Modeling Language, http://www.uml.org/
29. Vieira, H.T., Caires, L., Seco, J.C.: The conversation calculus: A model of service

oriented computation. In: Gairing, M. (ed.) ESOP 2008. LNCS, vol. 4960, pp.
269–283. Springer, Heidelberg (2008)

30. Vieira, H.T., Caires, L., Sousa, D.: Checking Services Conformance Based on Spa-
tial Logic Model-Checking (revised). Technical Report TR-DI/FCT/UNL-04/2009,
Departamento de Informática, Universidade Nova de Lisboa (2009)

31. Vieira, H.T., Caires, L., Viegas, R.: The Spatial Logic Model Checker,
http://ctp.di.fct.unl.pt/SLMC/

32. Vieira, H.T., Caires, L., Viegas, R.: The Spatial Logic Model Checker User’s
Manual v1.0. Technical Report TR-DI/FCT/UNL-05/2005, Departamento de In-
formática, Universidade Nova de Lisboa (2005)

33. Web Services Choreography Working Group WCDL. Web Services Choreography
Description Language: Primer (2006),
http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/

http://fmt.isti.cnr.it/WEBPAPER/UMC-UG33.pdf
http://www.uml.org/
http://ctp.di.fct.unl.pt/SLMC/
http://www.w3.org/TR/2006/WD-ws-cdl-10-primer-20060619/


www.manaraa.com

Specification and Analysis of
Dynamically-Reconfigurable Service

Architectures�

Howard Foster1, Arun Mukhija2,
David S. Rosenblum2, and Sebastian Uchitel1

1 London Software Systems, Dept. of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2BZ, UK

{hf1,su2}@doc.ic.ac.uk
2 London Software Systems, Dept. of Computer Science, University College London,

Gower Street, London WC1E 6BT, UK
{a.mukhija,d.rosenblum}@cs.ucl.ac.uk

Abstract. A Service-Oriented Computing (SoC) architecture consists
of a number of collaborating services to achieve one or more goals.
Traditionally, the focus of developing services (as software components)
has been on the static binding of these services within a single context
and constrained in an individual manner. However, service architectures
should be dynamic, where service binding and context changes with en-
vironmental changes. The task of designing and analysing such architec-
tures becomes very complex. In this chapter we discuss a specification
profile and analysis framework for service modes. A service mode pro-
vides an encapsulation of both specification and adaptation in different
service scenarios. The approach is implemented as a tool suite and inte-
grated into the Eclipse IDE.

1 Introduction

A service mode abstracts a set of services, and their states, that collaborate to-
wards a common service system goal [3]. In Service-Oriented Computing (SOC),
a mode can be used to identify which services are required in a service com-
position and assist in specifying orchestration and choreography requirements
through service component state changes. They are specifically aimed towards
addressing reconfiguration management within a self-managed service system.
The need for such management is highly desirable as we increasingly rely on
distributed networks of interrelated systems through the extensive growth and
use of the Internet. One highly practical application of modes is to describe the
requirements and capabilities for dynamic service brokers in an Service-Oriented
Architecture (SOA), detailing specifications of both required and provided ser-
vice characteristics in a particular system state. Modes also define an operat-
ing environment by way of component behaviour and architectural constraints.
In the SOA pattern for example, a dynamic service brokering solution needs
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 428–446, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 429

to address issues of how to specify the Quality-of-Service (QoS) requirements
and capabilities, and how to select the most appropriate functionally-equivalent
service based on the QoS required and offered. To assist service engineers in
modelling service-oriented software systems we describe a modelling profile for
Service Modes which captures the specification of collaborating components and
services, and provides a mechanism to describe how service adaptation is speci-
fied in different modes of operation of the system.

Once the specifications are constructed, they can be analysed for interesting
properties of service architecture reconfigurations. For example, in the profile
there is a specification of behaviour at three levels for adaptation; 1) the mode
composition level, 2) the service mode level and 3) the service component level.
Ensuring that the behaviour across these levels is safe and consistent becomes
complex without formal and mechanical techniques. We define three properties
of analysis which assist service engineers in assessing the suitability of service
architecture configurations and provide feedback to improve their quality and re-
liability. Our work described in this chapter aims to integrate service modelling,
self-management concepts and dynamic service brokering to enhance service
engineering to cater for change, adaptive and extendible service solutions.

The remainder of this chapter is structured as follows. Section 2 provides
a background to software architecture modes and discusses the requirements
for dynamic and adaptive service brokering. Section 3 presents a case study
which has been used to drive the profile and analysis for service modes. Section
4 details the modelling profile and illustrates a specification with an example
from the case study. Section 5 describes the mappings of models built using
the profile to formal models in Darwin and the Finite State Processes notation,
whilst section 6 discusses the properties and techniques for analysis of these
formal models. Section 7 presents an implementation of these techniques and
discusses limitations of the current approach. Section 8 concludes the paper
with a summary and a view on future work.

2 Background and Related Work

Self-management of software systems is typically described as a combination
of self-assembly, self-healing and self-optimisation. Self-management of systems
is not a new idea, with ideas from both the cybernetics [17] and system the-
ory [16] worlds. As discussed in [15] however, one of the main existing problems
in self-management is to understand the relationship between the system and
its subsystems: can we predict a system’s behaviour and can we design a system
with behaviour specified for all situations?

2.1 Software Architecture Modes

Software Architecture Modes [5] have been proposed as an abstraction to assist
in specifying and analysing dynamic and adaptive software component config-
urations. Software Architecture Modes are an abstraction of a specific set of



www.manaraa.com

430 H. Foster et al.

services that must interact for the completion of a specific subsystem task, i.e.,
a mode will determine the structural constraints that rule a (sub)system configu-
ration at runtime. Therefore, passing from one mode to another and interactions
among different modes formalise the evolution constraints that a system must
satisfy: the properties that reconfiguration must satisfy to obtain a valid tran-
sition between two modes which determine the structural constraints imposed
to the corresponding architectural instances. At a high-level view, a Software
Architecture Mode as defined by Hirsch covers four areas of model specification
using the Darwin Architecture Description Language (ADL):

Component Models. Darwin supports a hierarchical model, is tractable, and
is accompanied by a corresponding graphical notation. The central abstractions
managed by Darwin are components and ports. Ports are the means by which
components interact. Ports represent services that components either provide to
or require from other components. A port is associated with a type: the interface
of the service it provides or requires.

Behavioural Specifications. The behaviour of components in Darwin is spec-
ified both graphically as a Labelled Transition System (LTS) and textually using
the Finite State Processes (FSP) notation. The behaviour of an architecture in
Darwin is the composition of the behaviours of its individual component con-
stituents, i.e. the parallel composition of the respective LTSs. The resulting LTS
can be checked for such properties as the preservation of system invariants or
the existence of deadlocks.

Dynamism and Adaptation. Darwin’s concern in supporting dynamic struc-
tures is to capture as much as possible of the structure of the evolving system
while maintaining its purely declarative form. Architectural modifications at
runtime may cause disruption to behavioural aspects of the system such as trig-
gering a deadlock. Changes to a system’s structure may only be performed when
it is not in the process of exchanging application messages with its environment
(quiescent state).

Mode Extensions. A mode is specified by adding a new attribute to compo-
nents that indicates the mode in which the component is in the corresponding
architectural instance. In the case of basic components, the mode identifies the
state of the component. For composite ones, the mode for a composite compo-
nent is directly related with the modes of its constituents. The assumption is
that each component is in one mode at a time. Interface ports are either enabled
or disabled for binding to other components.

Hirsch’s introduction to modes included architectural configuration but did not
elaborate on component behavioural change as part of mode adaptation. Conse-
quently, the concept of mode architectures has been extended with behavioural



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 431

adaptation in [8], focusing on modes as behavioural specifications relating to ar-
chitecture specification albeit indirectly. The concept of modes complements that
of Architectural Design Rewriting (ADR), which has been described in Chapter
1-4. ADR is based on term-rewriting and formalises the development and re-
configuration of style-consistent software architectures. In ADR an architectural
style consists of a set of architectural elements and operations called produc-
tions which define the well-formed compositions of architectures. Broadly, a term
built out of such ingredients constitutes the proof that a design was constructed
according to the style, and the value of the term is the constructed software
architecture. In this sense, a Mode is an architectural style whose productions
are focused on architectural reconfiguration and behavioural correctness.

2.2 Service Modeling and Composition

Related work towards dynamic service architecture and adaptation falls in to
two categories, service modelling and service composition. Whilst there have
been several Unified Modeling Language (UML) profiles proposed for modelling
requirements of services and SOA [6,9], these profiles generally provide a set
of stereotypes that focus only on static service artefacts, including a service
specifications (interfaces), gateway (ports) and orchestrated collaboration (be-
haviour specifications). What is generally missing from these existing profile
approaches is the ability to identify the requirements and capabilities of services
and then to elaborate on the dynamic changes anticipated for adaptation or self-
management. For the design of service compositions the dynamic composition
of services has largely focused on planning techniques, such as in [14,10] with
the specification of a guiding policy with some goals of service state. However,
runtime service brokering also plays an important role in SOC being able to
adapt component configurations between requesters and providers, yet there has
been little coverage on providing analysis of requirements for brokering.

As an example of dynamic service brokering and adaptation the Dino Service
Broker project [11] provides a runtime infrastructure and specification language
for specifying service requirements including both functional and QoS proper-
ties. The Dino brokers are responsible for service discovery, selection, binding,
delivery, monitoring and adaptation. Consequently, every service provided needs
to specify its service capability (including both functional and QoS offerings) in
the language provided by Dino. A service requester forwards its requirements
specification document to a Dino broker at runtime, and thereby delegates the
task of service discovery and selection to the broker. A shared understanding of
the semantics of functional and QoS properties specified by service requesters
and providers is achieved by referring to common ontologies.

To leverage the benefits of software architecture modes and service-oriented
systems we proposed in [4] an integration of service modelling, self-management
techniques and dynamic service brokering (for adaptation). In this chapter we
focus on the specification, analysis and tool support of such architectures.



www.manaraa.com

432 H. Foster et al.

3 Case Study

Our work has been guided by the challenging requirements of service architec-
ture and behaviour adaptation of the Automotive Case Study in Sensoria. For
details of this case study please refer to Part 7, Chapter 1. Our role is to support
the service behavioural adaptation and deployment aspects of this case study
and in particular, to provide a self-management approach. In this case study
are a number of scenarios relating to a In-Vehicle Services Platform and the
interactions, events and constraints that are posed on this services architecture.
One particular scenario focuses upon Driving Assistance and a navigation sys-
tem which undertakes route planning and user-interface assistance to a vehicle
driver. Within this scenario are a number of events which change the operating
mode of the navigation systems. For example, two vehicles are configured where
one is a master and another is a slave. Events received by each vehicle service
platform, for example an accident happens between vehicles, requires that the
system adapts and changes mode to recover from the event. In a more complex
example, the vehicles get separated on the highway (because, say, one of the
drivers had to pull over), the master vehicle switches to planning mode and the
slave vehicle to convoy. However, if an accident occurs behind the master and
in front of the slave vehicle, meaning only the slave needs to detour it must
somehow re-join the master vehicle route planning. The slave navigation system
could firstly change to a detour mode (to avoid the accident), then switch to
planning mode (to reach a point in range of the master vehicle), and finally
switch to convoy mode when close enough to the master vehicle.

4 Service Modes

4.1 Overview

A Service Mode represents a scenario of a service system. It combines a service
architecture with behaviour and policy specifications for service components
within the service system and is intended to be evolved as new requirements
are desired from the system. In this section we detail the specification of service
modes by way of a Service Modes Profile in the UML2 notation.

4.2 Specification

A metamodel for service modes (illustrated in Fig. 1) extends and constrains a
number of UML2 core elements. As an overview, a ModeModel defines a package
which contains a number of service architecture scenarios (as Mode packages)
and components and also contains a ModeModelActivity to define how to switch
between different service scenarios. Each scenario is defined in a Mode package
which is a container for a ModeCollaboration and describes the role that each
component plays within the scenario (e.g. a service requester and/or a provider).
Each ModeCollaboration holds a ModeActivity which describes the process in
which the mode orchestration is fulfilled. Each ModeCollaboration also refines



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 433

the components of the Mode for additional service adaptation requirements (such
as the constraints for service brokering). We now elaborate on service mode
architecture, behaviour and adaptation relationships.

Fig. 1. A MetaModel for service modes and service brokering specification

A Service Modes Architecture consists of specifying the service compo-
nents, their requirements and capabilities and interface specifications. A high-
level architecture configuration is given in UML to represent the component
specifications and their relationships. Each component will offer services to its
clients, each such service is a component contract. A component specification de-
fines a contract between clients requiring services, and implementers providing
services. The contract is made up of two parts. The static part, or usage contract,
specifies what clients must know in order to use provided services. The usage
contract is defined by interfaces provided by a component, and required inter-
faces that specify what the component needs in order to function. The interfaces
contain the available operations, their input and output parameters, exceptions
they might raise, preconditions that must be met before a client can invoke the
operation, and post conditions that clients can expect after invocation. These
operations represent features and obligations that constitute a coherent offered
or required service. At this level, the components are defined and connected in a
static way, or in other words, the view of the component architecture represents a
complete description disregarding the necessary state of collaboration for a given
goal. Even if the designer wishes to restrict the component diagram to only those
components which do collaborate, the necessary behaviour and constraints are
not explicit to be able to determine how, in a given situation, the components
should interact. An example composite structure diagram for a service modes ar-
chitecture is illustrated in Fig. 2 for an In-Vehicle Service composition. Note that



www.manaraa.com

434 H. Foster et al.

the architecture represents both local services (via a localDiscovery component)
and remote services (remoteDiscovery via a Vehicle Services Gateway).

Fig. 2. In-Vehicle service brokering architecture with Modes MetaModel

Service Mode Behaviour specification is a local coordinated process of
service interactions and events for mode changes. The behaviour is similar to
that of service orchestrations, for which orchestrations languages such as the Web
Service Business Process Execution Language (WS-BPEL) are widely adopted.
Our work aligns closely with that of the Sensoria UML4SOA [7] work which
has developed UML Activity Diagram to WS-BPEL transformation routines.
At design time however, the activities for mode orchestration consist of two
concepts. Firstly, orchestrating the default composition of services required and
provided in the specified mode architecture. Secondly, the orchestration should
also be able to react to events which cause mode changes, or in other words
cater for the switching between the modes specified in the different architecture
configurations. To specify mode changes, the engineer adds event handlers (and
follow on activities) to react to certain events which cause a mode change. An
example Service Mode Behaviour is illustrated in Figure 3. Note the events
that lead to mode changes, for example receiving notification of an accident
from an Highway Emergency Service leads to a mode switch to a Detour mode
configuration.

Service Dynamism and Adaptation focuses on constraining changes to
architecture and services, identifying both functional and non-functional variants
on the specification. Using the Service Modes Profile we identify ModeCollabora-
tions (composite structure diagrams) with ModeConstraints (UML constraints)
which are categorised further by a constraint stereotype. Alternatively, in the
domain of Quality-Of-Service (QoS) a QoS Profile can be used to describe the
required QoS when connecting a particular service partner (of a particular type
and offering similar specifications of usage). A good example profile is based



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 435

Fig. 3. Convoy service mode behaviour specified in activity diagram

upon a recommendation to the Object Management Group (OMG) in [12]. Ad-
ditionally, architectural constraints may be specified in the Object Constraint
Language (OCL) or another constraint based language. The constraint language
adopted becomes an implementation-dependent aspect of analysing models in
UML2. The ModeConstraint is itself extended to support a specific kind of
adaptation, that for Service Brokering. A BrokerComponent defines a service
component which is included in service brokering specifications and can be used
to identify the role of the brokered component (either requested or provided),
and holds a specification for the service profile. Additionally, one or more (Bro-
kerConstraints) can be associated with a BrokerComponent, to identify the QoS
either requested or provided by the service. An example constraint applied to a
BrokerComponent is also illustrated in Fig. 2, in this case for the requirement
that a QoSResponseTime should be offered less than 20ms by the OtherVehicle
service.

As a summary of the semantics for the Service Modes profile, we list each
stereotype and their constraints in Table 1.

5 Formal Models

Whilst the UML Service Modes Profile provides an easily accessible form of spec-
ifying service mode architecture models, they are more appropriate to visually
clarify requirements than to mechanically analyse them. In addition, existing
notations (such as Darwin and FSP) have good analyser tool support and are
built on mathematical foundations. To build these models for analysis we pro-
vide a mapping between the elements of profile specifications and those in the
formal notations.

5.1 Architecture Models

A Darwin model is a set of loosely coupled, context-independent software com-
ponents, which communicate to achieve an overall goal. Components interact by
accessing services. Each inter-component interaction is represented by a binding
between a required service and a provided service. Our UML2toDarwin mapping



www.manaraa.com

436 H. Foster et al.

Table 1. Service mode profile semantics for UML2

Stereotype Type Element Description

ModeModel extends Package A Model containing Mode packages
constraints self Only one Mode can have isDefault as True

ModeModelActivity extends Activity The process flow for a ModeModel (policy)
constraints self May only be associated with one ModeModel

Mode extends Package A scenario for service collaborations
property isDefault [Boolean] True: identifies a mode as a default

mode
constraints self Mode must be associated with a ModeModel

ModeCollaboration extends Collaboration Contains composite structure and interactions
constraints self Must be associated with one and only one Mode.

ModeActivity extends Activity The process flow for a Mode (orchestration)
constraints self May only be associated with one ModeCollabo-

ration

ModeConstraint extends Constraint Constraints on mode service or activity action
constraints self Expressions specified in the Object Constraint

Language.

ModeInteraction extends Interaction Interaction protocol between Mode components
constraints self Must be associated with one and only one Mod-

eCollaboration

BrokerComponent
extends Component Service component to be brokered within a

Mode
property isRequired [Boolean] True: a requested service component

for brokering
property isProvided [Boolean] True: a provided service component

for brokering
property Grounding [String] the OWL-S document for service

matching

BrokerConstraint extends ModeConstraint A constraint on a BrokerComponent
constraints self Expressions with QoS Ontology references.

extracts various elements of the UML2 Model to construct a Darwin specifica-
tion. The process is as follows. Given an input of a UML Model, each of the
packages in the model are scanned for ModeCollaborations, and a list is created.
For each collaboration in the list, the set of elements is analysed for component
structure diagrams and a set of components is generated in the Darwin specifi-
cation. For each component connector within a ModeCollaboration, a series of
Darwin portals are created to represent required and provided services in the
ModeCollaboration, and instances of components in the relationship. An exam-
ple mapping from a UML ModeBinding to a Darwin model representation is
illustrated in Fig. 4.

Fig. 4. Partial convoy mode architecture to Darwin ADL component



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 437

Additionally, a System component is added to the Darwin model to repre-
sent the architecture service composition by declaring instantiations of each ser-
vice component in the architecture and by representing bindings between these
service instances.

5.2 Behaviour Models

To build the behaviour models in the approach the FSP notation is used to
formally describing the sequences of behaviour processes specified at both the
ModeModel and ModeCollaboration levels of the service mode configurations. To
facilitate this we have built several transformations which take either activity
diagram, state machine or sequence charts and translate the process flow to
corresponding FSP process statements. The fine detail around these translators is
not the purpose of this chapter, however for context we provide a brief summary
of each transformation. For complete details of transformation, the reader is
invited to refer to [3].

A UML Activity Diagram consists of activities, activityNodes, Edges, Guards
and Weights. An activityNode may be one of several types including Action,
DataStore, DecisionNode, FlowNode, ForkNode, Event etc. For the purpose of
our initial analysis we only consider the simple behaviour node types of Action,
DecisionNode and ForkNode. For each mode architecture specified, one or more
composition activity diagrams are located in the architecture package. To begin
with the transformation identifies an initial (pseudo) node and locates any cor-
responding first actions by following the initial node edges. Depending on the
type of action it encounters it produces a different FSP model. For example,
if it encounters a DecisionNode then a guarded FSP process is created, which
provides a choice of sequence progress in the FSP model depending on the value
of an FSP variable. To represent a choice, an enumerated variable is created to
provide alternative paths of execution. If however, the transformer encounters
a ForkNode then a parallel process composition is created in the FSP model.
Each path from the ForkNode is composed in this parallel process (representing a
concurrent transition between the different activity paths in the diagram). Addi-
tionally, we represent Events (and their signals) as additional sequence processes
in the FSP model. The FSP built from the transformation can be compiled as an
LTS, for which an example of the Convoy Service Mode Behaviour is illustrated
in Figure 5.

State Machine Transformation takes each of the state machines for each ser-
vice and builds a corresponding FSP process composition. UML state machine
diagrams depict the various states that an object may be in and the transitions
between those states. A state machine consists of a series of regions, states and
transitions. Regions include states and transitions. To begin with the transfor-
mation identifies an initial (pseudo) state and locates any corresponding first
states by following the initial state transitions. If there is more than one transi-
tion from a state, then this is modelled as a choice (as the actual runtime may
trigger these transitions in any order or not at all). Each transition builds a cor-
responding FSP sequential process which are composed when the traversal and



www.manaraa.com

438 H. Foster et al.

transformation of the entire state machine is completed. The result of building
processes and composing them generates an LTS. An LTS example for the DVUI
State Machine given earlier in this section is illustrated in Fig. 5.

Fig. 5. LTS models of convoy service mode activity (left) and DriverVehicleUI [Plan-
ning] state machine (right)

5.3 Combined Models

Darwin ADL specifications and component behaviour models can be translated
to FSP process models using the mechanism discussed in [1]. Their approach
is aimed towards dynamic plug-ins and architecture analysis. The approach in
our work expands on theirs by considering evolving and dynamic models of ser-
vice architecture whilst maintaining different configurations using the concept of
modes. Firstly, each service behaviour model is composed to build an architec-
ture model. This represents a combined behaviour model of all service behaviour
linked in to a single architecture behaviour model. The transformation creates
an ArchitectureBehaviour process which consists of a parallel composition pro-
cess of all the named service behaviour models created from the state machines
previously. Each state machine model has an initial and end state, and there-
fore they are composed and synchronised on these states. Secondly, the Service
Mode Behaviour model (transformed from the activity diagram) is included in
a SystemBehaviour process. The SystemBehaviour process is aligned with the
System component created in the earlier transformation from architecture to
Darwin ADL. Depending on the analysis required, different models are used as
analysis source, as described in section 6.mBehaviour process is aligned with
the System component created in the earlier transformation from architecture
to Darwin ADL.

6 Service Mode Analysis

It was mentioned at the beginning of this chapter three types of analysis for
a service modes architecture being protocol compatibility, behaviour reachabil-
ity and modes composition analysis. These types of analysis effectively analyse
lower-level to higher-level aspects of a service modes architecture but others are
considered in future work.



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 439

Service Protocol Compatibility analyses the expected provided and required
service interactions between services in each mode composition. This includes
both the ordering of interactions in which services expect their methods to be
called, but also the order that they call other service’s methods. The process
of analysis takes as input the architecture model produced in section 5.1 and
analyses each mode service protocol with that of the other services in the ar-
chitecture configuration. To achieve this an additional FSP process is created
selecting only those services in a particular mode configuration (e.g. Convoy
Mode) and composes these with both component architecture configuration in-
stances and bindings (from the Darwin model) and service behaviour (from the
service FSP model). The property for analysis is described as FSP in Figure 6,
where interfaces are represented as variables (set), the || symbol defines a parallel
composition, and each service is named from c1...cX. Relabelling using the FSP
/ operator binds the interfaces of different service components.

Mode Behaviour Reachability analyses the expected service composition be-
haviour with that which is offered by the services in the mode configuration.
The goal is to take the behaviour model of the System and compare it to that of
the Architecture (on analysis of the combined System and Architecture model
described in section 5.3). To achieve this an additional FSP process is specified
composing the combined model with that of a new process specification for the
System behaviour model. This defines a new property to specify that the Sys-
tem behaviour model is used as the specification against that of the architecture
model behaviour (i.e. with that of each of the service’s provided behaviour). A
deadlock occurs if the System behaviour process is not achievable given the ser-
vice behaviour required and provided. Sample FSP for analysis is also listed in
Fig. 6.

Fig. 6. FSP models for service protocol and behaviour analysis



www.manaraa.com

440 H. Foster et al.

The third type of analysis considered is that of Modes Composition Analysis.
This analyses the composition of system behaviour specified in all the modes
given in the Modes architecture specification. The goal is to ensure that qui-
escence (consistency of system state before and after changes) is upheld. For
example, in the switch example from Convoy to Detour (given in Fig. 3) an
event received by the composition activity for a HighwayEmergency eventually
leads to a notification of architectural change to a Detour Mode. Using analysis
through model-checking the service engineer can check whether the behaviour
specified in this is compatible through the Detour Mode service composition
behaviour receiving this notification. At runtime it would be expected that a
coordinator agent manages the events and runtime architecture changes (e.g.
swapping in and out different service composition processes).

7 Modes Tool Suite

The Modes Tool Suite provides a set of features to describe, extract, transform
and analyse service architecture configurations based upon the specification and
models described in earlier sections of this chapter. A prototype implementation
of the Modes Tool Suite includes a Modes Model Parser for UML2, Modes Bro-
ker Extract for Service Broker Runtime artifacts and extensions to the LTSA
Eclipse WS-Engineer tool (and plug-ins). In this section we detail each of these
parts. The integrated tool suite is illustrated in Fig. 7, and is available from
http://www.ws-engineer.net.

Fig. 7. LTSA WS-Engineer and service mode analysis



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 441

7.1 Modes Model Parser

The UMLModesParser component consists of a number of classes (illustrated in
Fig. 8). The UMLModesParser component provides extract routines given a
source UMLModesModel document. A UMLModesModel extends a UMLModel
(inherited from the Eclipse Modeling Framework (EMF) for UML [2]) by pro-
viding utility functions for accessing and locating various Mode elements. A
UMLModesModel consists of a series of elements of type Mode, ModeCollabora-
tion, ModeConstraint and ModeActivity. A UMLModesModel identifies different
modes by its UML package identification (ID) and provides an API to retrieve
a package by id or by name. A list of mode names can also be retrieved using
a helper function. Using core model traversing routines from the standard EMF
packages, a UMLModelParser class provides routines to build a UML Model ob-
ject of UML elements, types and relationships from the model supplied through
the setModel operation. The build action is initiated by calling the parse op-
eration. We extend this class with a UMLModesParser class which provides a
parseModePackages operation. The operation initially parses the UML model
and then builds a ModesModel object containing a list of each of the Modes
located in the UMLModesModel.

Fig. 8. Core mode parser and analyser classes in the modes tool suite



www.manaraa.com

442 H. Foster et al.

7.2 Modes Model Analyser

The ModesAnalyser class provides an encapsulation of the analysis techniques de-
scribed in section 6. The class uses the functionality provided by the UMLMod-
esParser component to transform a UMLModesModel document into formal
models, in both FSP and Darwin ADL. A ModesToFSP class provides the
transformation routines necessary for behavioural modelling of the ModesModel
whilst the ModesToDarwin class provides transformation routines necessary for
the interface and relationship modelling of the mode components in the model.
The ModesAnalyser class also provides mechanisms to specify bespoke prop-
erties (e.g. fluents) to check against these models. The core ModesAnalyser
component is extended into three further analysis components representing the
Protocol, Behaviour and Composition analysis techniques described previously.
The ModesAnalyser class uses the Labelled Transition System Analyser (LTSA)
tool package to compile and check the properties once the ModesModel is trans-
formed to FSP and Darwin.

7.3 Broker Extract Process

The Broker Extract process provides a process to build a set of modes and ser-
vices for representing broker service requirements and capabilities. The process
is illustrated in Fig. 9. For each Mode a set of ModeCollaboration elements are
located. In each ModeCollaboration is defined a set of Components. A Compo-
nent is identified as a candidate brokered service if it has either a stereotype of
ServiceRequester or it has a UML Connector which relates the component to
another component of type ServiceProvider. If a Service is identified then the
service Operations, Ports and Interfaces are extracted. If a Port or Interface
contains a child element of type ModeConstraint then this is also extracted.
The extracted artifacts for the service are then used to create a Service, which
is added to the ModesModel. The process is repeated for each component in a
ModeCollaboration, and then for each Mode in the source model. At the end of
the parse process, a ModesModel represents a series of Modes containing each
of the extracted elements described previously.

The ModesBrokerExtract component consists of several classes to support this
process. Firstly a list of BrokerModes is built, which contain the BrokerSer-
vices, and provides utility operations to assist retrieving these services for a
given mode. The ModesBrokerExtract class inherits from a generic ModesEx-
tract class which simply provides an access operation to the Modes in a model
(using the UMLModesParser class). Each Service in each of the BrokerModes is
implemented as a class of type BrokerService. The BrokerService class provides
attributes for Operations, Constraints, a provide indicator IsProvider and a list
of QoS attributes for the service. A QoS class provides an abstract data type for
the attributes of Quality of Service aspects in brokering by service matchmaking.
The components and classes are illustrated in Fig. 10.



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 443

Fig. 9. Activity Diagram of ModesBrokerExtract class

7.4 Modes Browser

The Modes Browser Component and classes (also illustrated in Fig. 10) pro-
vide a useful helper component to navigate through modes, retrieving required
and provided services and to assist in generating requirement and capability
specifications for dynamic service brokering. The generic component does not
generate any requirements or capabilities (as this is broker specific). The nav-
igation through modes uses the results of the Modes Broker Extract Compo-
nent (described in section 7.3). The API for the browser provides operations to
changeMode (which switches the list of services to those identified in a particu-
lar ModePackage), getRequiredServices (retrieves a list of services that request
Provided Services in the current mode), getProvidedServices (retrieves a list of
services that offer a Service in the current mode), getQoS which retrieves a list
of QoS elements for each service in the current mode, and getConstraints which
retrieves a list of ModeContraints for the current mode.

7.5 Dino Service Broker Runtime Artifacts

The Modes Tool Suite also includes an example extension (DinoModesBrowser)
specifically aimed at generating artifacts for the Dino Service Broker runtime.
For each service a selection of two service deployment artefacts are available.
The first is a functional specification. This document provides a functional de-
scription of the service. The functionality of a required or provided service is
defined using OWL-S [13], which is an OWL-based ontology for Web services
and is an emerging standard for the semantic specification of the functionality
of services. An OWL-S description of a service has three parts: profile, process
model and grounding. A profile describes the capability of a service operation in
terms of its input, output, preconditions and effects; a process model describes
details of service operations in terms of atomic, simple and composite processes
and a grounding describes details of how to invoke a service operation, and is



www.manaraa.com

444 H. Foster et al.

usually mapped to the service interface description of the service operation. Sec-
ondly, a non-functional specification is available, which provides details of the
constraints for service brokering with a service identification, QoS attribute and
value required or provided. The classes for the DinoModesBrowser extensions
are also illustrated in Fig. 10.

Fig. 10. Mode Broker and Extract Classes in the Modes Tool Suite

7.6 Limitations

The modelling and analysis currently only considers the structural elements of
the architecture combined with behaviour specification. In practice there should
also be a higher-level policy, which in addition to the service constraints, governs
when mode switches can occur and how the coordination should be realised
across a distributed services architecture. This policy may take many forms, but
is likely to be in a distributed management specification (such as the PONDER2
language) or also include behavioural specification in the form of the Web Service
Choreography Description Language (WS-CDL).

8 Conclusions and Future Work

This chapter presented an introduction to the concepts of Service Mode Ar-
chitectures, and more specifically their specification, analysis and tool support.



www.manaraa.com

Specification and Analysis of Dynamically-Reconfigurable Service 445

Our contribution is aimed at providing easily accessible and practical tools for
service engineers to develop adaptive and evolving service architectures and we
believe the concept of service modes provides a practical level of abstraction
for them to achieve this. We have focused on one case study of Sensoria for
validation, that being the Automotive Case Study. We have suggested modes
as an alternative way of addressing operational adaptation, yet modes can also
be applied to other domains where adaptation and reconfiguration are needed.
Using model checking techniques, we have shown some analysis of service mode
models produced from the specifications of these architectures.

Future work will continue to examine efficient transformation routines, en-
hancing the interpretation of different constructs within service architecture
specifications and enabling different notations to be used. In particular we wish
to extend the analysis to consider service mode policies and their constraints
against architecture specifications. The concept of generating alternative modes
is also possible using other architecture analysis tools and analysing this with
an overall service adaptation policy specification.

References

1. Chatley, R., Eisenbach, S., Kramer, J., Magee, J., Uchitel, S.: Predictable dynamic
plugin systems. In: 7th International Conference on Fundamental Approaches to
Software Engineering, Barcelona, Spain (2004)

2. EMF. EMF: The eclipse modeling framework (2008),
http://www-.eclipse.org/EMF

3. Foster, H.: Architecture and behaviour analysis for engineering service modes. In:
Proceedings of the 2nd Workshop on Principles of Engineering Service Oriented
Systems (PESOS) at ICSE 2009, Vancouver, Canada (2009)

4. Foster, H., Uchitel, S., Kramer, J., Magee, J.: Towards self-management in service-
oriented computing with modes. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007.
LNCS, vol. 4907, pp. 338–350. Springer, Heidelberg (2009)

5. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures.
In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126.
Springer, Heidelberg (2006)

6. Johnston, S.: UML 2.0 profile for software services. Request For Proposal - AD/02-
01/07 (2005),
http://www-128.ibm.com/developerworks/rational/library/05/419soa

7. Koch, N., Mayer, P., Heckel, R., Gönczy, L., Montangero, C.: D1.4b: UML for
service-oriented systems. Technical Report (October 2007)

8. Kofroň, J., Plášil, F., Šerý, O.: Modes in component behavior specification via EBP
and their application in product lines. Information and Software Technology 51(1),
31–41 (2009)

9. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of
UML models for service-oriented software architectures. In: Proceedings of the 12th
IEEE International Conference and Workshops on Engineering of Computer-Based
Systems, Washington, DC, USA, pp. 173–182 (2005)

10. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the
semantic web. VLDB Journal, 333–351 (2003)

http://www-.eclipse.org/EMF
http://www-128.ibm.com/developerworks/rational/library/05/419soa


www.manaraa.com

446 H. Foster et al.

11. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-aware service composition
in dino. In: ECOWS 2007: Proceedings of the Fifth European Conference on Web
Services, Halle, Germany, pp. 3–12. IEEE Computer Society, Los Alamitos (2007)

12. OMG. UML profile for modeling quality of service and fault tolerance characteris-
tics and mechanisms. Request For Proposal - AD/02-01/07 (2002)

13. OWL-S. OWL-based web service ontology, version 1.1. The DARPA Program for
DAML (November 2004), http://www-.daml.org/services/owl-s/

14. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated composition of web
services by planning at the knowledge level. In: Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI (2005)

15. Roy, P.V.: Self management and the future of software design. In: Formal Aspects
of Component Software (FACS 2006), Prague, Czech Republic (2006)

16. Von Bertalanffy, L.: General System Theory: Foundations, Development, Applica-
tions. George Braziller, New York (1969)

17. Wiener, N.: Cybernetics, or Control and Communication in the Animal and the
Machine. MIT Press, Cambridge (1948)

http://www-.daml.org/services/owl-s/


www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic�

Rocco De Nicola1, Diego Latella2, Michele Loreti1, and Mieke Massink2

1 Dipartimento di Sistemi e Informatica - Università di Firenze
{rocco.denicola,michele.loreti}@unifi.it

2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”- CNR
{diego.latella,mieke.massink}@isti.cnr.it

Abstract. The Temporal Mobile Stochastic Logic (MoSL) has been
introduced in previous works by the authors for formulating properties
of systems specified in StoKlaim, a Markovian extension of Klaim. The
main purpose of MoSL is addressing key functional aspects of network
aware programming such as distribution awareness, mobility and security
and to guarantee their integration with performance and dependability
guarantees. In this paper we present SoSL, a variant of MoSL, designed
for dealing with specific features of Service-Oriented Computing (SOC).
We also show how SoSL formulae can be model-checked against systems
descriptions expressed with MarCaSPiS, a process calculus designed for
addressing quantitative aspects of SOC. In order to perform actual model
checking, we rely on a dedicated front-end that uses existing state-based
stochastic model-checkers, like e.g. the Markov Reward Model Checker
(MRMC).

1 Introduction

Important features of services are compositionality, context-independence, en-
capsulation and re-usability. To support the formal design and analysis of SOC
applications recently a number of Service-Oriented Calculi have been proposed,
see e.g. Chapter 2-1 in this volume.

Most of the proposed calculi are based on process algebras enriched with
primitives specific to service-orientation such as operators for manipulating semi-
structured data, mechanisms for describing safe client-service interactions, con-
structors for composing possibly unreliable services and techniques for query and
discovery of services.

These calculi provide clean mathematical foundations for modeling typical
aspects of SOC like safe service composition, service interaction and service
orchestration.

Besides qualitative aspects of service-oriented systems it is also important
that phenomena related to performance and dependability are addressed to deal
with issues related to quality of service. These aspects are particularly relevant
for this class of systems because often the latter rely on components interacting

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 447–466, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

448 R.D. Nicola et al.

over networks where failures are likely and congestion may cause unpredictable
delays.

Traditional performance modeling techniques such as queuing networks and
stochastic variants of Petri nets are widely adopted to describe performance
and dependability models. Their lack of compositionality, however, hinders their
usability when considering systems with many components: it is generally diffi-
cult, if not impossible, to “glue” components specifications together to obtain a
global model of the system. These considerations have led to the development
of stochastic extensions of process algebras (see e.g. [5]), since these formalisms
assign great importance to compositionality. Different methods have then been
devised to associate Continuous Time Markov Chains (CTMC) to terms of pro-
cess algebras and tools inspired by the process algebras community have been
developed to analyze the resulting models. Performance and dependability guar-
antees, have thus been described as temporal logic formulae, and verified in a
fully automated manner by using stochastic model checking.

With stochastic model-checking, one can automatically check whether a per-
formance or dependability requirement is fulfilled by a specific system model.
Moreover, model-checking tools not only provide a yes/no answer, but do pro-
vide also the values of the probabilities of interest. In this sense, stochastic
model-checkers incorporate also the functionality of traditional Markov Chain
analysis tools. Also, functional properties of behavior, usually expressed by tem-
poral logics like CTL [8], can be often characterized by formulae of stochastic
temporal logics, where the degenerate probability values 0 and 1 are used. This
means that stochastic logics permit formulating and automatically checking both
functional and non-functional properties of system behavior in an integrated way,
within the same formalism.

One of the most widely used stochastic logic for CTMCs, is CSL (Continu-
ous Stochastic Logic) [2,3], a stochastic extension of CTL that, together with
qualitative properties, permits specifying time-bounded probabilistic reachabil-
ity properties, such as “the likelihood to reach a goal state within t time units
while visiting only legal states is at least 0.92”. Several software tools have been
developed for supporting verification of CSL formulae; here, we just mention
PRISM [23] and MRMC [22].

In this work, we provide

– a stochastic (Markovian) extension for one of the service-oriented calculi
considered in the Sensoria Project

– a stochastic logic to reason over the terms of the introduced calculus.

The calculus we consider is CaSPiS, a Calculus of Sessions and Pipelines [4]
that relies on sessions and pipelines as natural constructors for structuring client-
service interaction and service orchestration. To associate a Continuous Time
Markov Chain (CTMC) to each CaSPiS terms, we take advantage of a versatile
technique for the definition of structured operational semantics (SOS) of stochas-
tic process languages which solves in an elegant way the problem of transition
multiplicity and is well suited for dealing with two-party CCS-like interaction



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 449

paradigm which is typical for service-oriented approaches [12] and has been al-
ready exploited for providing elegant and uniform semantics of a number of
stochastic extensions of process calculi [11].

We adapt the apparent rate approach proposed for a process algebra with
multi-party (CSP-like) synchronization by Hillston [21] to a calculus with two-
party (CCS-like) synchronization while guaranteeing associativity and commu-
tativity of parallel composition with respect to a bisimulation-based behavioral
equivalence on MarCaSPiS terms that induces the same equalities as those ob-
tained via Strong Markovian Equivalence, as discussed in [12]. According to our
approach, the transition relation associates each pair of MarCaSPiS terms and
actions to a function from MarCaSPiS terms to transition rates that maps each
MarCaSPiS term into the rate with which it can be reached from the term at the
source of the transition, via the action.

The logic we consider is a variant of MoSL (Mobile Stochastic Logic) [9],
a logic that allows one to refer to the spatial structure of the network for the
specification of properties for StoKlaim models. Our starting-point was an
action-based variant of CSL (as first proposed in [20]), that fits well with the
action-based nature of Klaim. The distinguishing features of MoSL, with re-
spect to CSL, are:

– atomic propositions may refer to the sites where data and processes reside,
– actions are generalized to action specifiers that act as patterns to character-

ize sets of actions, and
– logical variables are incorporated to refer to dynamically created sites.

The logic we introduce in this work is SoSL, a variant of MoSL [9], specifically
designed for dealing with specific features of Service-Oriented Computing. SoSL

is a temporal logic that permits describing the dynamic evolution of the system
and it is both action- and state-based and it is equipped with primitives that
permit the use of real-time bounds in the logical characterization of the behav-
iors of interest. Moreover, SoSL is a probabilistic logic that permits expressing
not only functional properties, but also properties related to performance and
dependability aspects. Finally, SoSL is a resource oriented logic, which permits
addressing openendedness of SOC. Indeed, SoSL provides modal operators that
can be used for specifying how a system is able to react to an external stimulus.
These allow the verification of assumptions on resources and processes in a sys-
tem at the logical level, i.e. without having to change the model to investigate
the effect of each assumption on the system behaviour.

We also have developed ways for model-checking SoSL formulae against
MarCaSPiS specifications by exploiting existing state-based stochastic model-
checkers, like e.g. the Markov Reward Model Checker (MRMC). We use tech-
niques similar to those presented in [20] and a front-end for MarCaSPiS, named
SoSL-MC, embedding MRMC as a component of the SoSL model-checking
algorithm.



www.manaraa.com

450 R.D. Nicola et al.

2 Preliminaries

We let IN≥0 (IR≥0, respectively) denote the set {n ∈ IN | n ≥ 0} ({x ∈ IR |
x ≥ 0}, respectively) and, similarly, IN>0 (IR>0, respectively) denote the set
{n ∈ IN | n > 0} ({x ∈ IR | x > 0}, respectively). For set S we let 2S denote the
power-set of S and 2S

fin the set of finite subsets of S. In function definitions as
well as application Currying will be used whenever convenient.

Definition 1 (Negative Exponential Distributions). A random variable
X has a negative exponential distribution with rate λ ∈ IR>0 if and only if
IP{X ≤ t} = 1 − e−λ·t for t > 0 and 0 otherwise. •
The expected value of an exponentially distributed random variable (r.v.) with
rate λ is λ−1 while its variance is λ−2. The min of exponentially distributed
independent r.v. X1, . . . , Xn with rates λ1, . . . , λn respectively is an exponen-
tially distributed r.v. with rate λ1 + . . .+λn while the probability that Xj is the
min is λj

λ1+...+λn
. The max of exponentially distributed r.v. is not exponentially

distributed.
For countable non-empty set S, we consider the set S → IR≥0 of total functions

from S to IR≥0. We let P,Q,R, . . . range over S → IR≥0. We let [] denote the
0 constant function in S → IR≥0, i.e. [] s =def 0 for all s ∈ S; moreover
given s1, . . . , sn ∈ S and, λ1, . . . , λn ∈ IR>0 we let [s1 �→ λ1, . . . , sn �→ λn]
denote the function in S → IR≥0 which maps s1 to λ1, . . . , sn to λn and any
s ∈ S \ {s1, . . . , sn} to 0. The following definition characterizes Rate Transition
Systems [12].

Definition 2 (Rate Transition Systems). A Rate Transition System (RTS)
is a tuple (S,A,�) where S is a countable non-empty set of states, A is a
countable non-empty set of labels and �⊆ S×A× (S → IR≥0) is the transition
relation.

In the sequel RTSs will be denoted by R, R1, R′,. . . As usual, we let s
α� P

denote (s, α,P) ∈�. Intuitively, s1
α� P and (P s2) = λ 	= 0 means that s2

is reachable from s1 via the execution of α and that the duration of such an
execution is characterized by a random variable whose distribution function is
negative exponential with rate λ. On the other hand, (P s2) = 0 means that s2
is not reachable from s1 via α.

Definition 3 (ΣS). ΣS denotes the subset of S → IR≥0 including only all func-
tions expressible using the [. . .] notation, i.e. P ∈ ΣS if and only if P = [] or
there exist n > 0, s1, . . . , sn ∈ S and λ1, . . . , λn ∈ IR>0 such that P = [s1 �→
λ1, . . . , sn �→ λn] •
We equip ΣS with a few useful operations, i.e. + : ΣS × ΣS → (S → IR≥0)
with (P + Q) s =def (P s) + (Q s) and

⊕
: ΣS → 2S → IR≥0 with⊕

P C =def
∑

s∈C(Ps), for C ⊆ S, and we use the shorthand ⊕P for⊕
P S. The proposition below trivially follows from the relevant definitions:



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 451

Proposition 1. (i) All functions in ΣS yield zero almost everywhere, i.e. for
all P ∈ ΣS the set {s ∈ S | (P s) 	= 0} is finite; (ii) ΣS is closed under +, i.e.
+ : ΣS → ΣS → ΣS. �

Proposition 1(i) above guarantees that
⊕

is well defined.

Definition 4. Let R = (S,A,�) be an RTS , then: (i) R is total if for all
s ∈ S and α ∈ A there exists P ∈ (S → IR≥0) such that s

α� P; (ii) R
is functional 1 if for all s ∈ S, α ∈ A, and P,Q ∈ (S → IR≥0) we have:
s

α� P, s
α� Q =⇒ P = Q; (iii) R is a ΣS-RTS if �⊆ S ×A×ΣS. •

In the sequel we consider only functional ΣS-RTS .

2.1 Paths and Probability Measures

For the class of functional ΣS-RTS we can easily associate a measure to com-
putations (paths) following the same approach proposed in [3].

Definition 5. If R = (S,A,�) is a functional ΣS-RTS and A′ ⊆ A, we let:

– X : S ×A→ ΣS be such that X [s, α] = P if and only if s
α� P;

– EA′
[s] =

∑
α∈A′ ⊕ X [s, α];

– RA′
[s1, α, s2] = X [s1,α](s2)

EA′ [s1]
.

A path π in R = (S,A,�) with actions in A′ ⊂ A is a non-empty sequence of
the form s0(α0, t0)s1(α1, t1) · · · where, for each i ≥ 0: si ∈ S, αi ∈ A′, ti ∈ IR>0
and X [si, αi](si+1) > 0. We say that π is maximal if and only if π is infinite or
there exists j such that sj is absorbing, i.e. X [sj , α] = [] for all α.

For path π = s0 (α0, t0) s1 (α1, t1) · · · , natural number j and t ∈ IR≥0:

len(π) =def

{∞ if π is infinite
l otherwise, where sl is the absorbing state of π

st(π, j) =def

{
sj if 0 ≤ j ≤ len(π)
undefined otherwise

ac(π, j) =def

{
αj if 0 ≤ j < len(π)
undefined otherwise

dl(π, j) =def

⎧⎨⎩
tj if 0 ≤ j < len(π)
∞ if j = len(π)
undefined otherwise

π(t) =def

{
st(π, len(π)) if t >

∑len(π)−1
j=0 tj

st(π,m) otherwise, wherem = min{j | t ≤ ∑j
k=0 tk}

1 Fully-stochastic according to the terminology used in [12].



www.manaraa.com

452 R.D. Nicola et al.

For each s ∈ S and A′ ⊆ A, PathsA′
s denotes the set of paths with actions in A′

starting from s. We also let I, I0. . . denote non-empty intervals in IR≥0 where
we use inf I and sup I to denote lower and upper bound of I respectively.

The probability measure PA′
s over PathA′

s can be defined by considering the
smallest σ-algebra on ProbA

′
s containing all the cylinder sets

C(s0, (α0, I0), . . . , (αn−1, In−1), sn)

that contain all the paths s′0(α
′
0, t

′
0)s

′
1(α

′
1, t

′
1) · · · si = s′i, α

′
i = αi and ti ∈ Ii for

i : 0 ≤ i ≤ n. The probability measure is defined inductively as follows:

– P
A′
s0 (C(s0)) = 1;

– P
A′
s0 (C(s0, (α0, I0), . . . , sn, (αn, In), sn+1)) =

P
A′
s0 (C(s0, (α0, t0), . . . , sn)) ·RA′

[sn, αn, sn+1] ·
(

e− inf In·EA′
[sn] − e− sup In·EA′

[sn]
)

3 MarCaSPiS: Markovian CaSPiS

In this section we recall a Markovian extension of CaSPiS (called MarCaSPiS)
already presented in [10]. In MarCaSPiS, each output activity (service invocation,
concretion and return) is equipped with a parameter (a rate, λ ∈ IR>0) char-
acterizing a random variable with a negative exponential distribution, modeling
the duration of the activity. Furthermore, each input activity (service definition
and abstractions) is annotated with a weight (ω ∈ N>0): a positive integer that
will be used for determining the probability that the specific input is selected
when a complementary output is executed.

The stochastic operational semantics of MarCaSPiS is defined by means of
RTS. Detailed discussions on MarCaSPiS and motivations on the proposed se-
mantics can be found in [10].

3.1 Syntax and Stochastic Semantics of MarCaSPiS

The syntax of MarCaSPiS is presented in Fig. 1, where operators are listed in
decreasing order of precedence while Ṽ and F̃ denote a sequence of values and
patterns respectively.

Let N be a countable set of names ranged over by n, n′, .... Set N contains
two disjoint countable sets Nsrv of service names s, s′, ... and Nsess of session
names r, r′ . . ., such that N \(Nsrv∪Nsess) is infinite. The set N \Nsess is ranged
over by x, y, ..., u, v....

The syntax of MarCaSPiS is similar to that of CaSPiS except for CaSPiS output
activities, which are enriched with the rates of exponential distributions, and
input activities, which are enriched with weights. We shall also assume that for
each process rec X.P , variable X is not bound in P and occurs only guarded,
i.e. prefixed by π, sω or sλ. Moreover, for each process P we assume that each
session name r occurs in P at most twice and that for each process r�Q, r does
not occur in Q. The set of all MarCaSPiS processes will be denoted by C.



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 453

P, Q ::= A Guarded Sum π ::= (F )ω Abstraction
| D Service Definitions | 〈V 〉λ Concretion

| I Service Invocations | 〈V 〉↑λ Return
| r � P Session A ::= πP |A + A

| P > Q Pipeline D ::= sω.P |D + D

| P |Q Parallel Composition I ::= sλ.P | I + I

| (νn)P Restriction
| rec X.P Recursion
| X Process Variable

V ::= u | f(Ṽ ) (f ∈ Σ) F ::= ?x|u | f(F̃ ) (f ∈ Σ)

Fig. 1. Syntax of MarCaSPiS processes

P |(νn)Q ≡ (νn)(P |Q) if n /∈ fn(P )
(νn)(νm)P ≡ (νm)(νn)P

((νn)Q) > P ≡ (νn)(Q > P ) if n /∈ fn(P )
r � (νn)P ≡ (νn)(r � P ) if r �= n

(νm)P ≡ (νn)P [n/m] if n /∈ fn(P )

Fig. 2. Structural congruence laws

Structural congruence ≡ is defined as the least congruence relation induced
by the laws in Fig. 2. This set of laws contains the structural rules for restric-
tion from the π-calculus, plus the obvious extension of the restriction’s scope
extrusion law to pipelines and sessions. For each P ∈ C we let [P ] denote its
structural congruence class and rep([P ]) the associated representative while C≡
denotes the set of representatives of the elements in C. We abstract from the
particular definition of rep([P ]). We usually write rep[P ] or even P instead of
rep([P ]), the intended meaning being clear from the context.

In order to define the RTS associated to MarCaSPiS processes we will use the
labelled transition relation defined by the rules of Table 1 and Table 2.

We find it convenient to introduce the following notations and operations on
next state functions.

Definition 6. For each P,Q : C → IR≥0 and P,Q ∈ C, C ⊆ C, we let:

– (P + Q)P = (P P ) + (Q P )
– (P|Q)R = if R = P |Q then (P P ) · (QQ) else 0
– (P·ω1

ω2
)P = if ω2 	= 0 then (P P )·ω1

ω2
else 0, where ω1, ω2 ∈ IR≥0

– P/≡ P = if P = rep[P ] then
⊕

P [P ] else 0
– P[Q/X ](R) =

∑
{P :P [Q/X]=R} P(P ).



www.manaraa.com

454 R.D. Nicola et al.

We let A be the set of transition labels α having the following syntax and
names:

α ::= μ (interactions with environment)
| γ (internal interactions)
| ←→r (session interactions)
| (νn)α (open)

μ ::= s(r) | s(r) (service definition/invocation)
| (V ) | 〈V 〉 (value consumption/production)
| r : (V ) | r : 〈V 〉 (consumption/production within session r)

| ↑ V (value return)
γ ::= ←→s (service synchronisation)

| τ (silent step)

Labels μ identify the interactions of a process with the environment, labels γ
identify internal synchronisations, while ←→r and (νn)α identify an interaction
over session r and the exection of action α under the scope of private name n.

We define names n(α), free names fn(α) and bound names bn(α) as expected;
in particular bn(s(r)) = bn(s(r)) = {r} while bn((νñ)α) = {ñ} ∪ bn(α). In the
sequel we also use ·̃ to denote sequence of elements.

Definition 7. The operational semantics of MarCaSPiS processes is defined by
means of an RTS RMC = (C≡,A,�/≡) where:

rep([P ])
α�≡ P ⇔ ∃Q ∈ [P ] : Q

α� Q ∧ P = Q≡

Rules Out,In, Ret, Inv and Def describe the behavior of concretion, abstrac-
tion, return, service definition and service invocation. For instance, rule Out

states that expression 〈V 〉λP evolves to process P with rate λ, while In states
that if σ = match(V, F ) then (F )ωP evolves to Pσ with weight ω.

Rule Sum states that P + Q can behave either like P or like Q. Moreover,
rates/weights of each transition are added to take multiplicity into account. For
instance:

〈3〉.5nil
〈3〉
� [nil �→ .5]

Out

〈3〉.75nil
〈3〉
� [nil �→ .75]

Out

〈3〉.5nil + 〈3〉.75nil
〈3〉
� [nil �→ 1.25]

Sum

Rules S-Out, S-In and S-Ret respectively state that each output (〈V 〉), input
((V )) and return (↑ V ) performed within a session becomes a session output
(r : 〈V 〉), a session input (r : (V )) and an output.

Rule S-Pass states that if P performs a transition labelled α leading to P
and α is not an input, an output or a return, and does not contain name r, the
same transition is performed by r � P leading to r � P. Rule P-Pass behaves
similarly.



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 455

Table 1. Stochastic Labelled Transition Relation (Part 1)

〈V 〉λP
〈V 〉
� [P 
→ λ]

Out
σ = match(V, F )

(F )ωP
(V )
� [Pσ 
→ ω]

In

〈V 〉↑λP
↑V
� [P 
→ λ]

Ret
r �∈ fn(P )

sλ.P
s(r)
� [r � P 
→ λ]

Inv

r �∈ fn(P )

sω.P
s(r)
� [r � P 
→ ω]

Def
P

α� P Q
α� Q

P +Q
α� P + Q

Sum

P
〈V 〉
� P

r � P
r:〈V 〉
� r � P

S-Out
P

(V )
� P

r � P
r:(V )
� r � P

S-In

P
↑V
� P

r � P
〈V 〉
� r � P

S-Ret
P

α� P α �= 〈V 〉, (V ), ↑ V r �∈ fn(α)

r � P
α� r � P

S-Pass

P
α� P α �= 〈V 〉, τ

P > Q
α� P > Q

P-Pass

P
τ� P ∀V.

(
P

〈V 〉
� PV , Q

(V )
� QV

)

P > Q
τ� (P > Q) +ΣV

(PV >Q)|QV
⊕QV

P-Sync

P
α� P Q

α� Q α �= ←→s ,←→r , (νn)α′

P |Q α� P|Q+ P |Q
Par

P
←→s� P P

s(r)
� Pd P

s(r)
� Pi Q

←→s� Q Q
s(r)
� Qi Q

s(r)
� Qd

P |Q
←→s� P|Q·⊕Pd

⊕(Pd+Qd)
+ P |Q·⊕Qd

⊕(Pd+Qd)
+ (νr)(Pd|Qi)

⊕(Pd+Qd)
+ (νr)(Pi|Qd)

⊕(Pd+Qd)

Call

P
←→r� P Q

←→r� Q ∀V.
(
P

r:〈V 〉
� P〈V 〉 P

r:(V )
� P(V ) Q

r:〈V 〉
� Q〈V 〉 Q

r:(V )
� Q(V )

)

P |Q
←→r� P|Q+ P |Q +ΣV

P〈V 〉|Q(V )

⊕Q(V )
+ΣV

P(V )|Q〈V 〉
⊕P(V )

S-Sync

P
α� P n �∈ n(α) α �= τ

(νn)P
α� (νn)P

R-Pass
P

←→n� Pn P
τ� P

(νn)P
τ� (νn)(Pn + P)

Hide

P
α� P α = (νñ)〈V 〉, (νñ) ↑ V, (νñ)r : 〈V 〉 n �∈ {ñ} n ∈ fn(V )

(νn)P
(νn)α
� P

Open

P [rec X.P/X]
α� P

rec X.P
α� P

Rec
P ≡ Q Q

α� P

P
α� P/≡

Struct



www.manaraa.com

456 R.D. Nicola et al.

Table 2. Stochastic Labelled Transition Relation (Part 2)

α �= 〈V 〉 bn(α) ∩ fn(〈V 〉λP ) = ∅

〈V 〉λP
α� []

F-Out

α �=↑ V bn(α) ∩ fn(〈V 〉λP ) = ∅

〈V 〉↑λP
α� []

F-Ret

α = (V ) → ¬match(V, F ) bn(α) ∩ fn(〈V 〉λP ) = ∅

(F )ωP
α� []

F-In

α �= s(r) bn(α) ∩ fn(sλ.P ) = ∅

sλ.P
α� []

F-Inv

α �= s(r) bn(α) ∩ fn(sω.P ) = ∅

sω.P
α� []

F-Def

nil
α� []

Nil

(νn)P
←→n� []

F-Res

Rule P-Sync governs synchronization within pipelines. A state R can be
reached from P > Q, P evolves with τ to P ′ and R = P ′ > Q or P pro-
duces a value V (leading to P ′) that Q can consume (leading to Q′) and
R = (P ′ > Q)|Q′. All the transitions not involving communication along the
pipe are captured by P

τ� P while the other ones are determined by consider-

ing, for each value V , PV and QV such that P
〈V 〉
� PV and Q

(V )
� QV . Hence,

(PV > Q)|QV characterizes all the processes reachable from P > Q after a syn-
chronization on value V while ⊕QV is the total weight of input of V in Q. Thus,
(PV >Q)|QV

⊕(QV ) characterizes the synchronization rates on V . The complete syn-
chronization rate is finally obtained by considering all possible values V that P
can generate as an output: ΣV

(PV >Q)|QV

⊕(QV ) . This value is finite and computable.

Indeed, for each process P the set of values V such that P
〈V 〉
� P and P 	= [] is

finite.
Rule Par states that if α is not a synchronization action (←→s or ←→r ), the states

reachable from P |Q via α are those reachable from P composed in parallel with
Q, and the states reachable from Q, composed in parallel with P . Notice that it
is crucial to have specific rules for proving the [] derivation when one side of the
parallel composition is not able to perform a given action; the rules defined in
Table 2 are introduced for modeling the impossibility of a process to perform a
given action. They state that no process is reachable from concretions, abstrac-
tions, returns, service definitions and service invocations by a transition that is
not labelled by one of the following: 〈V 〉, (V ), ↑ V , s(r) or s(r) respectively.
Rule Nil states that process nil cannot evolve to any other process while rule
F-Res states that no synchronization on n can occur in (νn)P . It is easy to
show that the operational semantics rules guarantee that for each P ∈ C and
for each transition label α, if fn(P )∩ bn(α) = ∅, then there exists P such that
P

α� P. Moreover, side conditions on free names permit avoiding unexpected
binding by bound names in α.



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 457

Rules Call and S-Sync model synchronization of parallel components. These
rules are similar to P-Sync, but they have to take into account local synchro-
nizations occurring in P and Q in order to build the global next state function.
Let us consider Call for the activation of service s. We first consider the sim-
plified scenario in which no activation of service s can be performed by P or Q

alone, i.e. P
←→s� [] and Q

←→s� []. In this case, we get the rule below:

P
s(r)
� Pd P

s(r)
� Pi Q

s(r)
� Qi Q

s(r)
� Qd

P |Q
←→s� (νr)(Pd|Qi)+(νr)(Pi|Qd)

⊕(Pd+Qd)

Notice that in the above rule the probabilities obtained from the weights asso-
ciated to the specific synchronisations (i.e. Pd and Qd) and the total weight of
the definitions for service s (i.e. ⊕(Pd + Qd)), are combined with the relevant
rates in the resulting next state function (νr)(Pd|Qi)+(νr)(Pi|Qd)

⊕(Pd+Qd) .
In the general case, when activation of service s can also be performed (lo-

cally) by P , i.e. P
←→s� P 	= [], or by Q, i.e. Q

←→s� Q 	= [], the total weight to
be used for computing transition probabilities, including those modeling acti-
vations of service s local to P (Q respectively), is ⊕(Pd + Qd). This implies
that the next state function for such local activation of service s, namely P|Q
(P |Q, respectively) must be first “cleaned up” of (total) weight ⊕(Pd) (⊕(Qd),
respectively), relative to P (Q, respectively) alone.

Rule S-Sync is similar. However, local synchronizations over session r within
P (resp. within Q) cannot take place. Rules R-Pass, Hide, and Open handle
name restrictions. The first rule states that if α does not contain the restricted
name, then the next state function of (νn)P is obtained as the restriction of the
next state function of P . Rule Hide handles synchronizations in the presence
of a private name while Open handles extrusion of private names. Finally, rules
Rec and Struct are standard rules for recursion and for handling structural
equivalent terms, where P/ ≡ is the next state function obtained by summation
of the rates of structurally congruent terms.

Theorem 1. RMC is a functional ΣS-RTS.

4 SoSL: Service-Oriented Stochastic Logic

In order to enable the specification of performance and dependability properties
of MarCaSPiS processes, we propose to use a temporal logic. This logic is both
action- and state-based, as opposed to only state-based logics, such as LTL and
CTL, and only action based logics, such as ACTL. This entails that modal
operators such as until are equipped with sets of actions. To be able to refer to
the service-oriented and open character of the specified systems, the logic has
some constructs to refer to the ability of the system to react to external events,
like for instance the invocation of a service, triggering the execution of some
activities. These operators are inspired by the logic MoMo [14].



www.manaraa.com

458 R.D. Nicola et al.

The action/SOC ingredients are embedded into the (action-based variant of
the) real-time probabilistic logic CSL. This results in a logic with the following
key features:

– it is a temporal logic that permits describing the dynamic evolution of the
system;

– it is both action- and state-based;
– it is a real-time logic that permits the use of real-time bounds in the logical

characterization of the behaviors of interest;
– it is a probabilistic logic that permits expressing not only functional proper-

ties, but also properties related to performance and dependability aspects;
and, finally

– it is a resource oriented logic, which permits addressing open-endedness of
SOC.

We start by presenting the syntax and semantics of SoSL and then we consider
the more practical issue of model-checking properties expressed in the logic.

4.1 Syntax

Basic state formulae. Basic state formulae permit specifying properties con-
cerning:

– the ability of a system to react to external interactions;
– the ability of a system to react to the creation/deletion of components;
– the use of private names (services).

To describe the ability of a system to react to external interactions, modal op-
erator 	μ 
�	p Φ is used. A process P satisfies 	μ 
�	p Φ if the relative probability
of satisfying Φ after a μ transition is �� p, where ��∈ {<,≤,≥, >}.

For instance, one could be interested in specifying that a process is ready to
receive an invocation on service s and, after that, property Φ is satisfied with
probability that is greater than 0.75:

	s(r) 
>0.75 Φ

In Φ session name r will be used to control the protocol of the considered service.
To verify how a given system reacts to the deletion/creation of new/existing

components, variants of the MoMo consumption (→) and production (←) oper-
ators are used. Production and consumption operators permit formalizing prop-
erties concerning the availability of resources (i.e. services and processes) and
system’s reactions to placement of new resources in a state.

A consumption formula has the following syntax:

Q→ Φ

This formula is satisfied by a process P whenever P ≡ P ′|Q and P ′ satisfies Φ.
Similarly, a production formula has the following syntax:

Q← Φ

This formula is satisfied by any process P such that P |Q satisfies Φ.



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 459

Production and consumption formulae are very useful for context-system spec-
ifications. For instance, given a net P , one could be interested in studying the
reaction of the system to the addition of a new component.

Finally, operators∇x.Φ and Φ�s, already introduced in [7], are used to specify
properties regarding the use of (new) names. A process P satisfies ∇x.Φ if and
only if there exists a (new) name n, that does not occur free neither in P nor in
Φ, such that P satisfies Φ[n/x]. A process satisfies Φ�s if and only if P ≡ (νs)Q
and Q satisfies Φ. Notice that, only service names can be revealed. Indeed,
we let communications occurring among the two participants of a session be
unobservable.

We can summarise the grammar for basic state formulae as follows:

ρ ::= Q→ Φ | Q ← Φ | 	 μ 
�	p Φ | ∇x.Φ | Φ�s

Action specifiers and action sets. As in the branching-time temporal logic
CTL, also in SoSL we distinguish between two classes of formulae, namely,
state formulae Φ,Φ′, Φ1, . . . and path formulae ϕ,ϕ′, ϕ1, . . .. As we deal with a
combined state- and action-based model it is useful to be able to refer to these
actions in the logic, in much the same vein as in action-based CTL [15]. In fact,
the actions are specified by sets of action specifiers. In the case of MarCaSPiS,
where sessions are private names that cannot be discovered, the only actions
we consider are those related to internal synchronisations γ (τ and ←→s ). Action
specifiers Ξ are built using the grammar:

Ω,Ξ ::= , | Ξ ∪Ω | Ξ −Ω | τ | ←→s | ←→?x
Here, , stands for “any set” and can be used when no requirement on actions
is imposed. Ξ ∪Ω identifies the set of actions satisfying Ξ or Ω while Ξ −Ω is
satisfied by all the actions that satisfy Ξ but do not satisfy Ω. The meaning of
the other action specifiers is now self-explanatory.

Path formulae. The basic format of a path formula is the CTL until formula
Φ U Ψ . In order to be able to refer also to actions executed along a path, we
in fact use the variant of the until operator as originally proposed in action-
based CTL [15]. To that end, the until-operator is parametrized with two action
sets. A path satisfies Φ ΞUΩ Ψ whenever eventually a state satisfying Ψ—in the
sequel, a Ψ -state—is reached via a Φ-path—i.e. a path composed only of Φ-
states—and, in addition, while evolving between Φ states, actions are performed
satisfying Ξ and the Ψ -state is entered via an action satisfying Ω. Finally, we
add a time constraint on path formulae. This is done by adding time parameter
t—in much the same way as in timed CTL [1]—which is either a real number or
may be infinite. In addition to the requirements described just above, it is now
imposed that a Ψ -state should be reached within t time units. If t = ∞, this time
constraint is vacuously true, and the until from action based CTL is obtained.
Similarly, a path satisfies Φ ΞU<t Ψ if the initial state satisfies Ψ (at time 0) or
eventually a Ψ state will be reached in the path, by time t via a Φ-path, and, in



www.manaraa.com

460 R.D. Nicola et al.

addition, while evolving between Φ-states, actions are performed satisfying Ξ.
Accordingly, the syntax of path formulae is:

ϕ ::= Φ ΞU<t
Ω Ψ | Φ ΞU<t Ψ

Note that the only difference between the two until-operators is the absence or
presence of the right-hand subscript, i.e., the action set specifying the constraints
on the action which must be executed for entering the Ψ -state. We emphasize
that Φ ΞU<tΨ is not equivalent to Φ ΞU<t

� Ψ , because the latter formula requires
that at least one transition is performed to reach a Ψ state, whereas this is not
required in the former. The precise difference between the two until-formulae
will become apparent when defining the semantics (cf. Sect. 4.2). Finally, notice
that the above interpretation of the until-operators adheres to the standard
interpretation of temporal logics. As we have seen, this entails that a formula
Φ ΞU<tΨ holds for a path whenever, e.g., the initial state satisfies Ψ . This should
not be confused with “first passage” (and is also not meant to model this) where
a transition into a Ψ -state is needed.

Obviously, variables may occur in formulae and are replaced by the associ-
ated values via the substitutions generated by action specifier pattern-matching.
For example, TRUE �U<∞←→

?x
∇y. 	 x(y) 
<=0 TRUE states that a service x will

eventually be invoked afterwards we reach a state where it is not available.

State formulae. Properties about states are formulated as state formulae.
Basically, there are three categories of state formulae. The first category includes
formulae in propositional logic, where the atomic propositions are TRUE and
the basic state formulae introduced in Sect. 4.1. The second category includes
statements about the likelihood of paths satisfying a property. Finally there
are the so-called long-run properties. Of course, in general, a formula can be
composed of sub-formulae of different categories. Let us be a bit more precise
about the probabilistic path properties. Let ϕ be a property imposed on paths.
A process P satisfies the property P�	p(ϕ) whenever the total probability mass
for all paths starting in P that satisfy ϕ meets the bound �� p. For instance,
the property P>0.99(ρ1 �U<31.2

� ρ2) states that the probability to reach a ρ2-
state within 31.2 time units, via a path of ρ1-states only, and with at least one
transition, exceeds 0.99. The following formula refers to the news server model
and states that the probability that the server news is invoked within 72.04
time-units is at least 0.85:

P≥0.85(TRUE �U<72.04←−−→news
TRUE)

Long-run properties refer to the system when it has reached an equilibrium. A
state P satisfies S�	p(Φ) if, when starting from P , the probability of reaching a
state which satisfies Φ in the long run is �� p. For instance, the formula

S≥0.2(	emailMe(r) 
≥1 TRUE)

states that, in the long run, the probability to find the system ready to invoke
service emailMe is at least 0.2.



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 461

Interesting complex properties can be built by means of nesting the above
operators.

In summary, state-formulae are built according to the grammar:

Φ ::= TRUE | ρ | ¬Φ | Φ ∨ Φ | P�	p(ϕ) | S�	p(Φ)

4.2 Semantics

In the following sections, we will discuss the satisfaction relation |= for state
formulae and path formulae. The latter will need the satisfaction relation defined
also for action specifiers.

Table 3. Satisfaction relation for state formulae

P |= TRUE

P |= ¬Φ iff P |= Φ does not hold
P |= Φ1 ∨ Φ2 iff P |= Φ1 or P |= Φ2

P |= S��p(Φ) iff limt→∞ P{π ∈ PathsAS
P | π(t) |= Φ} 
� p

P |= P��p(ϕ) iff P{π ∈ PathsAS
P | π |= ϕ} 
� p

P |= �μ 	��p Φ iff P
μ
� P and

∑
Q|=Φ

P(Q)
⊕P


� p

P |= Q → Φ iff P ≡ P ′|Q and P ′ |= Φ

P |= Q ← Φ iff P |Q |= Φ

P |= ∇x.Φ iff ∃n �∈ fn(P ) ∪ fn(Φ) : P |= Φ[n/x]

P |= Φ�s iff ∃Q : P ≡ (νs)Q and Q |= Φ

State formulae. Table 3 gives the definition of the satisfaction relation for
SoSL formulae. For deciding whether a process P satisfies formula S�	p(Φ) the
limit for t → ∞ of the probability mass of the set of all those paths π starting
from P (containing only synchronization actions) and satisfying Φ at time t
(i.e. π(t) |= Φ) must be computed and it must be checked whether it respects
bound �� p. Process P satisfies P�	p(ϕ) if the probability mass of the set of paths
starting from P (containing only synchronisation actions) which satisfy ϕ is ��
p. To compute the probability measure associated with a set of paths starting
from a process P , only internal synchronisation actions are considered. For this
reason, we consider the set PathsAS

P where AS is the set of synchronisation
labels γ defined in Section 3.

In order for a process P to satisfy Q → Ψ it must be of the form P ′|Q (up to
associativity and commutativity of parallel composition), for some P ′, and P ′

must satisfy Ψ . On the contrary, P satisfies Q ← Ψ if and only if P |Q satisfies Ψ .



www.manaraa.com

462 R.D. Nicola et al.

A process P satisfies 	μ 
�	p Ψ if and only if P can perform transition μ.
Moreover, the relative probability of satisfying Ψ after this transition is �� p.
Such a probability is computed in the following way:∑

Q|=Ψ

P(Q)
⊕P

�� p

Notice that the counter part of the considered actions could not be in the con-
sidered system. Hence, the standard stochastic operators, that only consider
synchronizations, are not able to specify this kind of properties.

The definition of the satisfaction relation for the other kinds of state formulae
is straightforward.

Table 4. Satisfaction relation for action specifiers

[], γ |= �
δ, γ |= Ξ ∪ Ω iff δ, γ |= Ξ or

δ, γ |= Ω
δ, γ |= Ξ − Ω iff δ, γ |= Ξ and

∃δ′ : δ′, γ �|= Ω
[], τ |= τ
[], ←→s |= ←→s
[s/x], ←→s |= ←→

?x

Sets of action specifiers. Table 4 gives the definition of the satisfaction re-
lation for action specifiers and sets thereof. The concept behind the definition
of the satisfaction relation for action specifiers is that an action γ satisfies an
action specifier Ξ if and only if the action matches the specifier.

Path formulae. The definition of the satisfaction relation for path formulae,
given in Table 5, formalizes the meaning of the until operators, as discussed in
Sect. 4.1.

Derived operators. Some frequently used operators can be derived from those
of SoSL. The first set of derived operators, given on the left-hand-side of Table 6,
shows how the standard until-operators from both action-based CTL and plain
CTL are obtained, the next operator, and the modalities from Hennessy-Milner
logic. The second set, given on the right-hand-side of the table, includes the
eventually (�) and always (�) operators.



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 463

Table 5. Satisfaction relation for path formulae

π |= Φ ΞU<t
Ω Ψ iff there exists k, 0 < k ≤ (len π) s.t. the following three

conditions hold:
1) t >

∑k−1
j=0 dl(π, j)

2) there exists δ s.t. the following three conditions hold:
2.1) st(π, k − 1) |= Φ
2.2) δ, ac(π, k − 1) |= Ω
2.3) st(π, k) |= Ψδ

3) if k > 1 then there exist δ0, . . . , δk−2 s.t.
for all j, 0 ≤ j ≤ k − 2 the following two conditions hold:
3.1) st(π, j) |= Φ
3.2) δj , ac(π, j) |= Ξ

π |= Φ ΞU<t Ψ iff st(π, 0) |= Ψ or
there exists k, 0 < k ≤ (len π) s.t. the following three
conditions hold:
1) t >

∑k−1
j=0 dl(π, j)

2) st(π, k) |= Ψ
3) there exist δ0, . . . , δk−1 s.t.

for all j, 0 ≤ j ≤ k − 1 the following two conditions hold:
3.1) st(π, j) |= Φ
3.2) δj , ac(π, j) |= Ξ

Table 6. Derived operators

Φ ΞUΩ Ψ =def Φ ΞU<∞
Ω Ψ

Φ U Ψ =def Φ �U Ψ

X<t
Ξ Φ =def TRUE ∅U<t

Ξ Φ

〈Ξ〉Φ =def P>0(XΞ Φ)

[Ξ] Φ =def ¬〈Ξ〉¬Φ

P��p(Ξ�<t
Ξ′ Φ) =def P��p(TRUE ΞU<t

Ξ′ Φ)

P��p(Ξ�<t
Ξ′ Φ) =def ¬P��p(Ξ�<t

Ξ′ ¬Φ)

P��p(Ξ�<t Φ) =def P��p(TRUE ΞU<t Φ)

P��p(Ξ�<t Φ) =def ¬P��p(Ξ�<t ¬Φ)

4.3 Model Checking SoSL

Following the same approach proposed in [9], we can verify whether a given
MarCaSPiS specification satisfies or not a SoSL formulae. The idea is to use ex-
isting state-based stochastic model-checkers, like e.g. the Markov Reward Model
Checker (MRMC), and wrapping them in the SoSL model-checking algorithm
and using techniques similar to those presented in [20].

SoSL-MC, which is implemented in OCaML, permits analyzing the execu-
tion of MarCaSPiS programs and generating their reachability graphs. Moreover,
after loading a MarCaSPiS specification and a formula, it verifies, by means of
one or more calls to the MRMC model checker, the satisfaction of the formula
by the specification.



www.manaraa.com

464 R.D. Nicola et al.

Examples of analysis performed with SoSL-MC can be found in Chapter 5-5
and Chapter 7-3 where two of the Sensoria case studies are taken into account.

5 Conclusions and Related Work

We have presented the Service-Oriented Stochastic Logic, SoSL, that permits
describing both action and state-based properties of service-oriented systems.
The logic is instrumental for the formal specification of performance and de-
pendability properties of systems modeled with MarCaSPiS, a stochastic calculus
that permits an integrated analysis of both qualitative and quantitative aspects
of formal specifications of services.

The proposed logic permits describing properties of the dynamic evolution
of the system. It is both action- and state-based and has operators that per-
mit modelling real-time bounds in the logical characterization of the behaviors
of interest. Moreover, SoSL is a probabilistic logic that permits expressing not
only functional properties, but also properties related to performance and de-
pendability aspects. Furthermore, the open-endness operators of SoSL, namely
	μ 
�	p Φ,Q → Φ, Q ← Φ, can be used for specifying, at the logic level (i.e.
without modification of the underlying model), how a system reacts to external
stimuli or to the inclusion or removal of entities (e.g. services or their clients).
MarCaSPiS and the proposed logic have been used in Chapter 5-5 and Chapter
7-3 for specifying and verifying quantitative aspects of two of the Sensoria case
studies.

Several (temporal) logics have been proposed which aim at describing prop-
erties of systems related either to mobility ([13,6,7,17,24] among others) or to
probabilistic/stochastic behavior (e.g. [18,19,2,3,20]), or to SOC (e.g. [16]). To
the best of our knowledge, [9] is the first approach towards a probabilistic logic
for mobility, and we are not aware of any logic which addresses all the above
mentioned important features of SOC, dealt with in SoSL.

References

1. Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235
(1994)

2. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking Continuous Time
Markov Chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)

3. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-Checking Algorithms
for Continuous-Time Markov Chains. IEEE Transactions on Software Engineer-
ing 29(6), 524–541 (2003)

4. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-
tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.
LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)



www.manaraa.com

SoSL: A Service-Oriented Stochastic Logic 465

5. Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains. In: Brinksma,
E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS,
vol. 2090, pp. 183–231. Springer, Heidelberg (2001)

6. Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and
Computation 186(2), 194–235 (2003)

7. Cardelli, L., Gordon, A.: Anytime, anywhere: modal logics for mobile ambients.
In: Twentyseventh Annual ACM Symposium on Principles of Programming Lan-
guages, pp. 365–377. ACM, New York (2000)

8. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching-time temporal logic. In: Logic of Programs, pp. 52–71 (1981)

9. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theoretical Computer Science 382(1), 42–70 (2007)

10. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian
Extension of a Calculus for Services. Electronic Notes in Theoretical Computer
Science 229(4), 11–26 (2009)

11. De Nicola, R., Latella, D., Loreti, M., Massink, M.: On a Uniform Framework
for the Definition of Stochastic Process Languages. In: Alpuente, M., Cook, B.,
Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 9–25. Springer, Heidelberg
(2009)

12. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-Based Transition Systems
for Stochastic Process Calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 435–446.
Springer, Heidelberg (2009)

13. De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Transactions on
Computational Logic 5(1), 79–128 (2004)

14. De Nicola, R., Loreti, M.: Multiple-Labelled Transition Systems for nominal calculi
and their logics. Mathematical Structures in Computer Science 18(1), 107–143
(2008)

15. De Nicola, R., Vaandrager, F.: Action versus state based logics for transition sys-
tems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,
Heidelberg (1990)

16. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
model checking approach for verifying cows specifications. In: Fiadeiro, J.L., In-
verardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg
(2008)

17. Ferrari, G., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification
environment for mobile processes. ACM Publications Home Page Transactions on
Software Engineering and Methodology 12(4), 440–473 (2003)

18. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

19. Hart, S., Sharir, M.: Probabilistic Temporal Logics for Finite and Bounded Models.
In: De Millo, R. (ed.) 16th Annual ACM Symposium on Theory of Computing, pp.
1–13. ACM, New York (1984) ISBN 0-89791-133-4

20. Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: Towards model checking
stochastic process algebra. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM
2000. LNCS, vol. 1945, pp. 420–439. Springer, Heidelberg (2000)

21. Hillston, J.: A compositional approach to performance modelling. Distinguished
Dissertation in Computer Science. Cambridge University Press, Cambridge (1996)



www.manaraa.com

466 R.D. Nicola et al.

22. Katoen, J.-P., Khattri, M., Zapreev, I.: A Markov reward model checker. In: Second
International Conference on the Quantitative Evaluation of Systems (QEST 2005),
pp. 243–244 (2005) ISBN 0-7695-0418-3

23. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Symbolic Model Checking
using PRISM: A Hybrid Approach. Software Tools and Technology Transfer 6(2),
128–142 (2004)

24. Merz, S., Wirsing, M., Zappe, J.: A spatio-temporal logic for the specification and
refinement of mobile systems. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp.
87–101. Springer, Heidelberg (2003)



www.manaraa.com

Evaluating Service Level Agreements Using
Observational Probes

Allan Clark and Stephen Gilmore

The University of Edinburgh, Scotland

Abstract. We report on our use of quantitative modelling in predicting
the success of systems and services in achieving Service Level Agreements
(SLAs). We construct models of the systems in the stochastic process
algebra PEPA[1], and queries in the language of eXtended Stochastic
Probes (XSP[2]). The query and model together are translated into an
underlying continuous time Markov chain (CTMC) which is evaluated
in order to assess the SLA. This most often requires a passage-time
analysis where a passage (sequence of activity observations) is specified
and the numerical analysis returns a function mapping the probability
of completing the passage against time since the passage was initiated.

1 Introduction

Service Level Agreements (SLAs) underpin the expectation of the performance
of a system as seen by a particular client of the service. Most often an SLA
will speak about the response-time of the system. It is usually concerned with
the time taken between the user initiating some sequence of behaviours and the
completion of the goal or end of that sequence of behaviours. Usually this will
involve some interaction with the service but may include activities that the
client performs on their own. In a more complex setting the client may interact
with a set of services in order to complete their task. This set of services may
be invoked in series or in parallel and it may be that completion is marked by
all services responding, only the fastest responding or a subset of all services
responding.

The response-time is concerned with the time taken for a user or client to
perform two activities, often called the ‘request’ and the ‘response’ although
they need not actually be requests and responses. There may be multiple kinds
of request and response activities such as successful or failed responses. An oc-
currence of a request activity begins the passage which we wish to analyse while
an occurrence of a response activity completes the passage.

An example SLA is “Ninety percent of all client requests receive some re-
sponse within ten seconds”. Note that this is more precise than a statement
about the average response-time. An average response-time does not require
any percentage of passages to be below a fixed target time. To evaluate an SLA,
passage-time quantiles leading to a cumulative distribution function (CDF) must
be computed. A CDF plots the probability of completing the passage within a

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 467–485, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

468 A. Clark and S. Gilmore

given time. The graph in Figure 1 shows four different cumulative distribution
functions all which have the same average duration. It is interesting here that
two of the distributions succeed in attaining an early SLA while the other two
fail, but when the SLA is later with a higher percentage required the successful
distributions are swapped with the failed ones.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

P
ro

ba
bi

lit
y

Time

Cdf comparison -- All have an average duration of 1.0

An SLA of 85% within 1.5 time units

An SLA of 25% within 0.6 time units

Avg Duration

lambda = 1.0, n = 1
lambda = 2.0, n = 2
lambda = 5.0, n = 5

lambda = 10.0, n = 10

Fig. 1. The passage-time profiles for four distributions all of which share the same
average duration. From their associated passage-time CDFs however we see that their
ability to satisfy distinct SLAs are quite different.

Many times this will be insufficiently precise because it does not say anything
about the kinds of responses possible and their frequency. For example one simple
way to increase the likelihood that the service attains the SLA as presented
above is to immediately reply to all requests with a failure such as “Service too
busy” or “Loan application denied”. Therefore we often wish to refine our SLA
by adding constraints such as in the following modification to the above SLA:
“Ninety percent of all positive responses are received within ten seconds” or
“Ninety percent of all client requests receive some response within ten seconds
and of those eighty-five percent are successful responses”. The first talks about
only the positive responses which may be a small or large proportion of all
responses while the second refinement is concerned with all responses in general
but specifies a proportion of acceptably fast responses which must be positive.

The analysis specification of an agreed upon SLA takes two important steps.
The first is the specification of the service as it is or will be deployed. This



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 469

includes the environment in which the service is deployed most notably the clients
which interact with the service but also may include other relevant components
which may enhance or restrict the system performance. Generally the system
is too large or expensive to reproduce for the purposes of analysis. Instead we
abstract the parts of the system which we hope are relevant to the analysis
into an abstract model which is generally defined in some modelling formalism,
but could be simply a computer program designed specifically for the purpose,
in this chapter we shall use the process algebra PEPA, which will be described
later in this section(see 1.1). The specification of the model is in part an art form,
in which the modeller must choose which parts of the real system to abstract
away from and which parts to model explicitly. There is usually a trade-off
between the accuracy of the results and the complexity of the model. The more
complex the model the less it may be understood and often the time taken for
numerical analysis will be increased. The less complex the model the easier it
is to understand and more efficient it is to evaluate, but the results may lose
their relevance to the real system if too many important details are abstracted.
In section 2 we will make use of PEPA to model an example service, that of an
emergency response service to automobile airbag deployments.

The second part is the specification of the passage of interest within the
defined model. In this chapter we will use eXtended Stochastic Probes(XSP)[2]
which will be explained in Section 3. Once the analysis specification is complete
the calculation of results is fully automated in software, this process is described
in the same section as well as our first results for our example model.

In Section 4, we analyse the results produced so far and refine the query
specification to obtain more detailed information which could allow hypothetical
service engineers to improve the system’s performance. As part of our refined
analysis we will make use of sensitivity analysis in section 4.1. Sensitivity analysis
requires that we vary a particular aspect of the model whilst maintaining the
remainder of the model constant and perform the same analysis on the resulting
set of related models. This highlights the effect that the varied aspect of the
model has on the performance of the analysed passage, in other words we learn
the sensitivity of the performance of the analysed passage to the varied aspect
of the model, hence the term sensitivity analysis. Most often the aspect of a
model which we vary is the rate at which a given activity within the model is
performed, or the population size of a given component such as the number of
server components.

1.1 PEPA

We work with the Markovian process algebra PEPA defined in [1]. Applica-
tions of the language are described in [3,4,5]. PEPA is a stochastically-timed
process algebra where sequential components are defined using prefix and choice
and models require these sequential components to cooperate on some activities,
and hide others. Rates are associated with activities performed by each compo-
nent and the passive rate , is used to indicate that the component will passively
cooperate with another on this activity. In this case the passive component may



www.manaraa.com

470 A. Clark and S. Gilmore

enable or restrict the activity from being performed by the cooperating com-
ponent but the rate when enabled is determined by the actively cooperating
component. The component (α, r).P performs the activity α at rate r whenever
it is not blocked by a cooperating component and becomes the process P . The
component (α,,).P performs the activity α passively to become the process P .
It is illegal to have such a passive activity which is not ultimately performed in
synchronisation with a component performing α actively. The , rate may be
multiplied by a scalar as in (α,,×0.3).P to affect the probability that this path
is taken when two passive occurrences of α are done in competition. Note though
that this does not affect the rate at which the activity is performed as the rate
is determined by the active component. Sequential components are combined
using the synchronisation operator, the component P ��

L Q represents the par-
allel combination of the two components P and Q which must cooperate over
the activities in the set L and may perform any other activities independently
to each other. The component P ‖ Q is a synonym for the component when the
synchronisation set is the empty set.

We use the version of PEPA with functional rates [6] (“marking dependent
rates”, in Petri nets terms) and arrays of components. We write P [5] to denote
five copies of the component P which do not cooperate and P [5][α] to denote
five copies of the component P which cooperate on the activity α. That is, P [5]
is an abbreviation for P ‖ P ‖ P ‖ P ‖ P and P [5][α] is an abbreviation for
P ��

{α} P
��
{α} P

��
{α} P

��
{α}P . We also allow the special cooperation P ��∗ Q to be

a synonym for P ��
L Q where L is the set of activities which both processes P

and Q perform. The special component Stop indicates a component which has
terminated and can no longer perform any activities. Finally our probe language
makes use of immediate actions which are written α.P to mean the process
which instantaneously performs the action α to become the process P . These
are generally cooperated over such that components can be blocked until another
component has entered a state which may perform the appropriate immediate
synchronisation.

A PEPA model can be compiled into several different formats for analysis.
There are three techniques commonly used to analyse a PEPA model; transla-
tion to a continuous time Markov chain (CTMC), a set of ordinary differential
equations (ODEs)[7] and the use of stochastic simulation algorithm (SSA)[8,9].
This is summarised in the diagram shown in Figure 2. In this chapter we will
focus on analysis by means of translation to the underlying CTMC.

2 Model Specification

The example scenario we will be using is the airbag scenario. In this case car
drivers register their car and mobile phone number with an accident service. The
car is equiped with sensors which detect when the airbag has been deployed and
whether or not this was likely due to a severe accident in which the driver or oth-
ers may be in need of emergency ambulance assistance. When this happens the
car instrument automatically sends a signal to a call centre with some number



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 471

Fig. 2. The compilation strategies for a PEPA model

of operators. The signal includes some diagnostics available from sensors within
the car including the speed of the car at the time of the accident and the loca-
tion as obtained from a GPS device. Upon receiving such a signal a call centre
operator will attempt to contact the driver of the car involved in the accident
via the registered mobile phone number. If the driver is unhurt they should pick
up the phone and can relay whether or not an ambulance is required. However
if the driver does not respond then it is assumed that an ambulance is required
and one is called for and dispatched to the scene of the accident.

There are several interesting points of analysis for such a system. We would
like to ensure that the service has enough call centre operators to service the
number of registered drivers, that is we wish to ensure that there are not more
simultaneous requests (accident detection signals) than there is capacity to deal
with. In this model we take the view that if the call centre services a small enough
area then car accidents are infrequent enough for it to be assumed that no two
accidents occur at the same time. In this case we need not model the thousands
of registered drivers of a system and can model only the interaction between a
single client driver and the call centre. In this case we are most interested in
how long the call centre operator should wait for the driver to answer before
considering the driver to be uncontactable. There is the specific case where two
or more registered drivers crash into each other, but we still make the assumption
that there are enough call centre operators to deal with this and that calling any
one of them will result in an ambulance being dispatched if one is required. The
PEPA model in Figure 3 describes the interaction between a single car driver
and the call centre.

The car component may perform an airbag activity which must be passively
observed by the driver of the car. Upon observing the airbag activity the driver
may remain unhurt and move into the Okay state. In this state the driver may
answer their phone or observe that an ambulance has arrived to help them even
though they do not require such assistance. This may happen if an ambulance is
dispatched for them because they have not answered their phone quick enough.
Alternatively upon observing the airbag activity the driver may become hurt
in which case they are unable to answer their phone and can only observe the
aid of an ambulance which has been dispatched to rescue them. When the car



www.manaraa.com

472 A. Clark and S. Gilmore

Car def= (airbag,λair).Sending
Sending def= (send, λsend).Car

Driver def= (airbag,�× 0.8).Hurt
+ (airbag,�× 0.2).Okay

Okay def= (answer, λanswer).Driver
+ (rescue,�).Driver

Hurt def= (rescue,�).Driver

Service def= (send,�).Search
Search def= (search, λsearch).Dial
Dial def= (dial, λdial).Wait
Wait def= (answer,�).Service

+ (timeout, λtimeout).Call
Call def= (ambulance, λamb).Service

Ambulance def= (ambulance,�).Rescue
Rescue def= (rescue, λrescue).Ambulance

(Car ��
airbag

Driver) ��
L (Service ��

ambulance
Ambulance)

where L = {send, answer, rescue}

Fig. 3. The PEPA model specifying the behaviour of a single car driver and call centre
for the airbag emergency service

component has completed an airbag activity they send data to the service, which
must then process the data by searching for the registered driver’s phone number
and dialing, these processes may be automatic or done by a call centre operator.

Part of the reason for producing this model is to determine whether optimis-
ing such operations would be beneficial to the service performance. After dialing
the service can either perform an answer activity in cooperation with the driver,
or can independently timeout. Notice that the service may timeout even if the
driver is unhurt, because the driver has not answered their phone fast enough.
One question our model should be able to answer is whether or not the timeout
activity has been set for the correct rate, if the rate is too slow then the ser-
vice becomes slow and ambulances are not dispatched swiftly enough to injured
drivers in need of medical assistance. However if the rate of the timeout activity
is set too high we risk needlessly calling for many ambulances for drivers who
do not require them.

Finally the service, upon failing to contact the driver and performing a timeout
will call for an ambulance which may then perform with the driver, whether the
driver is hurt or not, a shared rescue activity. The rate of the rescue activity
is particularly hard to specify since it depends on how quickly an ambulance
can be expected to navigate the traffic of the city and reach the scene of the
accident. This clearly depends on many factors such as the size of the city, the
time of the crash and the weather. However this activity will be outside of the
passages which we wish to analyse since it is not a part of the service offered
and therefore not part of a related service level agreement.

As a small aside we briefly explain here why the weights on the two pas-
sive observations of the airbag activity, performed by the Driver component do
not affect the rate at which this activity occurs. There are two ways for the
Car ��

airbag
Driver component to complete the airbag activity. We may have:

(airbag, λair).Sending → Sending
(airbag,,× 0.8).Hurt → Hurt or (airbag, λair).Sending → Sending

(airbag,,× 0.2).Driver → Driver



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 473

The rates at which both these transitions may occur are computed as per the
operational semantics of PEPA. The first is:

λair

λair
× �×0.8

(�×0.8)+(�×0.2) ×min(λair , (,× 0.8) + (,× 0.2)) = 0.8 × λair

The second is:
λair

λair
× �×0.2

(�×0.8)+(�×0.2) ×min(λair , (,× 0.8) + (,× 0.2)) = 0.2 × λair

Therefore the total rate at which the component (Car ��
airbag

Driver) performs the
airbag activity is:

(0.8 × λair) + (0.2 × λair) = λair

Notice that this calculation does not depend on the probabilities used as weights,
it is not even necessary for those weights to sum to one. The overall affect is
that the passive observations do not affect the rate of the shared activity only
the active rates do.

In the next section we consider the specification of the analysis of this model
which we would like to perform. As we stated above most commonly for ser-
vice level agreements we are interested in studying passages within the model
generally between some form of request or initiation and some form of response
or completion. There are several passages within this model which we could
analyse. Ultimately for quality of overall service we would wish to analyse the
response-time as observed by the client, this would be the time from when the
airbag is deployed until either the driver reports that they are uninjured or until
an ambulance arrives at the scene. However since the service in question has
no control over how long the ambulance takes to arrive at the scene we wish to
measure the responsiveness of the service. Therefore we measure from the airbag
activity as performed by the car until either the driver reports that they are well
or the service calls to dispatch an ambulance.

A final comment on the model is that of course there are many facets of this
problem which are difficult to quantify. Such as the likelihood that a driver who
forgot their phone is involved in an accident, the likelihood that an accident
occurs when the ambulance service is busy, the cost of unnecessarily calling on
the ambulance service etc.

3 Measurement Specification

In order to evaluate the passage in question the PEPA model is translated into
a CTMC. This is done by generating the entire state space of the model through
depth first search and calculating the rates between states of the CTMC accord-
ing to the semantics of PEPA. The CTMC analsyer is then given a set of source
states and a set of target states and computes the probability of transitioning
along some path from one of the source states to one of the target states. This
section is concerned with how we specify the sets of source and target states to
the CTMC analyser. The user should not need to know about the details of the
derived CTMC because it may be rather large and in any case the user should
specify the desired analysis at the same level as the specification of the model.



www.manaraa.com

474 A. Clark and S. Gilmore

In the previous section we discussed which passages within the model we might
wish to analyse. We talked about analysis of passages delineated by occurrences
of activities. Note that there is no reference to the states of the system. The
addition of the observing stochastic probes allows us to convert a specification
which describes observations of performed activities into specifications of the
sets of source and target states. The particular passage within the model that we
identified as important was initiated by the occurrence of an airbag activity and
terminated by either an answer or an ambulance activity. Note that we measure
the time taken from after the completion of the source activity (airbag), until
after the completion of either of the target activities (answer or ambulance).
This is an unusual response-time measurement in that the activities which begin
and end the passage are performed solely by two separate components. Usually a
response-time query analyses the time taken between one particular component
performing each of two sets of activities, the request and the response. Note
though that if it were necessary we could have the driver component observe
the calling of the ambulance by the service even though this does not match the
reality since the driver need not observe this.

In essence we have two distinct passages to measure; the first is that ended by
the client answering the phone and the second is that ended by the dispatching
of an ambulance. These passages may well have quite different passage-time
profiles since we instinctively expect the latter to take longer. Because of this
we will not consider our analysis to be complete until we have analysed both
kinds of passage in isolation, this avoids one kind of passage having unacceptably
poor performance while the other has good enough performance to compensate
thus making the general passage appear to have suitable overall performance.
In particular we would like to avoid the possibility that the airbag − answer
passage is fast enough and occurs often enough that the general passage appears
to have acceptable performance even though the airbag − ambulance passage
does not. However we will concern ourselves first of all by combining these two
kinds of passages into a single passage begun with an airbag activity and ended
with either an answer or an ambulance activity.

In order to evaluate this passage within the model we must translate the
model into a CTMC and then specify to the CTMC analyser the set of source
states and the set of target states. However we wish that the user need not know
about the CTMC derived from the model and that they specify the passage at
the same level as the model specification. The most obvious way to do this is
to specify the states in a compositional manner, that is by specifying the states
of the individual components within the model. In this case there are only four
components to specify, where the operator |= means that the named component
is in the given local state, we may begin by specifying the first source state as:

Car Component |= Sending
Driver Component |= Driver
Service Component |= Service
Ambulance Component |= Ambulance



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 475

This is only one particular source state, in this case there are more source states
such as:

Car Component |= Sending
Driver Component |= Hurt
Service Component |= Service
Ambulance Component |= Rescue

These extra source states correspond to the Driver, Service and Ambulance com-
ponents being in different states, not all are reachable, for example the Service
component cannot be in the Dial state, but in general there may be many reach-
able source states and to specify each separately would be tedious and inefficient.
Instead we specify the component states which characterise a source state, by
implication any other component may be in any state.

Car Component |= Sending

This will specify a set of states including some which are unreachable but that
need not concern us because such states will not be represented in the derived
CTMC. Target states may be specified in just the same manner by:

Service Component |= Service

After the occurrence of either the answer or the timeout which completes a
passage we enter the Service state of the service component. Note that a target
state may be entered without completing a passage of interest (in fact in this
model the initial state is also a target state) but that this does not affect the
measurement or analysis.

In general when specifying states we need not specify the name of the com-
ponent which is in the given local state. So the above can simply be written as
Service == 1, which means “there is exactly one component in the local state:
Service”.

For this particular passage the specification of the states is rather simple in
that we need only specify the exact state of one of the components. In general
state specifications may make reference to many components and relationships
between those components. Figure 4 gives the full grammar for state specifica-
tions, it is essentially a language of arithmetic and relational operators. Hence
one can specify a passage such as:

Source = Broken > Working
Target = Working > Broken

Which may be relevant for a model with a number of servers some of which may
be offline and some online. This particular specification measures a passage which
begins when the number of broken/offline servers is greater than the number of
working/online servers and ends once the reverse becomes true.

For such measurements which are concerned with the passage between two
situations, state specifications are a convenient and intuitive method of passage
specification. However many passages are delineated by two events, the source
and target events, where an event is chiefly an occurrence of an activity (though



www.manaraa.com

476 A. Clark and S. Gilmore

it may be one which occurs when the model is in some state/situation). Spec-
ifying such passages via state specifications may be error prone, because the
user must identify the states of components after a source or target event oc-
curs. Additionally the specification is non-robust to changes within the model.
So that if the modeller makes a modification to their model the specification of
the passage is likely to require an analogous update. Finally for many passages
which we wish to measure, and in particular for many response-time analyses
the source states cannot be readily specified because they are indistinguishable
from some other states within the model. We require to add something to the
model to distinguish certain states or passages such that they can be more read-
ily analysed. Our solution to these and more analysis specification problems has
been the introduction of stochastic probes which in their latest incarnation have
been called eXtended Stochastic Probes(XSP)[2].

In the XSP framework passages are described by a language specifying se-
quences of activity observations. A passage specification written in XSP is then
transformed into a PEPA component, which is then added to the model in co-
operation over the activities which it observes (we call this the alphabet of the
probe). The probe component switches states based on the activities it observes.
States of interest, and in particular the source and target states may then be
specified (automatically) by reference to the state of the probe component.

The language is similar to the language of regular expressions with the activity
observations as the tokens, for instance the following probe specification defines
a passage of one ‘a’ activity followed by one or more sequences of a ‘b’ followed
by a ‘c’ activity and finally the passage is completed by either a ‘d’ or ‘e’ activity.

a, (b, c)+, (d|e)
By default the source event is taken to be the set of activities which are enabled
at the start of the specification, which in the above example is the singleton
set {a}. The target event is taken to the be set of activities which may end the
specification, in the above example this is the set {d, e}. However the user may
override this default using the labels start and stop. A label is given using a colon
first and attached to the end of a sub-phrase of the probe specification, usually
it is simply attached to a single activity. The above example then is equivalent
to the following two probe specifications:

a:start, (b, c)+, (d:stop|e:stop)
a:start, (b, c)+, (d|e):stop

In most cases the default for the target event is correct, however in some cases it
is useful to specify a sequence of activities which must take place before a source
event is observed. At the implementation level the labels are implemented as
immediate actions and when the start label is present the source states are taken
to be those which result from an immediate start transition, and similarly the
target states are taken to be those which result from an immediate stop transition.
All of this occurs automatically and need not be known to the user. However
as we will see later one can use the fact that labels are immediate actions to
communicate events between multiple added stochastic probes.



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 477

Recall that in order to evaluate the passage the CTMC analyser must be
provided with two sets of states, the source and target states. The PEPA software
translates the stochastic probe specification into a sequential PEPA component
and then specifies the states in the same manner as we have already done for our
unprobed model using a state specification which need only refer to the added
probe component. Our passage is specified with the simple probe specification:

airbag:start, (answer | ambulance):stop
This is automatically translated into the following PEPA component:

Probe def= (airbag,,).Probe1

Probe1
def= start.Probe2

Probe2
def= (answer,,).Probe3
+ (ambulance,,).Probe3

Probe3
def= stop.Probe

This PEPA component is then composed with the entire system in a cooperation
of the activities which the probe observes the model performing (ie. the alphabet
of the probe) namely the set P = {airbag, answer, ambulance}. So that the main
cooperation of a probed model has the form:

Probe ��
P System

Notice that the states Probe1 and Probe3 are vanishing states since there are
immediate transitions from them and since we do not cooperate with any com-
ponent of the start and stop activities the probe component will never be blocked
in these states.

Our software then takes the probed model and derives the entire state space.
This is then converted into a CTMC and the set of source states are all those
states which are the result of a start transition. Similarly the set of target states
are all of those which are the result of a stop transition. The full grammar for
eXtended Stochastic Probe specification is given in Figure 5.

The graph in Figure 6 shows both the cumulative distribution and the proba-
bility density function of the response-passage we have analysed. The cumulative
distribution function (CDF) plots the probability of completing the analysed pas-
sage within the given time. As time increases the value of the CDF approaches 1,
provided that the passage must always complete (some passages may deadlock
without completing). The probability density function (PDF) is a measure of
how likely the passage is to complete at any given time after it was begun. Be-
cause a time point is infinitesimally small the probability of completing at that
exact point is zero, therefore we plot a probability density against time. It is best
thought of as the derivative of the CDF, hence when the CDF sharply increases
the PDF will be high and when the CDF is relatively flat the PDF will be close
to zero. As time goes to the limit the area under the PDF graph will approach
one, once again assuming that the passage always completes eventually. For the
remainder of this chapter we will be chiefly concerned with the CDF since these
help us to answer the queries related to the service level agreements in which



www.manaraa.com

478 A. Clark and S. Gilmore

expr := Process population
| int constant
| expr relop expr comparison
| expr binop expr arithmetic

relop := = | �= | > | <
| ≥ | ≤ relational operators

binop := + | − | × | ÷ binary operators
pred := ¬pred not

| true | false boolean
| if pred

then pred
else pred conditional

| pred && pred disjunction
| pred ‖ pred conjunction
| expr expression

Fig. 4. The full grammar for state specifications

Pdef := name :: R locally attached probe
| R globally attached probe

R := activity observe action
| R1, R2 sequence
| R1 | R2 choice
| R:label labelled
| R/activity resetting
| (R) bracketed

| R n iterate
| R{m, n} iterate
| R+ one or more
| R∗ zero or more
| R? zero or one

R := . . . | {pred}R guarded

Fig. 5. The full grammar for eXtended Stochastic Probe specifications



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 479

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160  180  200

An SLA of 90% by 100s

An SLA of 80% by 50s

cdf
pdf

Fig. 6. The cumulative distribution and probability density functions of our first anal-
ysis of the response-passage in the airbag call centre model. Shown together with two
boxes representing service level agreements.

we are interested. In this particular case we see that the CDF has a similar look
to an exponential distribution. This is because our passage in question is made
up of one of two activities which have a relatively long average duration (the
timeout and answer activities) together with several activities which have a
relatively short average duration. This means that the passage is dominated by
these two ‘bottleneck’ activities and hence the response-profile is similar to that
of simply the single activities in question. In the next section we will explore
this in more detail.

We can also determine bottleneck activities through the use of sensitivity
analysis. Sensitivity analysis allows us to vary the rate at which a particular
activity is performed whilst maintaining all other rates constant. This allows us
to determine how sensitive the passage is to that particular rate. If the response-
profile changes a lot in response to varying a particular rate then that activity
has a large affect and hence if we are trying to improve system performance
that is a good candidate activity to attempt to optimise. Where the response-
profile does not change much then that activity cannot be usefully optimised in
the present system configuration. Here we should find that optimising, in other
words decreasing the average duration of, the activities timeout and answer
would increase the performance of the system. Clearly here the answer activity
is outside the control of the system implementors but the timeout activity is not.
In this instance setting a low timeout duration may mean that we needlessly call
for the dispatch of an ambulance because the driver did not answer the phone
quickly enough.

Finally from the graph we determine whether we would satisfy a simple service
level agreement stating a percentage and a time by which the given percentage
of requests should be completed. This is shown on the graph by drawing an SLA
box by disecting the axes with a horizontal line from the given percentage and



www.manaraa.com

480 A. Clark and S. Gilmore

a vertical line from the given time. Where the CDF crosses the box along the
horizontal line the SLA has been achieved but where it crosses the vertical line
it has failed. Shown on the graph are two SLAs one which is satisfied: “Ninety
percent of all requests are completed within one hundred seconds” and one which
is not: “Eighty percent of all requests are completed within fifty seconds”.

4 SLA Analysis

We now wish to split up the measurement of the passage to allow us to separately
measure each of the two courses the passage may take. This is to detect the
case that one course is particularly fast while the other is particularly slow,
causing the slow passage to have unacceptably poor performance while the fast
passage happens often enough that the overall passage performance satisfies the
given SLA. We need not modify our model in order to analyse the two passages
separately, the language of XSP is expressive enough to allow this. We focus
first of all in analysing all passages from airbag to ambulance. We might try the
following very simplistic probe:

airbag:start, ambulance:stop

Unfortunately this will incorrectly analyse from the occurrence of any airbag ac-
tivity until an eventual ambulance activity. This includes airbag activities which
result in an unhurt driver, who may then answer the phone rather than allow
a timeout which will result in the conclusion of the passage with an ambulance
activity. It may happen that the model loops round several airbag − answer
sequences before eventually the driver is hurt and a timeout occurs and finally
the ambulance activity completes the passage. Clearly this is not analysing the
passage we intend, we would like to put a guard on the end of the airbag activity
to say that the passage should only be started when an airbag activity which
results in the driver becoming hurt is observed. Unfortunately the language of
XSP only allows guards to be put on the front of the activity. We can solve
this problem however by adding an activity which is performed after the airbag
activity, we can then put a guard on the extra activity. Of course in order to
leave the behaviour of the model and passage unaffected the extra activity must
take zero time, in other words we must use an immediate action. We can add the
immediate action with the addition of a labelled probe, which simply observes
an airbag activity and then performs the immediate action which we will name
signal. We then add a second probe that waits for a signal action to occur but
guards this with a state specification on the state after the airbag occurrence.
The two added probes are then:

airbag : signal
{Hurt == 1}signal : start, ambulance : stop

Equivalently we can separate out those airbag requests which may result in the
driver answering the phone by adding the following two probes:

airbag : signal
{Okay == 1}signal : start, (answer | ambulance) : stop



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 481

Note that we still allow this second passage to be ended via an ambulance
activity, this is because even if the airbag activity does not cause the driver to be
injured they may still miss the phone call which will result in an ambulance being
called unnecessarily. The graphs in Figure 7 depict the CDFs for both passages as
well as re-plotting the CDF of the original general passage. The left hand graph
is the original model from which we can make several observations; there are as
we supposed two distinct passages, the ‘hurt passage’ and the ‘okay passage’.
The hurt passage takes longer to complete since there are more activities and
a timeout is slower than an answer activity. The general passage which is the
combination of the two takes less time than the hurt passage but more than
the okay passage. Notice that the line for the general passage is closer to that of
the hurt passage, because this path occurs more often. In this particular model
it is easy to see that this passage occurs more often, but this is in general not
easy to tell solely from looking at the model, numerical analysis is required.

On the graphs the exponential distributions for the timeout and answer activ-
ities are also plotted. The first thing to notice is that the CDF of the hurt-passage
is similar to that of the exponential for the timeout. This gives us good evidence
that the timeout activity is dominating the hurt-passage such that it is the bot-
tleneck. This is similarly the case for the answer activity and the okay-passage.
There is an important difference, notice that it is never the case that the hurt-
passage is more likely to complete than a simple occurrence of the timeout ac-
tivity. This is because all hurt-passages include one timeout activity. However as
time increases it becomes more likely that the okay-passage is completed than is
a single occurrence of its dominating activity the answer activity. This is because
when the answer activity takes a long time the okay-passage may be shortcut by
a timeout activity, and since after the timeout all that is required to complete
the passage is the fast ambulance activity this means the okay-passage can be
faster than the slow occurrences of the answer activity. To put this another way,
the bottleneck of the okay-passage is the race between the answer and timeout
activities which is faster than a single answer activity on its own.

Finally the graph on the right is a reproduction of the graph on the left but for
a slightly modified model. In this model we have exchanged the weights on the
passive rates at which the Driver component observes the airbag activity. This
means that the hurt passage will now occur less often than the okay passage. As
we can see the two individual passages are unaffected since for those passages
the time it takes to complete is not dependent on how often they are begun.
However the general passage is now faster since the okay passage which is the
faster of the two makes up the majority of those general passage occurrences.
The CDF of the general passage is now closer to that of the okay passage.

4.1 Sensitivity Analysis

As we stated previously from our analysis of our model we suspect that the
timeout and answer activities are bottleneck activities whose rates greatly affect
the probability of completion of the passage within a given time. This model was
particularly amenable to this kind of analysis, specifically done via analysis of



www.manaraa.com

482 A. Clark and S. Gilmore

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160  180  200

hurt cdf
okay cdf

general cdf
exp timeout
exp answer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100  120  140  160  180  200

hurt cdf
okay cdf

general cdf
exp timeout
exp answer

(a) (b)

Fig. 7. Two graphs showing the CDFs for the separate passages. We also plot the
CDFs for the ‘bottleneck’ activities timeout and answer. The graph on the left is
for the original model and the graph on the right for a modified model in which the
probabilities that the driver is hurt and okay have been swapped, showing that the
CDF of the general passage resembles more closely that of the separate passage which
occurs more often.

the structure of the model. We are not always so fortunate in the composition
of our models and in any case it is important to confirm your conclusions with
numerical analysis. To some extent we have done this by noting that the CDF
lines of the two distinct passages are similar to those of the exponentials of the
suspected bottleneck activities, however for a truer understanding we require
what is known as sensitivity analysis. Generally speaking sensitivity analysis
involves varying one aspect of a model while maintaining the rest of the model
as is and performing the same analysis on each of the set of modified models.
In our case the aspect of the model which we will vary is the rate of one of the
activities. We will show the effect that varying the rates of the two suspected
bottleneck activities has on each of the passages.

The graphs in Figure 8 are surface plots representing the sensitivity of the
three analysed passages to the rates associated with the activities timeout and
answer. Graphs (a) and (c) analyse the general passage airbag − (answer |
ambulance) and graphs (b) and (d) respectively analyse the more specific pas-
sages; the hurt-passage, when the airbag activity causes the driver to be injured
and the okay-passage, when the airbag activity causes the driver to be unhurt.
Graphs (a) and (b) vary the rate associated with the timeout activity and graphs
(c) and (d) vary the rate associated with the answer activity. From graphs (a)
and (b) we see that both the general passage and the hurt passage are clearly
very much affected by the rate of the timeout activity. The hurt passage is af-
fected even more so than the general passage because some of the paths taken
for the general passage do not include a timeout activity whereas all paths for
the hurt-passage do. The difference is not very pronounced, this is because most
of the paths taken in the general passage are occurrences of the hurt-passage as
these graphs are from the original model in which eighty percent of all airbag
occurrences result in an injured driver. Contrast this with the bottom two graphs



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 483

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11 0

 20

 40

 60

 80

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

General Passage Sensitivity to timeout Rate

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11 0

 20

 40

 60

 80

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Hurt Passage Sensitivity to timeout Rate

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(a) (b)

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11 0

 20

 40

 60

 80

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

General Passage Sensitivity to answer Rate

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1  0.11 0

 20

 40

 60

 80

 100

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Okay Passage Sensitivity to answer Rate

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

(c) (d)

Fig. 8. Sensitivity analysis for the rates associated with the timeout (top two graphs)
and the answer (bottom two graphs) activities. The two graphs on the left analyse the
general passage while the graphs on the right analyse the separate ‘hurt’ (graph b) and
‘okay’ (graph d) passages showing a large effect on a separate passage is reflected in
the general passage if the given separate passage occurs often enough (top two graphs)
but not if the separate passage is infrequent relative to the general passage (bottom
two graphs).

(c) and (d). In graph (c) varying the rate associated with the answer activity
does affect the probability of completing the general passage but not by very
much, because most such passages do not include an answer activity. Graph
(d) however shows that varying this rate does have a very large affect on the
probability of completing the okay-passage, since the probability of completing
the okay-passage is not affected by how often it occurs, but is very much affected
the answer activity. Notice though that the affect that varying the rate has is
less pronounced towards the left hand of the graph when the answer rate is
small. This is because at low answer rates the answer activity is often beaten
by the timeout activity and hence even for the okay-passage many occurrences
do not feature an answer activity.

From these graphs we can confirm our suspicion from our earlier analysis that
the timeout activity is indeed a bottleneck activity for both the hurt-passage
and the general passage and that optimising this activity will have the most
significant improvement for the service of the system in general. Optimising for



www.manaraa.com

484 A. Clark and S. Gilmore

the answer activity will have less affect for the general passage. We have also
shown system performance in general is not dependent on a particular passage
performing particularly well and often enough to mask the unacceptable perfor-
mance of an important path through the model. We speculate that in this model
the important passage is the hurt-passage, as the penalty for failing to complete
this passage in a short enough time may be human life.

Lastly we note that this form of analysis must be coupled with expert anal-
ysis of the actual system in question. As modellers we can speculate that the
optimisation of certain activities will increase the system performance. How-
ever we say nothing as to how such an activity may be optimised, for example
it is difficult to see how the answer activity, performed by the client may be
optimised. Optimising the timeout activity, as we mentioned before, has some
serious effects for the system’s behaviour which have not been modelled here. In
particular with a very short timeout we risk calling for an ambulance unneces-
sarily. Such behaviour can easily be added to the model from which we could
determine the probability and frequency with which this undesired behaviour
occurs. Once again it would then require specialist knowledge, in particular the
cost of unnecessarily calling for an ambulance, to then decide upon the correct
compromise between system performance and behaviour. Such a constraint may
be written as a service level agreement which we then undertake to evaluate, for
example: “Less than five percent of airbag deployments in which the driver does
not require emergency aid result in the service requesting the dispatchment of
an ambulance”. Our goal as modellers is simply to provide data for the system
designers, it is then their task to present the most efficient/cost effective system
based on that and their own information.

5 Conclusions

In this chapter we have used the stochastic process algebra PEPA to model
and analyse a sophisticated automotive crash assistance service. The system as
deployed is clearly complex involving the traffic system of an entire city but we
have been able to identify and model the important parts for system evaluation
and abstract those parts about which assumptions must be made. In particular
we are unconcerned with how often airbags are deployed and are interested only
in the performance of the system from the moment one such registered airbag
is deployed and the succesful conclusion of the service. In particular we have
assumed that no two cars crash simultaneously in different parts of this city.
More performance modelling could be done to conclude whether or not this is
a safe assumption and whether or not the service must be therefore increased,
ie. more operators added, in order to allow the assumption that any such crash
has exclusive use of the service. This makes this service an agreeable one for
the purposes of demonstration of the technique for response-time analysis. In
general response-time analysis rests on two factors, how available the system is
for each request and how long each request takes during its usage. Here we have
concentrated on the second part of this since each use can be assumed to have
exclusive access to the service.



www.manaraa.com

Evaluating Service Level Agreements Using Observational Probes 485

Since only one client is required here the state space has been low enough to
allow precise analysis via the translation of the model into a continuous time
Markov chain. This has allowed us to use the well known technique of uniformi-
sation to obtain passage-time quantiles which map the probability of completion
of a given passage against time since the passage was initiated. This is exactly
the style of analysis that is required to answer the important questions of a ser-
vice level agreement. However we have also shown that deeper understanding of
the passage is often required such that inadequate performance is not masked
within an overall acceptable performance rate. Our key technique is the specifi-
cation of the passages to analyse in the language of eXtended Stochastic Probes.
These allow the user to define robust passages which may be used to analyse
several similar models and all at an appropriately high level akin to that with
which the user must define their model. Of particular note is that the user may
specify their passage by the events with which it is intuitively delineated rather
than the states resulting from those events.

Acknowledgements. The authors are supported by the EU FET-IST Global Com-
puting 2 project Sensoria (“Software Engineering for Service-Oriented Overlay
Computers” (IST-3-016004-IP-09)). The ipc/Hydra tool chain has been devel-
oped in co-operation with Jeremy Bradley, Will Knottenbelt and Nick Dingle of
Imperial College, London.

References

1. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge Uni-
versity Press, Cambridge (1996)

2. Clark, A., Gilmore, S.: State-aware performance analysis with eXtended Stochastic
Probes. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 125–140.
Springer, Heidelberg (2008)

3. Hillston, J.: The nature of synchronisation. In: Herzog, U., Rettelbach, M. (eds.)
Proceedings of the Second International Workshop on Process Algebras and Perfor-
mance Modelling, Erlangen, pp. 51–70 (1994)

4. Hillston, J.: Tuning systems: From composition to performance. The Computer Jour-
nal 48(4), 385–400 (2005); The Needham Lecture paper

5. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago, pp.
239–248. IEEE Computer Society Press, Los Alamitos (2005)

6. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models. In: de
Alfaro, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and PAPM
2001. LNCS, vol. 2165, pp. 120–135. Springer, Heidelberg (2001)

7. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

8. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of
Physical Chemistry 81(25), 2340–2361 (1977)

9. Bradley, J., Gilmore, S.: Stochastic simulation methods applied to a secure electronic
voting model. Electr. Notes Theor. Comput. Sci. 151(3), 5–25 (2006)



www.manaraa.com

Scaling Performance Analysis Using
Fluid-Flow Approximation�

Mirco Tribastone and Stephen Gilmore

School of Informatics
The University of Edinburgh, Scotland

{mtribast,stg}@inf.ed.ac.uk

Abstract. The fluid interpretation of the process calculus PEPA pro-
vides a very useful tool for the performance evaluation of large-scale
systems because the tractability of the numerical solution does not de-
pend upon the population levels of the system under study. This paper
offers a tutorial on how to use this technique by analysing a case study of
a service-oriented application to support an e-University infrastructure.

1 Introduction

The quantitative analysis of large-scale applications using discrete-state models
is fundamentally hampered by the rapid growth of the state space as a func-
tion of the number of components in the system (state-space explosion). Markov
chains—traditionally employed in performance evaluation studies—are no ex-
ception, despite much effort aimed at largeness avoidance, e.g., by means of
aggregation techniques [1] or largeness tolerance, e.g., by means of out-of-core
solution methods [2]. One radical approach to tackling state-space explosion is to
abandon the discrete-state representation in favour of a continuous-state view
expressible in terms of a computationally less expensive ordinary differential
equation (ODE) model. Here, the performance evaluation is based on the nu-
merical integration of an associated initial-value problem, whose tractability is
largely independent from the actual population levels of the system under study.
Interestingly, under specific circumstances ODE models may be directly inferred
from Markov models, and represent the limiting behaviour of the stochastic
process when some system parameter, typically population size, is sufficiently
large [3]. In such cases these ODEs shall be referred to as the fluid-flow approx-
imation of the associated Markov model.

The stochastic process algebra PEPA gives rise to continuous-time Markov
chains (CTMCs) which admit a fluid-flow approximation, therefore it can be
used as a scalable analysis tool for the performance evaluation of large systems.
There are three main advantages in using a high-level modelling language as
opposed to a direct description based on the CTMC representation. First, the
language is formal and can be implemented on a computer, thus providing a

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 486–505, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 487

general modelling framework. Second, the model may be used to carry out other
forms of analysis beyond performance evaluation, e.g., static analysis to verify the
well-formedeness of the input model, or model-checking for deadlock detection.
Third, in most cases the model description is more compact than its underlying
representation, whose fully automated derivation process shields the modeller
from typically tedious and error-prone tasks.

The purpose of this paper is to provide a tutorial on how to use PEPA for
modelling large-scale systems. After an overview of the language and its stochas-
tic and fluid-flow interpretations in Section 2, the paper presents in Section 3
a model of a service-oriented application for an e-University infrastructure sup-
porting thousands of students. The model is developed according to a more
general modelling pattern which captures performance concerns related to re-
source contention at both the hardware and the software level. Section 4 deals
with the analysis of the model from the standpoint of the user-perceived perfor-
mance, computed as the average response time of the system. This analysis is
accompanied by screenshots of a software toolkit for PEPA (the PEPA Eclipse
Plug-in, one of the formal analysis tools hosted on the Sensoria Development
Environment) to show how the results can be practically evaluated. Finally,
Section 5 gives concluding remarks.

2 Overview of PEPA

2.1 Language Operators

PEPA is a CSP-like process calculus extended with the notion of exponentially
distributed activities [4]. A PEPA model consists of a collection of components
(also termed processes) which undertake actions. A component may perform
an action autonomously (independent actions) or in synchronisation with other
components in the system (shared actions). The language supports the following
operators:

Prefix (α, r).E constitutes the atomic unit of computation of a PEPA model.
It denotes a component which may perform an activity (α, r) of type α,
subsequently behaving as E , which is said to be a derivative of the compo-
nent. The activity rate r is taken from the domain R>0 ∪ {,}. If the rate
is a positive real then the activity duration is assumed to be drawn from an
exponential distribution with mean 1/r time units. The symbol , denotes a
form of passive synchronisation whereby an activity of type α is to be exe-
cuted in synchronisation with some other component, which will determine
the overall rate of execution of the shared action. The models presented in
this paper do not make use of passive synchronisation. The set of action
types in a PEPA model is denoted by A, whereas Act denotes the set of
activities.

Choice E + F indicates that a component may behave as E or F . Unlike tradi-
tional process calculi in which the choice is non-deterministic, the behaviour
in PEPA (and indeed in all other stochastic process calculi) is determined



www.manaraa.com

488 M. Tribastone and S. Gilmore

stochastically. For instance, let r , s > 0, in the choice (α, r).E + (β, s).F the
actions α and β are executed with probabilities r/(r + s) and s/(r + s),
respectively.

Constant A def= E is used to model cyclic behaviour. Consider A def= (α, r).B ,
B def= (β, s).A. Here, A is a component with two derivatives which performs
sequences of α- and β-activities forever.

Cooperation E ��
L

F is the synchronisation operator of PEPA. The compo-
nents E and F are required to synchronise over the action types in the
set L. All the other actions are performed autonomously. For instance,
(α, r).(β, s).E ��

{α} (α, t).(γ, u).F is a cooperation between two components
which may perform a shared activity of type α, with rate min(r , t), subse-
quently behaving as (β, s).E ��

{α} (γ, u).F . Then actions β and γ are carried

out autonomously. By contrast, in the cooperation (α, r).E ��
{α} (β, s).F the

process (α, r).E does not progress because α is not available in the right
hand side of the cooperation. The set of all shared action types between E
and F is sometimes denoted by the symbol ∗.

Hiding E/L relabels the activities of E with the silent action τ for all types in
L. Thus,

(
(α, r1 ) .E/{α}) ��

{α} (α, r2 ).F does not cooperate over α because
the process in the left-hand side of the cooperation performs a transition
(τ, r1) to E . All α-transitions performed by E are similarly hidden.

An interesting class of PEPA models comprises those which can be generated
by the following two-level grammar:

S ::= (α, r).S | S + S | AS , AS
def= S

C ::= S | C ��
L

C | C/L | AC , AC
def= C

The first production defines sequential components, i.e., processes which only
exhibit sequential behaviour (by means of the prefix operator), and branching
(by means of the choice operator). The second production defines model compo-
nents, in which the interactions between the sequential components are expressed
through the cooperation and hiding operators. A model component designated as
the system equation defines the environment which embraces all of the behaviour
of the system under study.

The model shown in Fig. 1 is defined using such a grammar and will be
used in the remainder of this section to illustrate the main properties of PEPA.
The model may represent a basic client/server scenario. A client is a sequen-
tial component which cycles between the two derivatives Download and Think .
Similarly, a server is a two-derivative component with derivatives Upload and
Log. In derivative Download the client is able to carry out a shared action comm
in cooperation with the server’s derivative Upload . The derivatives Think and
Log model autonomous activities performed by the components. In a distributed
application, activities of this kind may be used to denote genuinely local compu-
tations or to abstract away interactions with other components with negligible
impact on the performance characteristics of the system. The use of a component



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 489

Download
def= (comm, rd).Think

Think
def= (think , rt).Download

Upload
def= (comm, ru).Log

Log
def= (log , rl).Upload

System
def= Download [NC ] ��

{comm} Upload [NS ]

Fig. 1. Simple PEPA model of a client/server scenario

array E [N ] occurs frequently in the modelling of large-scale systems because it
characterises a population ofN independent and identical sequential components
E . More formally, E [N ] is a shorthand notation for E ��

∅ E · · · ��
∅ E︸ ︷︷ ︸

N

. Although

this notation does not add expressiveness to the language with respect to its
stochastic semantics, replicated behaviour in this form is fundamental in the
fluid-flow interpretation of PEPA, as shown later in this section.

2.2 Markovian Semantics

The operational semantics of PEPA is shown in Fig. 2. Rule C2 is the funda-
mental inference for the characterisation of the dynamic behaviour of a shared
action. It implements the semantics of bounded capacity: informally, the overall
rate of execution of a shared activity is the minimum between the rates of the
synchronising components (as a result, since the individual activities are expo-
nentially distributed so is the synchronised action). The rule relies on the notion
of apparent rate to compute the total capacity of a cooperating component,
according to the following definition.

Definition 1. The apparent rate of action α in process E, denoted by rα (E ),
indicates the overall rate at which α can be performed by E. It is recursively
defined as follows:

rα ((β, r) .E ) =

{
r if β = α

0 if β 	= α

rα (E + F ) = rα (E ) + rα (F )

rα

(
E ��

L
F
)

=

{
min (rα (E ) , rα (F )) if α ∈ L

rα (E ) + rα (F ) if α 	∈ L

rα (E/L) =

{
rα (E ) if α 	∈ L

0 if α ∈ L



www.manaraa.com

490 M. Tribastone and S. Gilmore

Prefix

S0 :
(α, r).E

(α,r)−−−→ E

Choice

S1 :
E

(α,r)−−−→ E ′

E + F
(α,r)−−−→ E ′ + F

S2 :
F

(α,r)−−−→ F ′

E + F
(α,r)−−−→ E + F ′

Cooperation

C0 :
E

(α,r)−−−→ E ′

E ��
L

F
(α,r)−−−→ E ′ ��

L
F

, α �∈ L C1 :
F

(α,r)−−−→ F ′

E ��
L

F
(α,r)−−−→ E ��

L
F ′

, α �∈ L

C2 :
E

(α,r1)−−−−→ E ′ F
(α,r2)−−−−→ F ′

E ��
L

F
(α,R)−−−→ E ′ ��

L
F ′

, α ∈ L R =
r1

rα(E )
r2

rα(F )
min (rα(E ), rα(F ))

Hiding

H0 :
E

(α,r)−−−→ E ′

E/L
(α,r)−−−→ E ′/L

, α �∈ L H1 :
E

(α,r)−−−→ E ′

E/L
(τ,r)−−−→ E ′/L

, α ∈ L

Constant

A0 :
E

(α,r)−−−→ E ′

A
(α,r)−−−→ E ′

, A
def= E

Fig. 2. Markovian semantics of PEPA

According to this definition, for the array of sequential components
Download [NC ] the apparent rate of comm is

rcomm (Download [NC ]) = NC rcomm (Download) = NC × rd. (1)

Similarly,

rcomm (Upload [NS ]) = NS rcomm (Upload) = NS × ru. (2)

Given a PEPA component E , the operational semantics induces the derivative
set, denoted by ds(E ), which is the set of the possible states reachable from E .
A derivation graph whose nodes are in ds(E ) and arcs in ds(E ) ×Act × ds(E )
indicates all the transitions between each pair of derivatives of E . Arcs are taken
with multiplicity corresponding to the number of distinct inference trees which
give the same transition. The derivation graph is ultimately mapped onto a
CTMC in which each state corresponds to a derivative in ds(E ).

The states reachable from the system equation System in Fig. 1 are obtained
by constructing derivation trees which begin with the transitions enabled by
the constituent sequential components. By rules S0 and A0 the following two
transitions can be inferred for Download and Upload :



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 491

Download
(comm,rd)−−−−−−−→ Think (3)

Upload
(comm,ru)−−−−−−−→ Log (4)

The dynamic behaviour of the leftmost component Download of the array can
be collected by NC − 1 applications of rule C0. The first application has the
form:

Download
(comm,rd)−−−−−−−→ Think

Download ‖ Download
(comm,rd)−−−−−−−→ Think ‖ Download

Then, for 1 ≤ i ≤ NC − 2, the other NC − 2 applications are of type

Download ‖ Download [i]
(comm,rd)−−−−−−−→ Think ‖ Download [i]

Download ‖ Download [i] ‖ Download
(comm,rd)−−−−−−−→ Think ‖ Download [i] ‖ Download

For i = NC − 2, the conclusion of this rule may be written as

Download [NC ]
(comm,rd)−−−−−−−→ Think ‖ Download [NC − 1] (5)

The behaviour of the leftmost component Upload can be collected in a similar
way, leading to a transition in the form

Upload [NS ]
(comm,ru)−−−−−−−→ Log ‖ Upload [NS − 1] (6)

Finally, by applying rule C2 to (5) and (6),

Download [NC ] ��
{comm} Upload [NS ]

(comm,R)−−−−−−→
Think ‖ Download [NC − 1] ��

{comm} Log ‖ Upload [NS − 1] (7)

where, by rule C2 and equations (1) and (2),

R =
rd

rcomm (Download [NC ])
ru

rcomm (Upload [NS ])
× min (rcomm (Download [NC ]) , rcomm (Upload [NS]))

=
rd

NC rd

ru

NS ru
min (NC rd, NS ru) =

1
NC

1
NS

min (NC rd, NS ru)

The conclusion of (7) is not the only transition enabled by the System, because
each individual component Download can be paired with each component Upload
to carry out action comm . Hence, Download [NC ] ��

{comm} Upload [NS ] enables NC×
NS transitions to distinct states of type

Download ‖ · · · ‖ Download ‖ Think ‖ Download ‖ · · · ‖ Download︸ ︷︷ ︸
NC sequential components

��
{comm} Upload ‖ · · · ‖ Upload ‖ Log ‖ Upload ‖ · · · ‖ Upload︸ ︷︷ ︸

NS sequential components

(8)



www.manaraa.com

492 M. Tribastone and S. Gilmore

which only differ in the locations of the components Think and Log . Since each
transition occurs at rate R, the exit rate from Download [NC ] ��

{comm} Upload [NS ] is
NC ×NS×R = min (NC rd, NSru) and the factor 1/(NC×NS) is the probability
that one specific pair of components makes that transition.

2.3 Markovian Aggregation Techniques

Each of the states of kind (8), say Think ‖ Download [NC − 1] ��
{comm} Log ‖

Upload [NS − 1], has transitions to (NC − 1)× (NS − 1) distinct states in which
there are two copies of Think , (NC − 2) copies of Download , two copies of Log ,
and (NS − 2) copies of Upload . Similarly, each of such states, say Think [2] ‖
Download [NC − 2] ��

{comm} Log[2] ‖ Upload [NS − 2], has transitions to (NC − 2)×
(NS −2) distinct states in which there are three copies of Think , (NC −3) copies
of Download , three copies of Log , and (NS − 3) copies of Upload . Overall, this
model will have a state space of cardinality 2NC+NS , clearly unsatisfactory for
large-scale models. The reduction technique presented in [5] goes a long way
toward alleviating this problem. Using a strong notion of equivalence in PEPA
called isomorphism, the original states are aggregated in such a way that the
location of each sequential component is not recorded, therefore the NC × NS

states of kind (8) collapse into the same state of the aggregated chain. The re-
duction achieved by this algorithm depends on the structure of the model under
study. Overall, the exponential growth of the non-aggregated state space of the
model in Fig. 1 is simplified to a state space cardinality which is polynomial in
NC and NS (the state space size is (NC + 1) × (NS + 1)).

2.4 Fluid-Flow Approximation

The fundamental limitation of the Markovian approach is that the model dy-
namics is based on a discrete-state representation. As the number of components
increases, more and more of these discrete changes need to be accounted for,
leading to a dramatic growth in the state-space. The fluid-flow approximation
abandons the traditional Markovian interpretation in favour of an alternative
view in which such discrete changes are approximated in a continuous fashion.
This section presents the rationale behind this approach by means of the run-
ning example in Figure 1. Further details may be found in the papers which have
dealt with this analysis more formally [6,7,8,9].

The fluid-flow interpretation deals with populations of identical components.
Since one single individual is a sequential component cycling through a number
of derivatives, the population behaviour is described by a state representation
which counts how many individuals exhibit a particular derivative at any point
in time. For instance, the model in Fig. 1 shows two distinct population classes,
i.e., NC components cycling through Download and Think , and NS components
cycling through Upload and Log. Based on this, it is possible to define a vector
state descriptor, called the numerical vector form (NVF), in which each element
of the vector is associated with a distinct derivative in the system. The initial



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 493

state System in Fig. 1 can be represented by the NVF (NC , 0, NS, 0), using the
mapping whereby the elements of the vector, from left to right, are associated
with the population levels of Download , Think , Upload , and Log. Analogously,
the aggregated state for (8) is given the NVF (NC−1, 1, NS−1, 1). The transition
between these two states may be represented as follows:

(NC , 0, NS, 0)
comm,min(NC rd,NSru)−−−−−−−−−−−−−−−−→ (NC − 1, 1, NS − 1, 1) (9)

A crucial step toward fluid-flow approximation is the generalisation of (9) for an
arbitrary NVF ξ, i.e.,

ξ = (ξ1, ξ2, ξ3, ξ4)
comm,min(ξ1 rd,ξ3ru)−−−−−−−−−−−−−−→ ξ′ = (ξ1 − 1, ξ2 + 1, ξ3 − 1, ξ4 + 1) (10)

With analogous arguments it is possible to derive generic transitions for the
activities think and log, i.e.,

ξ = (ξ1, ξ2, ξ3, ξ4)
think ,ξ2rt−−−−−−→ ξ′′ = (ξ1 + 1, ξ2 − 1, ξ3, ξ4) (11)

ξ = (ξ1, ξ2, ξ3, ξ4)
log,ξ4rl−−−−−−→ ξ′′′ = (ξ1, ξ2, ξ3 + 1, ξ4 − 1) (12)

Such transitions can be interpreted in a continuous manner. For instance, (10)
says that there is (on average) a unitary decrease in the number of components
Download and Upload after 1/min (ξ1rd, ξ3ru) time units, to which it corre-
sponds a unitary increase in the components Think and Log . Letting xi(t), 1 ≤
i ≤ 4, be the continuously changing population counts, their variation due to
this transition over some finite interval of time Δt may be written as:

x1(t+Δt) − x1(t) = −min(x1(t)rd, x3(t)ru)Δt
x2(t+Δt) − x2(t) = −min(x1(t)rd, x3(t)ru)Δt
x3(t+Δt) − x2(t) = + min(x1(t)rd, x3(t)ru)Δt
x4(t+Δt) − x2(t) = + min(x1(t)rd, x3(t)ru)Δt

(13)

Incorporating the contributions of the transitions (11) and (12) into (13) in a
similar way leads to the finite-difference equations

x1(t+Δt) − x1(t) = −min(x1(t)rd, x3(t)ru)Δt+ x2(t)rtΔt

x2(t+Δt) − x2(t) = −min(x1(t)rd, x3(t)ru)Δt− x2(t)rtΔt

x3(t+Δt) − x2(t) = +min(x1(t)rd, x3(t)ru)Δt+ x4(t)rlΔt

x4(t+Δt) − x2(t) = +min(x1(t)rd, x3(t)ru)Δt− x4(t)rlΔt

(14)

which define the following ODE model by dividing (14) by Δt and taking the
limit Δt→ 0:

ẋ1 = −min(x1(t)rd, x3(t)ru) + x2(t)rt

ẋ2 = −min(x1(t)rd, x3(t)ru) − x2(t)rt

ẋ3 = +min(x1(t)rd, x3(t)ru) + x4(t)rl

ẋ4 = +min(x1(t)rd, x3(t)ru) − x4(t)rl



www.manaraa.com

494 M. Tribastone and S. Gilmore

Related Work. The topic of deterministic interpretation of process algebra
models has received much attention recently. Cardelli has investigated the re-
lationship between the continuous- and the discrete-state representation of the
Chemical Ground Form, used for the modelling of chemical reactions [10]. A
route toward fluid approximation has also been followed in the context of the
stochastic Concurrent Constraint Programming process algebra [11].

3 e-University Case Study

The model presented in this section is based on the e-University Sensoria case
study (also cfr. Chapter 0-2 and Deliverable 8.4.a [12]). The scenario of interest
is the Course Selection scenario, where students obtain information about the
courses available at their education establishment and may enrol in those for
which specific requirements are satisfied.

Although the overall application is intended to be service-oriented, the sce-
nario investigated here is such that the kinds of services available in the system
do not to change over the time frame captured by this model. This reflects the
fact that a university’s course organisation is likely to be fixed before it is offered
to students (furthermore, minor changes are likely not to affect the system’s be-
haviour significantly). The model will not consider other services which may be
deployed in an actual application (e.g., authentication services) because their
impact on performance is assumed to be negligible. The scenario also considers
a constant population of students to capture a real-world situation where the
university’s matriculation process is likely to be completed before the application
may be accessed.

3.1 Model

The access point to the system is the University Portal, a front-end layer which
presents the available services in a coherent way, e.g., by means of a web in-
terface. There are four services in this model: (i) Course Browsing allows the
user to navigate through the University’s course offerings; (ii) Course Selection
allows the user to submit a tentative course plan which will be validated against
the University’s requirements and the student’s curriculum; (iii) Student Con-
firmation will enforce the student to check relevant personal details; (iv) Course
Registration will confirm the student’s selection. These components make use
of an infrastructural Database service, which in turn maintains an event log
through a separated Logger service.

The modelling paradigm adopted here captures the behaviour of a typical
multi-threaded multi-processor environment used for the deployment and the ex-
ecution of the application. The University Portal instantiates a pool of threads,
each thread dealing with a request from a student for one of the services offered.
During the processing of the request the thread cannot be acquired by further
incoming requests, but when the request is fulfilled the thread clears its current



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 495

Fig. 3. Deployment diagram of the e-University case study. Solid connectors between
components indicate request/reply communication. Dashed lines denote the deploy-
ment of services onto processors.

state and becomes available to be acquired again. Analogous multi-threaded be-
haviour will be given to Database and Logger. Performance issues may arise from
the contention of a limited number of threads by a potentially large population
of students. If at some time point all threads are busy, further requests must
queue, provoking delays and capacity saturation. This model also proposes an-
other level of contention by explicitly modelling the processors on which the
threads execute. Here, delays may occur when many threads try to acquire a
limited number of processors available. Furthermore, this may be worsened by
running several multi-threaded services on the same multi-processor system, as
will be the case in the deployment scenario considered in this model: University
Portal will run exclusively on multi-processor PS, whereas Logger and Database
will share multi-processor PD (cfr. Fig. 3).

General modelling patterns. Processing a request involves some computa-
tion on the processor on which the service is deployed. Such a computation in
the PEPA model is associated with an activity (type, rate), where type uniquely
identifies the activity and rate denotes the average execution demand on the pro-
cessor (i.e., 1/rate time units). A single processing unit may be modelled using a
two-state sequential component. One state enables an acquire activity to grant
exclusive access to the resource, while the other state enables all the activities
deployed on the processor. Letting n be the number of distinct activities, the
following pattern is used for a processor:

Processor1
def= (acquire, racq).Processor2

Processor2
def= (type1 , r1 ).Processor1
+ (type2 , r2 ).Processor1
+ . . .

+ (typen , rn).Processor1

(15)

Communication in this model is synchronous and is modelled by a sequence of
two activities in the form (requestfrom,to , rreq).(replyfrom,to , rrep) where the sub-
script from denotes the service from which the request originates and to indicates
the service required. A recurring situation is a form of blocking experienced by



www.manaraa.com

496 M. Tribastone and S. Gilmore

the service invoking an external request. Let A and B model two distinct inter-
acting services, e.g.,

A
def= (requestA,B , rreqA).(replyA,B , rrepA).A′

B
def= (requestA,B , rreqB).(execute, r).(replyA,B , rrepB).B ′

The communication between A and B will be expressed by means of the cooper-
ation operator A ��

L
B , L = {requestA,B , replyA,B}. According to the operational

semantics, A and B may initially progress by executing requestA,B , subsequently
behaving as the process (replyA,B , rrepA).A′ ��

L
(execute, r).(replyA,B , rrepB).B ′.

Now, although the left-hand side of the cooperation enables replyA,B , the ac-
tivity is not offered by the right-hand side, thus making the left-hand side ef-
fectively blocked until execute terminates (i.e., after an average duration of 1/r
time units). These basic modelling patterns will be used extensively in this case
study, as discussed next.

University Portal. A single thread of execution for the application layer Uni-
versity Portal is implemented as a sequential component which initially accepts
requests for any of the services provided:

Portal def= (requeststudent,browse , ν).Browse
+ (requeststudent,select , ν).Select
+ (requeststudent,confirm , ν).Confirm
+ (requeststudent,register , ν).Register

The rate ν will be used throughout this model in all the request/reply activities.
In the following, the action type acquireps is used to obtain exclusive access to
processor PS .

Course Browsing is implemented as a service which maintains an internal
cache. When a request is to be processed, the cache query takes 1/rcache time
units on average, and is successful with probability 0.95, after which the retrieved
data is processed at rate rint . Upon a cache miss, the information is retrieved
by the Database service, and is subsequently processed at rate rext :

Browse def= (acquireps , ν).Cache

Cache def= (cache , 0.95rcache).Internal + (cache, 0.05rcache).External

Internal def= (acquireps , ν).(internal , rint ).BrowseRep

External def= (requestexternal,read , ν).(replyexternal,read , ν).
(acquireps , ν).(external , rext).BrowseRep

BrowseRep def= (replystudent,browse , ν).Portal

(16)

Course Selection comprises four basic activities. An initial set-up task initialises
the necessary data required for further processing (rate rprep). Then, two ac-
tivities are executed in parallel, and are concerned with validating the selection



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 497

against the university requirements (rate runi) and the student’s curriculum
(rate rcurr ), respectively. Finally, the outcome of this validation is prepared to
be shown to the student (rate rdisp). The relative ordering of execution is main-
tained by considering three distinct sequential components. The first component
prepares the data, then forks the two validating processes, waits for their com-
pletion, and finally displays the results:

Select def= (acquireps , ν).(prepare , rprep).ForkPrepare

ForkPrepare def= (fork , ν).JoinPrepare

JoinPrepare def= (join , ν).Display

Display def= (acquireps , ν).(display , rdisp).SelectRep

SelectRep def= (replystudent,select , ν).Portal

The two validating processes are guarded by the fork/join barrier as follows:

ValUni def= (fork , ν).(acquireps , ν).(validateuni , runi).(join , ν).ValUni

ValCur def= (fork , ν).(acquireps , ν).(validatecur , rcur ).(join , ν).ValCur
(17)

These components will be arranged as follows in order to obtain a three-way
synchronisation:

Select ��
{fork,join} ValUni ��

{fork,join} ValCur

Student Confirmation is represented in the PEPA model as an activity performed
at rate rcon . The service uses Logger to register the event:

Confirm def= (acquireps , ν).(confirm , rcon).LogStudent

LogStudent def= (requestconfirm,log , ν).(replyconfirm,log , ν).ReplyConfirm

ReplyConfirm def= (replystudent,confirm , ν).Portal

(18)

Finally, Course Registration performs some local computation (rate rreg) and
then contacts Database to store the information:

Register def= (acquireps , ν).(register , rreg).Store

Store def= (requestregister ,write , ν).(replyregister ,write , ν).ReplyRegister

ReplyRegister def= (replystudent,register , ν).Portal
(19)

The general pattern (15) is applied to processor PS as follows:

PS1
def= (acquireps , ν).PS2

PS2
def= (cache , rcache).PS1 + (internal , rint ).PS1 + (external , rext).PS1

+ (prepare , rprep).PS1 + (display , rdisp).PS1 + (validateuni , runi).PS1

+ (validatecur , rcur ).PS1 + (confirm, rcon).PS1 + (register , rreg).PS1



www.manaraa.com

498 M. Tribastone and S. Gilmore

Database. This service exposes two functions for reading and writing data.
Reading is a purely local computation, whereas writing additionally uses the
Logger service. In this model, Database is only accessed by the university por-
tal in states External and Store in equations (16) and (19), respectively. Let
PD denote the processor on which Database is deployed, acquired through ac-
tion acquirepd . Similarly to University Portal, a single thread of execution for
Database is:

Database def= (requestexternal,read , ν).Read
+ (requestregister ,write , ν).Write

Read def= (acquirepd , ν).(read , rread).ReadReply
ReadReply def= (replyexternal,read , ν).Database

Write def= (acquirepd , ν).(write , rwrite).LogWrite
LogWrite def= (requestdatabase,log , ν).(replydatabase,log , ν).WriteReply

WriteReply def= (replyregister ,write , ν).Database

(20)

Logger. This service accepts requests from Student Confirmation and Database,
as described in equations (18) and (20), respectively. It is deployed on the same
processor as Database, i.e., processor PD . Thus, one thread execution may be
modelled as follows:

Logger def= (requestconfirm,log , ν).LogConfirm
+ (requestdatabase,log , ν).LogDatabase

LogConfirm def= (acquirepd , ν).(logconf , rlgc).ReplyConfirm
ReplyConfirm def= (replyconfirm,log , ν).Logger
LogDatabase def= (acquirepd , ν).(logdb , rlgd).ReplyDatabase

ReplyDatabase def= (replydatabase,log , ν).Logger

(21)

Taking together (20) and (21) it is possible to write the sequential component
that models the processor PD :

PD1
def= (acquirepd , ν).PD2

PD2
def= (read , rread).PD1 + (write , rwrite).PD1

+ (logconf , rlgc).PD1 + (logdb , rlgd).PD1

Student Workload. A student is modelled as a sequential component which
interacts with the university portal and cyclically accesses all of the services
available:

StdThink def= (think , rthink ).StdBrowse

StdBrowse def= (requeststudent,browse , ν).(replystudent,browse , ν).StdSelect

StdSelect def= (requeststudent,select , ν).(replystudent,select , ν).StdConfirm

StdConfirm def= (requeststudent,confirm , ν).(replystudent,confirm , ν).StdRegister

StdRegister def= (requeststudent,register , ν).(replystudent,register , ν).StdThink



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 499

System Equation. The multiplicity of threads and processors is captured in
the system equation, in which all the sequential components illustrated above
are composed with suitable cooperation operators to enforce synchronisation
between shared actions. The complete system equation for this model is:

StdThink [NS ] ��∗
((

Portal [NP ] ��
M1

ValUni [NP ] ��
M1

ValCur [NP ]
)

��
M2

Database[ND] ��
M3

Logger [NL]
)

��∗
(
PS1 [NPS ] ��∅ PD1 [NPD]

)
where

M1 = {fork , join}
M2 = {requestexternal,read , replyexternal,read , requestregister ,write ,

replyregister ,write}
M3 = {requestconfirm,log , replyconfirm,log , requestdatabase,log ,

replydatabase,log}
It is worth pointing out that the separate validating threads ValUni and ValCur
inherit the multiplicity levels of the thread Portal which accesses them.

4 Model Evaluation

This section is concerned with the analysis of the e-University case study. The
performance metrics of interest are discussed in Section 4.1. Section 4.2 illus-
trates the difficulties regarding the Markovian interpretation of the model, and
Section 4.3 presents the results obtained with fluid-flow approximation.

4.1 Metrics

The system performance will be evaluated with respect to the average response
time experienced by a student to carry out the complete sequence of opera-
tions with the university portal. The thinking time exhibited by the derivative
StdThink will not be computed as part of this response time. The performance
is evaluated for steady-state conditions, i.e., after a sufficiently long time period
after which the system’s state does not change. Under these conditions, the com-
putation of average response time in PEPA admits a simple formulation based
on Little’s law [13], as discussed in [14]. Little’s law says that in a system in a
stationary state, the number of users L in the system is related to the throughput
of user arrivals λ and the average response time W by the formula

L = λW

In this case study, L and λ can be computed in a straightforward way. The
number of students in the system is equal to NS (the total student population)
minus the population of students who are thinking. This is directly obtained from



www.manaraa.com

500 M. Tribastone and S. Gilmore

Fig. 4. Screenshot of the PEPA Eclipse Plug-in showing the editor area (left) with an
excerpt of the e-University case study and the dialogue box for the calculation of the
average response time (right). The modeller is requested to set up the parameters for
the ODE numerical integrator (top) and select which derivatives are to be interpreted
as the user being in the system (bottom).

the underlying differential equation model, since one coordinate, say xStdThink (t)
(whose steady-state value shall be denoted by xStdThink (∞)), is associated with
the population count of the sequential component StdThink . The throughput of
student arrival is given by the number of students performing the think action in
the steady state. Since one single student carries out that action at rate rthink ,
the total throughput is the product rthink xStdThink (∞). The average response
time is therefore:

W =
NS − xStdThink (∞)
rthink xStdThink (∞)

In practice, the average response time is calculated using the PEPA Eclipse
Plug-in, a software tool which supports Markovian analysis and fluid-flow ap-
proximation of PEPA in the Eclipse framework [15]. A screenshot of the tool is
shown in Fig. 4.

4.2 Markovian Analysis

As discussed in Section 2, Markovian analysis is fundamentally limited by the
rapid growth of the state space as a function of the population levels of the
sequential components. Table 1 shows the state-space cardinality for some model
configurations. Even for a small system with only ten clients (last row) the state
space reaches over five million states; furthermore, there is a dramatic increase as



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 501

Table 1. State-space growth of the e-University case study

NS NP ND NL NPS NPD Size

1 any any any 1 any 48
1 any any any ≥ 2 any 49
2 1 1 1 1 1 230
3 1 1 1 1 1 680
3 2 2 2 2 2 5540
10 2 2 2 2 2 512116
10 3 2 2 2 2 5075026

a function of NP (the number of portal threads)—adding one copy may result
in an increase by a factor of ten (compare the last two rows). Nevertheless,
Markovian analysis is a valuable tool for validating the correctness of the model.
In particular, the first two rows of Table 1 give confidence that the model matches
the modeller’s intended behaviour. Indeed, when there is only one student the
state space is fairly small regardless of the multiplicity levels of threads and
processors because at most only one of them will be used. Setting NPS to any
value greater than one add only one more state because the two activities ValCur
and ValUni of equation (17) may now run in parallel on two distinct processors
(instead, when NPS = 1 only one of them may access the same processor at a
time). Another form of qualitative analysis can be based on visual inspection
of the reachability graph, which can be walked through to generate possible
trajectories of the system.

Explicit enumeration of the state space of a PEPA model is available in the
Eclipse plug-in through a top-level menu item, as shown in Fig. 5. The reacha-
bility graph may be iteratively walked using the Single Step Navigator, shown
in Fig. 6.

4.3 Fluid-Flow Analysis

The model gives rise to a set of 63 coupled ODEs, not shown in this paper for
the sake of conciseness. The analysis presented in this section is concerned with
establishing a satisfactory system configuration that is able to handle more than
6000 students with acceptable average response time. The parameter space is
very large because, in addition to the student population level NS, there are
20 other parameters in this model: 15 rate parameters and 5 concurrency levels
for threads and processors. We will consider the dimensioning problem, which is
evaluating the overall system performance in different configurations with rates
which are fixed (cfr. Table 2).

Figure 7 shows a typical response-time profile as a function of the workload
characteristics, with all the other concurrency levels set as follows: NP = ND =
NL = 20, NPS = NPD = 8. This configuration does not meet the requirements
proposed at the beginning of this section if rthink = 0.0010. Indeed, the average



www.manaraa.com

502 M. Tribastone and S. Gilmore

Fig. 5. State-space exploration with the PEPA Eclipse plug-in. The top-level menu
item Derive is available for any syntactically correct PEPA model. The State Space
View (bottom) is updated with a tabular representation of the state space.

Fig. 6. The Single Step Navigator allows the inspection of the reachability graph of a
PEPA model. Given a configuration with all population counts set to one, this screen-
shot presents the neighbourhood of the state when the cache activity is being per-
formed, showing that there are two possible outcomes leading to the local state Internal
and External , respectively.



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 503

Table 2. Rate parameter set used for fluid-flow analysis

Messages Portal Database Logger

ν = 50.0 rcache = 10.0
rint = 2.0
rext = 2.0

rprep = 5.0
rdisp = 8.0
runi = 5.0
rcur = 4.0
rcon = 2.0
rreg = 2.5

rread = 5.0
rwrite = 1.0

rlgc = 2.0
rlgd = 1.5

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

1000

1200

N
S

R
es

po
ns

e 
T

im
e

r
think

 = 0.0005

r
think

 = 0.0010

Fig. 7. Response time profile as a function of the student population

response time is constant at 4.79 time units for population levels less than 3300,
meaning that there is a high probability of any student accessing the system
finding resources available. However, the average response time increases steeply
for workload populations greater than 3300, showing a particularly detrimental
effect of the delays due to resource contention. Conversely, the configuration is
satisfactory when rthink = 0.0005, since this effect manifests for student popu-
lations greater than 6500. However, this may not be an optimal solution, i.e.,
it may be possible to find configurations consisting of fewer components which
yield similar performance.

The results of a possible optimisation study are presented in Table 3. The
reference point is the average response time for NS = 6650 of the aforementioned
configuration (denoted by A in the table) when rthink = 0.0005. Decreasing
all thread multiplicities to 16 does not have any impact on the response time



www.manaraa.com

504 M. Tribastone and S. Gilmore

Table 3. Average response time for NS = 6650 and different system configurations

Configuration NP ND NL NPS NPD Response time

A 20 20 20 8 8 44.61
B 16 16 16 8 8 44.61
C 16 16 16 7 7 334.38
D 16 8 8 8 8 44.61
E 15 8 8 8 8 100.56
F 14 8 8 8 8 249.47
G 12 8 8 8 8 621.06
H 16 6 6 8 8 44.61
I 16 4 4 8 8 980.38

(compare A and B), however reducing the number of processors available leads
to significant delays (compare B and C ). Comparing B and D, the user-perceived
performance is not impacted negatively by halving the number of database and
logger threads. On the other hand, reducing the number of portal threads by
one is particularly unfavourable (compare D with E, F, and G). Configuration
H shows that the multiplicity levels of ND and NL may be still reduced, but
further decreases incur a significant performance penalty (configuration I ). In
conclusion, H is the best configuration of those considered in Table 3, yielding
the same performance but using 32 fewer threads than the original configuration.
It must be pointed out that this strategy—carried out here without assistance
of automatic parameter-space exploration tools—is not exhaustive. However it
is not difficult to imagine the use of fluid-flow models in more sophisticated
optimisation frameworks.

5 Conclusion

PEPA’s ability to provide both discrete- and continuous-state interpretations
has been shown to be of practical interest in the modelling of large-scale service-
oriented applications. Although Markovian analysis is easily defeated by the very
rapid growth of the state space, this paper has shown how it may still be useful
for the purposes of model debugging. By considering a minimal manifestation
of the system obtained by setting unrealistically low population levels, the mod-
eller may obtain a state space of manageable size which may be inspected to
gain confidence that the discrete-state transitions exhibited by the model match
the intended behaviour. On the other hand, the recently proposed fluid-flow ap-
proximation was used to evaluate the performance of the system in a scalable
manner, by making the computational cost of the analysis largely independent
from the population levels of the system’s components. The modelling method-
ology adopted here is rather general and may be applied to other distributed
systems where the main concern is to analyse resource contention due to multi-
threading and processor sharing. The software toolkit for PEPA supports all of



www.manaraa.com

Scaling Performance Analysis Using Fluid-Flow Approximation 505

the forms of analysis considered in this paper for the benefit of other researchers
and practitioners.

References

1. Buchholz, P.: Exact and Ordinary Lumpability in Finite Markov Chains. Journal
of Applied Probability 31, 59–75 (1994)

2. Deavours, D.D., Sanders, W.H.: An Efficient Disk-Based Tool for Solving Large
Markov Models. Perform. Eval. 33, 67–84 (1998)

3. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure Markov
processes. J. Appl. Prob. 7, 49–58 (1970)

4. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

5. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27, 449–464 (2001)

6. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, pp. 33–43. IEEE Computer Society Press, Los Alamitos (2005)

7. Bradley, J., Gilmore, S., Hillston, J.: Analysing distributed internet worm attacks
using continuous state-space approximation of process algebra models. Journal of
Computer and System Sciences 74, 1013–1032 (2008)

8. Ding, J., Hillston, J.: Convergence of the Fluid Approximation of PEPA Models.
In: Seventh Workshop on Process Algebra and Stochastically Timed Activities
(PASTA), Edinburgh, UK (2008)

9. Hayden, R., Bradley, J.T.: Fluid semantics for passive stochastic process algebra
cooperation. In: VALUETOOLS 2008 (September 2008)

10. Cardelli, L.: On process rate semantics. Theor. Comput. Sci. 391, 190–215 (2008)
11. Bortolussi, L., Policriti, A.: Stochastic concurrent constraint programming and

differential equations. Electr. Notes Theor. Comput. Sci. 190, 27–42 (2007)
12. Hölzl, M.: Requirements Modelling and Analysis of Selected Scenarios. SENSORIA

Deliverable 8.4.a (2007)
13. Little, J.: A Proof of the Queuing Formula: L = λW . Operations Research 9,

383–387 (1961)
14. Clark, A., Duguid, A., Gilmore, S., Hillston, J.: Espresso, a Little Coffee. In: Process

Algebra and Stochastically Timed Activities (PASTA), Edinburgh, UK (2008)
15. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plug-in. Performance

Evaluation Review 36, 28–33 (2009)



www.manaraa.com

Passage-End Analysis for Analysing Robot
Movement

Allan Clark, Adam Duguid, and Stephen Gilmore

The University of Edinburgh, Scotland

Abstract. We report on a new style of passage measurement – called
passage-end calculations – associated with stochastic probes and their
extension to eXtended Stochastic Probes (XSP) [1]. While stochastic
probes allow for the analysis of a passage to be split up into several cases
depending on the conditions which hold at the start of the passage,
even XSP lacks the ability for the same kind of separation depending
on conditions at the end of the passage. In particular we would like
to separate successful responses to a request from negative responses,
timeouts or other failures. This allows us to evaluate refined service level
agreements such as: “At least 90 percent of all successful requests are
responded to within 10 seconds” or “At least 90 percent of all requests
are responded to within 10 seconds and at least 60 percent of all such
requests are successful.” We present a case study in the use of passage-
end measurements using a robot bowling demonstration used at the ICT
2008 computer fair, one of Europe’s leading information technology fairs.

1 Introduction

Quantitative analysis is an important phase in the design of a new computer-
based system. We wish to know that the new system will provide the level of
service for which it is designed. An important set of measurement queries in the
analysis of a system is response-time or, more generally, passage-time analysis.
The analysis of a passage is interested in the time profile of paths between a
specific set of source states and a specific set of target states. Often both the
set of source and target states represent sets of states which result from an
occurrence of a particular kind of activity or sequence of activities. For example
a common passage is the time taken from a “request” made by a client and
the corresponding “response” received by the client. For this reason stochastic
probes [2] were developed as a measurement specification language and further
enhanced to become the language of eXtended Stochastic Probes or XSP [1].

Many systems which are analysed for response-time profiles have more than
one way in which the passage in question may terminate. Commonly a “request”
from a client may end in a successful completion such that the client received the
desired response or service. However, other outcomes are possible. The request
may end in a failed service due to a timeout because the client does not meet the
criteria set by the service provider. This may even be caused when the service
provider is overwhelmed with requests from many clients.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 506–521, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 507

There may also be two or more methods in which the response or service is
provided, for example a data retrieval request may be serviced by a cache or not.
In these situations we wish to analyse the passage-time profiles for the separate
cases of success and failure, or cache and “network” retrieval. It may be for ex-
ample that the general response-time analysis indicates acceptable performance
but that successful requests are serviced too slowly.

We work with the Markovian process algebra PEPA. The PEPA language is
defined in [3]. Applications of the language are described in [4,5,6].

PEPA is a stochastically-timed process algebra where sequential components
are defined using prefix and choice and models require these sequential com-
ponents to cooperate on some activities, and hide others. Rates are associated
with activities performed by each component and the passive rate , is used
to indicate that the component will passively cooperate with another on this
activity. In this case the passive component may enable or restrict the activity
from being performed by the cooperating component but the rate when enabled
is determined by the actively cooperating component.

In PEPA the component (a, r).P performs the activity a at rate r whenever
it is not blocked by a cooperating component and becomes the process P . The
component (a,,).P passively synchronises on the activity a and becomes process
P . We use the version of PEPA with functional rates [7] (“marking dependent
rates”, in Petri net terms) and arrays of components.

We write P [5] to denote five copies of the component P which do not cooperate
and P [5][α] to denote five copies of the component P which cooperate on the
activity α. That is, P [5] is an abbreviation for P ‖ P ‖ P ‖ P ‖ P and P [5][α]
is an abbreviation for P ��

{α} P
��
{α} P

��
{α} P

��
{α} P .

Finally the probe language which we use makes use of immediate actions
which are written a.P to denote the process which instantaneously performs the
action a to become the process P . These are generally cooperated over such that
components can be blocked until another component has entered the state to
make the appropriate immediate synchronisation.

The rest of this paper is structured as follows: in Section 2 we overview the
architecture of the stochastic probes framework for query specification. In Sec-
tion 3 we review how stochastic probes are utilised to provide average response-
time calculations ensuring that the “rules of the game” are not violated and
in fact amending the model in the case that they are. Similarly in Section 4
passage-time analysis using stochastic probes is reviewed. In Section 5 we define
precisely what we have termed “passage-end calculations” and describe the novel
machinery used to extract passage-end quantiles from a passage specified using
stochastic probes. We then detail the new kinds of analyses and results which
can be obtained from a passage-end analysis of a passage within a model. In
Section 6 we introduce our case study scenario and the related PEPA model and
show some results of the analysis. Finally in Section 7 and 8 we review related
work and conclude.



www.manaraa.com

508 A. Clark, A. Duguid, and S. Gilmore

2 Stochastic Probes

A stochastic probe is a passive component added to a model in order to make
reasoning about the model more convenient. In the context of PEPA a stochastic
probe is a single sequential component which observes the sequences of actions
performed by the whole or a part of the model in question. The observations
of actions are done by passively cooperating with the model over the activities
which the probe wishes to observe. These activities are defined as the alphabet of
the probe. As each activity is observed by the probe it changes its own internal
state. Therefore the state in which the probe resides acts as a filter on the entire
state space of the model. A simple passage probe can distinguish between states
within or outside a passage between two activities, for example consider the
probe component defined by:

Stopped def= (request ,,).Running
Running def= (response,,).Stopped

This is attached to the main system equation of the model by:

System ��
L Stopped

where L is the alphabet of the probe; in this case, {request , response}. This
probe will remain in the Stopped state until it observes, via passive cooperation,
the System performing a request activity upon which the probe moves into the
Running state. Once in the Running state the probe must observe the occurrence
of a response activity before returning to the Stopped state. When the state space
of this entire model is derived those states in which the probe is in the Running
state correspond to those states of the model which are in between request and
response activities. Hence the passage in the model between these two activities
can be measured using a simple filter which makes reference only to the state of
the probe.

2.1 Probe Specification Language

However the above probe is not very robust. In defining the probe specification
language we have two golden rules; firstly we demand that the user need not
modify their model in order to perform queries upon it – this in turn assists our
probe specifications in remaining robust over several versions of the same model.
Secondly we insist that the addition of a probe component does not alter the
behaviour of the model it is intended to observe. If this is the case then we are
failing to analyse the original model. The above probe will block any occurrence
of the response activity while in the Stopped state and any occurrence of the
request activity while in the Running state. This is permissible if the model
always performs these two activities alternately, but not if we may get two or
more of either activity without observing the other. To allow for this we add



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 509

self-loops to the probe, such that the probe may ‘ignore’ the occurrence of a
given activity without blocking its instance. The probe can be modified as such:

Stopped def= (request ,,).Running
+ (response,,).Stopped

Running def= (response,,).Stopped
+ (request ,,).Running

The underlined additions are the self-loops thus in every state of the probe the
model may perform any of the activities in the probe alphabet without being
blocked by the cooperation with the probe. The model may of course perform
other activities not in the alphabet of the probe at any time.

With such a simple probe we can write the PEPA component corresponding to
the probe by hand. However for more complicated probes this is tiresome and,
in part because of the necessity for the addition of self-loops, error-prone. To
alleviate this stochastic probes may be specified in a regular-expression like probe
language. The above probe would be specified as simply (request , response). More
complex probes may be provided such as: ((r, r, r)/s, s) which allows us to ask the
question: “What is the probability that we are in a state in which three or more
‘r’ activities have been observed without observing an ‘s’ activity.” In a real-
world model the activity ‘r’ may correspond to successful completion of a service
and ‘s’ may correspond to a failure. The probe language is converted into PEPA
components via a translation to non-deterministic finite automata which are then
converted to deterministic finite automata. The self-loops are then added and the
resulting DFA is then minimised. The minimised deterministic finite automaton
is then already a PEPA sequential component which can be attached to the
model. All of the steps in this process are well known transformations providing
confidence in our translation and are described in detail in [8].

2.2 Local Probes

Often we do not wish the probe to observe activities performed by the entire
model but a sub-portion of it. In particular when analysing response-time we
are not interested in the passage between a request and a response as observed
by an external observer because the response may be to a different client than
the request was generated from. Instead we wish to analyse the response-time as
observed by a single client. To achieve this we can simply attach the probe to a
single client rather than the entire system equation. This involves opening the
system equation, attaching the probe component in cooperation with a single
client (which may have originally been a part of a client process array), and then
re-building the system equation. When this is done it can be convenient to attach
multiple probes to separate components and have the local probes communicate
with a master probe which is attached to the entire (modified) system equation.
The communication between probes must not alter the behaviour of the model
and to that end is done with immediate actions. This process is described in
greater detail in [9].



www.manaraa.com

510 A. Clark, A. Duguid, and S. Gilmore

Immediate communication signals are attached within the probe language
using the colon syntax. We use these to specify the start and end of a pas-
sage within a complex probe. So the probe defined by: ((a, a, a)/b):start, c:stop
describes a passage which is started once a sequence of three ‘a’ activities un-
interrupted by a ‘b’ activity is observed. The passage is stopped by a single
occurrence of a ‘c’ activity.

For a passage measurement specification a simple master probe is added by
default that observes only start and stop signals sent from another user defined
attached (possibly local) probe. The master probe has two states, and is always
defined by:

Stopped def= start.Running
+ stop.Stopped

Running def= stop.Stopped
+ start.Running

The system equation now becomes

(System ��
L UserProbe) ��

K Stopped

where L is the alphabet of the user probe and K is {start, stop}. In general the self-
loops added here are not required but they are never harmful. The steady-state
probability of being within the specified passage is the sum of the steady-state
probabilities of being in any state such that the master probe is in the Running
state.

3 Average Response-Time Analysis

In the previous section we have seen that through the use of probes we can
determine the states along the passage and hence the steady-state probability of
being within the specified passage. Additionally we know all of the actions which
commence a passage, it is simply all the transitions labelled as the start action.
However immediate transitions cannot be represented in the CTMC. Between
state space generation and the translation from the state space to the generator
matrix of the CTMC we must remove the vanishing states. The vanishing states
are those states which have out-going immediate transitions since those states
will no longer be represented in the CTMC. To remove a vanishing state we
re-target those transitions into the vanishing state to the states which are the
target of the immediate out-going transitions. We repeat this procedure until all
vanishing states have been removed or we detect an instantaneous loop.

We have therefore lost the immediate transitions labelled start but can recover
this information in one of two ways. Either during the reduction we record which
timed transitions have which immediate actions coalesced into them or after the
reduction we may select those transitions which move from a state in which
the master probe is in the Stopped state to one in which it is in the Running
state. The first solution has the advantage of being more general because it then
becomes possible to take the throughput of any immediate transitions whether



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 511

or not they begin a specified passage of interest. The second method has the
advantage of working even when the probe is inserted manually with no commu-
nication signals. Our implementation chooses the first alternative and allows the
user to specify alternative start and stop signals which may be timed transitions
or immediate actions because in either case we have the machinery to calculate
their throughput.

We now have both steady-state measures required to compute the average
response-time (or average time to complete a passage) using Little’s Law [10].

4 Passage-Time Quantile Analysis

Sometimes average response-time analysis is too coarse because it does not show
us the distribution around the average value. Passage-time quantiles allow us to
answer the question: “What is the probability that the specified passage com-
pletes at or within a given time t?”

We compute from the specified passage and the Markov chain the probability
density function (pdf) and the cumulative distribution function (cdf). The cu-
mulative distribution plots the probability of completing the passage within time
t and the probability density is a measure of the probability of completing the
passage at exactly time t. This is a probability density because the probability
of completing the passage at exactly any given time is zero. The area under the
pdf sums to one if we assume that the passage always completes eventually.

To compute passage-time quantiles we must first distinguish the set of source
states and the set of target states. The set of target states can be approximated
by those states which are not within the passage. More precisely the set of target
states are those which can be reached from within the passage states (where the
master probe is running) via a single transition. This single transition must be a
passage-ending event, in the default case a (coalesced) stop probe communication
signal. The set of source states are those states within the passage set which may
be reached from outside the passage via a single transition. That transition must
be a source event, in the default case a (coalesced) start probe communication
signal. The source states can be identified via a source probe, defined as:

SourceStopped = start.SourceRunning
+ (∀α 	= start ∈ A)α.SourceStopped

SourceRunning = (∀α ∈ A)α.SourceStopped

Where A is the alphabet of activities performed by the entire model. This tran-
sitions into the SourceRunning state whenever a source event is observed and
transitions out of the running state on observation of any activity at all. In our
implementation this is automatically computed and added to the model.

In order to compute the passage-time quantiles we must discover the dis-
tribution of probability mass at the beginning of a passage. This is found by
computing the Embedded Markov Chain (EMC) of the generator matrix. The
probability of each source state s is given by πe

s/
∑

j∈S π
e
j where S is the set

of source states, πe is the steady-state probability distribution computed as the



www.manaraa.com

512 A. Clark, A. Duguid, and S. Gilmore

solution to the EMC, hence
∑

j∈S π
e
j is the probability of being in any source

state.
The generator matrix Q of our model is then uniformised by dividing through

by a rate q larger than the absolute value of any value in Q. Since all the diagonal
elements in Q are the negation of the sum of the other row elements this value
is given by: max(∀i |Qii|). We obtain the uniformised chain by P = (Q/q) + I
where I is the identity matrix. This gives us a deterministic time Markov chain
where each ‘hop’ has the same mean holding-time.

Using the uniformised Markov chain we can calculate the transient probability
distribution for any time t, however in order to calculate passage-time quantiles
we modify the uniformised Markov chain. We add an absorbing state whose only
out-transition is one to itself. Each of the target states are modified to transition
to the absorbing state with probability one. This allows us to calculate the
probability of completing the first passage and not subsequent passages. That
is, we avoid the problem of passing through a target state and looping back
around to begin the passage once more.

We then use this modified, uniform Markov chain P ′ to calculate the proba-
bility distribution after each hop πn where πn = πn−1P ′ and π0 was calculated
above using the EMC. Using this our cdf and pdf values at time t are given
respectively by:
Fij(t) =

∑∞
n=1

((
1 − e−qt

∑n−1
k=0

(qt)k

k!

)∑
k∈j π

(n)
k

)
and
fij(t) =

∑∞
n=1

(
qntn−1e−qt

(n−1)!

∑
k∈j π

(n)
k

)
Such an infinite sum cannot of course be calculated but we can make some

approximation by computing enough hops so that any further computation will
not add significant probability to the value at that time. We know when we have
calculated enough hops N because either all of the probability is in the absorbing
state or the possibility of performing N hops within time t is sufficiently close
to zero. The method of uniformisation for passage-time quantiles from a set of
source states to a set of target states in a CTMC is described in detail in [11]
by the current authors and also in [12,13,14].

5 Passage-End Calculations

In [1] we note that it is common to split up the measurement of a passage for
different kinds of runs of the passage. One common way in which to do this is
to split the passage up based on the starting conditions. For example we may
first of all wish to analyse the response-time of a service as observed by a single
client. Once this is known, in order to provide more information on how this may
be improved, we may wish to analyse the response-time (as observed by a single
client) of all requests that are made when the service is definitely not broken.
We would expect this to be better than the more general case of all requests.
Conversely we may also analyse the response-time for all requests made when
the service certainly is broken and expect this to be worse than for the general
case. From this we may determine whether, in order to improve response-time,



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 513

it is better to repair the server more quickly or make the server more reliable
such that it breaks less often.

Although with eXtended Stochastic Probes splitting the measurement of a
passage with respect to the starting conditions is convenient it is not clear how
one may split-up a passage based on how the passage completes. The novelty in
this paper is the use of several absorbing states utilising one absorbing state for
each kind of target event. For a passage-end calculation the user must specify
a list of target actions. These may be actions performed by the model itself or
communication signals sent by user defined probes. During the transient analysis
procedure described in the preceding section, rather than modifying all target
states to transition to a single absorbing state each target state is modified to
transition to the particular absorbing state based on the target event which
caused the transition into the target state.

As an example, consider analysing the response-time of a service which may
be begun with a request but may be concluded with either a cached response or a
networked response. It is not possible to simply measure these two passages with
separate runs using a probe such as: request :start, cached :stop and equivalently so
for networked . The reason is that this will compute the probability of completing
the passage at (or within) time t via a cached response plus the probability
of completing the passage via a networked response and then restarting and
completing the passage via the cached response all at (or within) time t. Indeed
you may complete the passage twice, three times or any number of times via the
networked response before finally completing via the cached response.

Using the same algorithm we can calculate the raw pdf and cdf of the passage
from the request to the cached response. In this case the cdf will not tend to one
but to the percentage of requests which are ultimately serviced by the cache.
Similarly for the area under the pdf and for both functions of the request to
networked passage.

We can normalise these graphs based on the probability of completing at or
within the given time t via any target event. We will see examples of this in the
case study in Section 6.4.

We can instead normalise the raw pdf and cdf by dividing through the prob-
ability of completing at (or within) time t by the percentage of all requests
which are ultimately serviced by the target event in question. We can know this
percentage by calculating enough hops such that sufficiently close to all of the
probability mass at πN is in one of the absorbing states. We may then take the
probability of being in the appropriate absorbing state at πN .

Hence using a passage-end calculation it is possible to calculate:

– The probability of completing a passage by a cached response at or within
a given time.

– The probability that, assuming the passage completes at or within a given
time in some way, that it does so via the cached response. This answers such
questions as: “What percentage of responses received within 5 seconds are
received via the cache/network?”

– The cdf and pdf profiles for all requests which are serviced by the cache.



www.manaraa.com

514 A. Clark, A. Duguid, and S. Gilmore

In the above cached may be substituted for networked and more generally for
any target event – which may be a probe communication signal – of the given
passage. The second kind of question is helpful in evaluating some service-level-
agreements, particularly for services which may end in success, failure or cancel-
lation. For example the service level agreement may say that ninety percent of
requests are responded to within 10 seconds. We may analyse the model and find
that this is indeed the case but a passage-end analysis reveals that eighty-nine
percent of such requests are rejection/failure responses. Hence we may wish to
modify our service-level-agreement by saying that ninety percent of all successful
requests are responded to within 10 seconds.

Passage-end analysis also allows us to compute the response-time quantiles
for sets of passages which begin with the same activity. The only way to do this
previously was to modify the model such these passage were begun with distinct
starting actions. This violates one of our golden rules that the modeller must not
be forced to modify their model in order to make their measurement. In this case
it is particularly important because although in some instances making such a
modification is quite simple in many cases it is subtly difficult to calculate the
respective rates correctly.

Finally note that if the passage must be split based on events which occur
before the target events then a probe may be added to distinguish these as
different target events using a probe communication signal. For example the
following probe: a:start, (b, d:viab)|(c, d:viac) allows us to split up the passage from
‘a’ to ‘d’ depending on whether we first go via a ‘b’ or a ‘c’ activity.

6 Case Study: Robot Bowling

As part of our European research project, Sensoria, we were invited to model a
rather unusual application, robot bowling. The project selected a robot bowling
competition as a demonstrator for the ICT 2008 computer fair, one of Europe’s
leading information technology fairs. The Sensoria project wanted to demon-
strate its methods on an unusual and eye-catching example; the robot bowling
competition was selected to be this unusual example. The robot bowling concept
was developed by our Sensoria project partners in the School of Management
MIP Politecnico di Milano. The robot was built and configured by a team from
the Museo Nazionale della Scienza e della Tecnologia Leonardo da Vinci, Milan.
The robot is shown in use on the right hand side of Fig. 1.

6.1 Design of the Robot

The design of the Lego robot bowler enables the robot to move as a tracked
vehicle. Two motors independently drive the two main wheels, with an additional
free-wheel caster at the rear for balance. Each motor can exist in one of three
states; forward, reverse and off, with no ability to otherwise vary the voltage
beyond the direction of the motor’s rotation. This allows forward and reverse
motion (both motors operating in the same direction) or clockwise and anti-
clockwise rotation on the spot (both motors active but in opposite directions).



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 515

Fig. 1. The gradient of the ramp and the robot bowling competition at the ICT 2008
fair in Lyon

The robot uses a third motor to control the gripper at the front for holding the
bowling ball.

The robot has two light sensors, each placed facing downwards in front of
one of the main wheels of the robot. These sensors act as the robot’s “eyes”. It
has no other sensors and must navigate solely on the basis of the information
received from these sensors. The purpose of the light sensors is to detect the
gradient found in the controlled environment that the robot exists in, as can be
seen in both sides of Fig. 1. The objective is to reach the darkest point (labelled
1 in the figure) and the robot does this by taking the difference between the
two light sensor readings and comparing this against a threshold. If the value
is larger than the threshold, the robot will turn, if the difference is below the
threshold the robot will move forward.

The user-configurable parameter was the sample rate. This is defined as the
duration of either rotating or moving forward. The variation in accuracy (mea-
sured by the distance from the darkest point in the environment) is mainly the
result of the change in reachable angles. By increasing the length of time that
the robot will either move forward or rotate, fine control over positioning is lost
and thus precision is reduced overall.

The observed behaviour is for the robot to move from the starting position
(labelled 2 in Fig. 1) to a vertically central point before rotating approximately
90 degrees clockwise. This part of the robot’s behaviour is based purely on pre-
established timings, with no input from the sensors. Once turned roughly towards
its objective, the robot relies on the cycle of sense → rotate/move forward, with
the duration for the rotate or forward motion set as described above. The robot
will release the ball once the silver strip is reached.

6.2 Scoring and the Competition Rules

In the bowling competition the parameter settings for the robot were chosen by
a user who would try to maximise their score when using the robot to bowl a ball



www.manaraa.com

516 A. Clark, A. Duguid, and S. Gilmore

towards a set of six skittles. There are seven possible outcomes, corresponding
to missing all of the skittles, or knocking down some of them. A numerical score
is assigned based on the number of skittles from 0 to 6 knocked down and the
time taken by the robot bowler to complete the run. Stated more precisely, the
objective is to maximise the number of skittles knocked down in the shortest
time.

A player can control the threshold and the distance which the robot moves
forward each time. They can increase their numerical score by having the robot
move more slowly and turn through smaller angles. This will increase the robot’s
accuracy but will take longer. Alternatively they can have the robot move further
each time and turn through larger angles. This will improve the robot’s speed
but decrease its accuracy.

Although this light-hearted, rather entertaining example is quite far removed
from our usual domain of computer software, hardware and communications
it seemed well-suited to passage-end analysis because the objective is to max-
imise the score when bowling without unnecessary delay. Hence we proceeded to
develop a PEPA model of the problem and carry out passage-end analysis.

6.3 The PEPA Model

The model represents the sampling process and the behaviour of the robot
bowler.

Sampling. It is essential to record the number of samples of the light intensity
which the robot makes. Because each sample causes the robot to move forward
(to re-position for the next sample) only a limited number of samples can be
made before the robot has reached its position at the silver strip at the front of
the gradient, and must bowl.

We use an array of components to count each sample.

SampleSlot
def= (sample,,).Sampled+ (restart,,).SampleSlot

Sampled
def= (restart,,).SampleSlot

Samples
def= SampleSlot[10][restart]

This definition gives rise to the statespace shown in Fig. 2.

Robot. Dynamically, we can interpret the PEPA model as a sequence of events
which occur in time. At each stage the robot bowler has two options:

1. to spend more time in calibration in order to improve accuracy (represented
as sampling in the model); or

2. to roll the ball now.

The accuracy of the robot bowler improves with increased sampling and is rep-
resented by a simple counter which indicates how many pins the robot would be
likely to knock down if they bowled the ball now. This counter starts at 0 and
increases to 6 (there are six pins in the example).



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 517

SampleSlot [10],Sampled [0]

SampleSlot [9],Sampled [1]

SampleSlot [8],Sampled [2]

SampleSlot [7],Sampled [3]

SampleSlot [6],Sampled [4]

SampleSlot [5],Sampled [5]

SampleSlot [4],Sampled [6]

SampleSlot [3],Sampled [7]

SampleSlot [2],Sampled [8]

SampleSlot [1],Sampled [9]

SampleSlot [0],Sampled [10]

sample

sample

sample

sample

sample

sample

sample

sample

sample

sample

restart

restart

restart

restart

restart

restart

restart

restart

restart

restart

Fig. 2. The statespace of the component SampleSlot[10][restart]

A functional rate is used to influence the probability of each outcome. The
expression in this functional rate can refer to the global state of the model. In
this case it depends only on the number of samples which have been made, that
is, how many of the components in the Samples array are in the Sampled state.

Robot
def= ( send, sendrate).Robot0

RobotX
def= ( sample, samplerate).RobotX
+ ( forward , forward rate).RobotX+1

RobotN
def= ( roll0, f0(Sampled)).F inished0
+ ( roll1, f1(Sampled)).F inished1
+ ( roll2, f2(Sampled)).F inished2
+ ( roll3, f3(Sampled)).F inished3
+ ( roll4, f4(Sampled)).F inished4
+ ( roll5, f5(Sampled)).F inished5
+ ( roll6, f6(Sampled)).F inished6

Finishedi
def= ( restart, restartrate).Robot

Each of the fX functions are a functional rate based on the number of samples
which have been made. For example f0(x) = if x < 4 then rroll ∗ 2 else rroll/2
The seven “finished” states are different merely to allow the passage-end calcu-
lations to differentiate the target states, this can also be done with a probe.

System description. It now remains only to compose the robot and the com-
ponent which counts samples, requiring them to cooperate on the sample activity



www.manaraa.com

518 A. Clark, A. Duguid, and S. Gilmore

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5  6  7  8  9  10
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

P
ro

ba
bi

lit
y 

D
en

si
ty

Time

Normalised Bowling PDF

roll-0
roll-1
roll-2
roll-3
roll-4
roll-5
roll-6

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  1  2  3  4  5  6  7  8  9  10
 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

P
ro

ba
bi

lit
y

Time

Normalised Bowling CDF

roll-0
roll-1
roll-2
roll-3
roll-4
roll-5
roll-6

(a) (b)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  1  2  3  4  5  6  7  8  9  10
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

P
ro

ba
bi

lit
y 

D
en

si
ty

Time

Non-Normalised Bowling PDF

roll-0
roll-1
roll-2
roll-3
roll-4
roll-5
roll-6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0  1  2  3  4  5  6  7  8  9  10
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

P
ro

ba
bi

lit
y

Time

Non-Normalised Bowling CDF

roll-0
roll-1
roll-2
roll-3
roll-4
roll-5
roll-6

(c) (d)

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  0 1 2 3 4 5 6 7 8 9 10

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

Pr

Normalised Cumulative Distribution Surface Plots

roll_0
roll_2
roll_4
roll_6

Sample Rate

Time

Pr

 0  1  2  3  4  5  6  0 1 2 3 4 5 6 7 8 9 10

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

Pr

Normalised Probability Density Surface Plots

Number of Pins

Time

Pr

(e) (f)

Fig. 3. (a) maps for each of the roll-X the probability that if we do finish at that time
what is the probability that we do so with roll-X (ie with knocking down that number
of pins). (b) is studying the same problem with the CDFs, so this maps time against
the probability that if we have already finished by time t then we finished via a roll-X
action. (c) is the raw probability density of finishing via a roll-X action. (d) is the raw
probability that by time t we have finished via a roll-X action. (e) is a surface plot
which shows how the cumulative distribution functions for knocking down 0, 2, 4, and
6 pins depend on the sampling rate. (f) is a surface plot of the data from (a).



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 519

(to keep the counter in step) and the restart activity (to allow them to return
to the initial state).

System
def= Robot ��

{sample,restart}Samples

6.4 Results

We analysed this model using ipclib [15], an extension of the IPC tool pre-
viously used for computing response-time quantiles from PEPA models [16,17].
The results are presented in Fig. 3. The graphs show the expected result that the
likelihood of knocking down zero pins is highest when little time has been spent
in calibration and with more and more calibration the robot is more and more
likely to knock down more pins. However, they precisely quantify the probability
of each outcome of each type at each point in time.

7 Related Work

Although the PEPA language is often used for modelling software systems (as
in [18,19]) and services (as in [20]) it has also been used for modelling physical
systems such as production cells [21], robot control problems [22], and even lift
systems [23]. Using PEPA as a Markovian process algebra, the authors of [23]
found significant differences between the Markovian results obtained by using
PEPA from the predictions made by control engineers using approximate equa-
tion models. The problem of distinguishing a particular client or process for
observation as discussed in Section 2.2 has also been recently considered in
the context of generalised stochastic Petri nets in[24] although distinguishing
the passage based on the terminating conditions is not considered, we feel that
passage-end analysis would fit equally well for Petri nets as with PEPA.

8 Conclusions

We have modified passage-time analysis to allow for distinct passage results.
Thus passage-time analysis has been extended to allow passage-end analysis. We
have done so within the framework of eXtended Stochastic Probes thus ensuring
that our passage-end queries remain robust over model modifications and do not
require that the modeller modify their original model. The set of queries which
can be specified with XSP is therefore extended.

Another bonus which we obtain almost for free is the ability to analyse pas-
sages which may never complete at all. This only works for passages in which
there is only one source state, because if the model deadlocks we cannot analyse
the EMC to obtain the distribution of probability to the source states at the be-
ginning of the passage. A passage which may for example result in a deadlocked
situation before it is complete. This allows the modeller to provide a concrete
answer to the question: “How long should I wait for my response?” because we



www.manaraa.com

520 A. Clark, A. Duguid, and S. Gilmore

can now say that a given percentage of all requests which ultimately are suc-
cessfully serviced are serviced within 10 seconds, hence if you have waited longer
than 10 seconds it is likely you will never receive a response and hence can cancel
the request yourself.

Acknowledgements

The authors are supported by the EU FET-IST Global Computing 2 project
Sensoria (“Software Engineering for Service-Oriented Overlay Computers”
(IST-3-016004-IP-09)). The robot bowling problem was brought to our atten-
tion by Paola Fantini and Claudio Palasciano of MIP-Politecnico di Milano.

References

1. Clark, A., Gilmore, S.: State-aware performance analysis with eXtended Stochastic
Probes. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 125–140.
Springer, Heidelberg (2008)

2. Argent-Katwala, A., Bradley, J., Dingle, N.: Expressing performance requirements
using regular expressions to specify stochastic probes over process algebra mod-
els. In: Proceedings of the Fourth International Workshop on Software and Per-
formance, Redwood Shores, California, USA, pp. 49–58. ACM Press, New York
(2004)

3. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

4. Hillston, J.: The nature of synchronisation. In: Herzog, U., Rettelbach, M. (eds.)
Proceedings of the Second International Workshop on Process Algebras and Per-
formance Modelling, Erlangen, pp. 51–70 (November 1994)

5. Hillston, J.: Tuning systems: From composition to performance. The Computer
Journal 48(4), 385–400 (2005); The Needham Lecture paper

6. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago,
pp. 239–248. IEEE Computer Society Press, Los Alamitos (2005)

7. Hillston, J., Kloul, L.: An efficient Kronecker representation for PEPA models.
In: de Luca, L., Gilmore, S. (eds.) PROBMIV 2001, PAPM-PROBMIV 2001, and
PAPM 2001. LNCS, vol. 2165, pp. 120–135. Springer, Heidelberg (2001)

8. Clark, A.: A revised PEPA probe implementation. In: Proceedings of the 6th Work-
shop on Process Algebra and Stochastically Timed Activities (PASTA), Imperial
College, London, July 26-27, pp. 5–11 (2007)

9. Argent-Katwala, A., Bradley, J., Clark, A., Gilmore, S.: Location-aware quality
of service measurements for service-level agreements. In: Barthe, G., Fournet, C.
(eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp. 222–239. Springer, Hei-
delberg (2008)

10. Little, J.D.C.: A proof of the queueing formula l = λw. Operations Research 9,
380–387 (1961)

11. Clark, A., Gilmore, S.: Terminating passage-time calculations on uniformised
Markov chains. In: Argent-Katwala, A., Dingle, N.J., Harder, U. (eds.) Proceedings
of the Twenty-Fourth annual UK Performance Engineering Workshop, pp. 64–75
(June 2008)



www.manaraa.com

Passage-End Analysis for Analysing Robot Movement 521

12. Grassmann, W.: Transient solutions in Markovian queueing systems. Computers
and Operations Research 4, 47–53 (1977)

13. Gross, D., Miller, D.: The randomization technique as a modelling tool and solution
procedure for transient Markov processes. Operations Research 32, 343–361 (1984)

14. Dingle, N.J.: Parallel Computation of Response Time Densities and Quantiles in
Large Markov and Semi-Markov Models. PhD thesis, Department of Computing,
Imperial College London. University of London (October 2004)

15. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M.,
Telek, M. (eds.) Proceedings of the 4th International Conference on the Quantita-
tive Evaluation of SysTems (QEST), pp. 55–56. IEEE, Los Alamitos (2007)

16. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Extracting passage times
from PEPA models with the HYDRA tool: A case study. In: Jarvis, S. (ed.) Pro-
ceedings of the Nineteenth annual UK Performance Engineering Workshop, Uni-
versity of Warwick, pp. 79–90 (July 2003)

17. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Derivation of passage-time
densities in PEPA models using IPC: The Imperial PEPA Compiler. In: Kotsis, G.
(ed.) Proceedings of the 11th IEEE/ACM International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems, Univer-
sity of Central Florida, pp. 344–351. IEEE Computer Society Press, Los Alamitos
(2003)

18. Hillston, J., Kloul, L.: Performance investigation of an on-line auction system.
Concurrency and Computation: Practice and Experience 13, 23–41 (2001)

19. Duguid, A.: Coping with the parallelism of BitTorrent: Conversion of PEPA to
ODEs in dealing with state space explosion. In: Asarin, E., Bouyer, P. (eds.) FOR-
MATS 2006. LNCS, vol. 4202, pp. 156–170. Springer, Heidelberg (2006)

20. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, pp. 172–185
(August 2006)

21. Holton, D.: A PEPA specification of an industrial production cell. In: Gilmore,
S., Hillston, J. (eds.) Proceedings of the Third International Workshop on Pro-
cess Algebras and Performance Modelling, Special Issue of The Computer Journal,
vol. 38(7), pp. 542–551 (December 1995)

22. Gilmore, S., Hillston, J., Holton, D., Rettelbach, M.: Specifications in Stochastic
Process Algebra for a Robot Control Problem. International Journal of Production
Research 34(4), 1065–1080 (1996)

23. El-Rayes, A., Kwiatkowska, M., Minton, S.: Analysing performance of lift systems
in PEPA. In: Pooley, R., Hillston, J. (eds.) Proceedings of the Twelfth UK Perfor-
mance Engineering Workshop, Edinburgh, Scotland, pp. 83–100 (September 1996)

24. Dingle, N.J., Knottenbelt, W.J.: Automated Customer-Centric Performance Anal-
ysis of Generalised Stochastic Petri Nets Using Tagged Tokens. In: Third Interna-
tional Workshop on Practical Applications of Stochastic Modelling (PASM 2008),
Palma de Mallorca, Spain (August 2008)



www.manaraa.com

Quantitative Analysis of Services�

Igor Cappello1, Allan Clark2, Stephen Gilmore2, Diego Latella3, Michele Loreti4,
Paola Quaglia1, and Stefano Schivo1

1 Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento
2 School of Informatics, The University of Edinburgh

3 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”- CNR
4 Dipartimento di Sistemi e Informatica, Università di Firenze

Abstract. We show a number of applications of the tools which have been de-
veloped within the Sensoria project to perform quantitative analysis of services.
These tools are formally grounded on source calculi which allow the description
of services at distinct levels of abstraction, and hence pose distinct challenges to
both modelling and analysis.

The reported applications refer to (suitable subcomponents of) the Finance
Case-Study, and show instances of, respectively, exact model checking of Mar-
CaSPiS against the both state-aware and action-aware logic SoSL, exact and sta-
tistical model checking of sCOWS against the state-aware logic CSL, querying
of PEPA models by terms of the XSP language that expresses both state-aware
and action-aware stochastic probes.

1 Introduction

A number of calculi have been defined to formally model services and then analyze
their behaviour. Some of them come equipped with quantitative measures and proba-
bilistic/stochastic semantics, and hence allow the description of non-functional aspects
of computation like, e.g., performance, resource usage, or dependability.

Based on the above calculi, some tools have been developed within the Sensoria
Project to assist in the verification of the quantitative properties of services. Here we
show the applicability of those tools together with a sample of the obtained results.
The analysis refers to a credit request scenario. This in turn is part of the specification
of a credit portal which is referred to as the Sensoria Finance Case-Study and is fully
illustrated in Chapter 7-4.

The credit portal is a business-to-business (B2B) application where a bank wishes to
offer its loan services to business customers. It is important that loan applications are
processed efficiently (so that the bank does not lose customers to a rival bank). A high
degree of automation is provided to meet this demand for efficient processing. Where
human intervention is needed in the decision-making process this too must be driven by
a deep sense of urgency in processing the request in a timely manner.

The credit portal is implemented using the JBOSS enterprise Java technology. This
is an extensible Web service framework in which traditional web service components

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 522–540, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Quantitative Analysis of Services 523

can be supplemented using flexible rulesets which allow complex business rules to be
coded concisely. These rulesets can also be updated quickly in response to changing
business policies, regulations, procedures, and governmental or legal requirements. This
configuration allows the bank both to respond quickly to changing practices within the
financial industry and to gain the greatest advantage from business opportunities by
bringing new products and services onto the market ahead of its rivals.

Some businesses which use the services of the bank are long-established customers
with a lengthy and well-documented history of financial solidity and probity, together
with substantial credit reserves and securities. Modest loan applications from these cus-
tomers can be directly approved by a pre-decision process which validates the content
of the loan request and the securities. In such a case it is possible that the decision to
lend can be taken entirely by the application of the predefined rules stored on the server
and executed by the local rule engine. This is the fastest route to approval of a loan
request because it is one which completes entirely without human intervention.

Not all loan requests can be so rapidly approved. Many will require more lengthy
scrutiny, evaluation and checking. In these cases a bank clerk will process the credit
request. There are several possible next outcomes here. First, the clerk may approve the
request but must then forward the credit request to a supervisor who must also approve
the request. Second, the clerk may decline the request. Third, the clerk may enter into
a negotiation with the customer with the intention of updating the request to reduce the
capital requested, or change the terms of repayment. This then initiates another request
from the customer which is to be processed in the manner just described.

Quantitative evaluation of this scenario presents technical challenges because there
are two distinct timescales in use here. The pre-decision processing is performed on
a timescale of seconds whereas the human processing and evaluation proceeds on a
timescale of days. Systems where activities proceed at very different rates provide
numerical problems for the underlying software routines because they demand more
computational effort than models which operate on a single timescale. When rates are
separated by several orders of magnitude, as they are here, the problem is often re-
ferred to as a multi-scale problem and its attendant numerical problem as stiff (meaning
intractable or computationally expensive). Thus this problem is a good test for the ro-
bustness of the quantitative analysis tools developed in the Sensoria Project.

The rest of the chapter is organized as follows. Section 2, Section 3, and Section 4
present the analysis of the credit request scenario specified in MarCaSPiS, in sCOWS
[11,13], and in PEPA [6], respectively. Concluding remarks are reported in Section 5.

The analysis of the MarCaSPiS specification of the scenario is based on a stochastic
model checking technique. Properties are described in SoSL (Service-Oriented Stochas-
tic Logic), a stochastic modal logic for service-oriented computing presented in Chap-
ter 5-1. The analysis is then performed by exploiting SoSL-MC, a stochastic model-
checker for SoSL which uses MRMC [7] as a component. In particular MRMC is
wrapped in the algorithms implemented in SoSL-MC.

Section 3 presents the sCOWS specification of the credit request scenario. The model
is analyzed by means of two different techniques: exact model checking and statistical
simulation-based model checking. In both cases, the property specification language is
CSL [1]. The tool for statistical model checking is a stand-alone application, while the



www.manaraa.com

524 I. Cappello et al.

one for exact model checking provides input to PRISM [8], a well-known probabilistic
model checker. Comparisons between the results obtained by the two kinds of analysis
are also reported.

The applications shown in Section 4 are based on the PEPA specification of the
relevant scenario. Stochastic properties of services are obtained by querying the model
using the XSP performance language [4]. This is an action-aware language of stochastic
probes: once fixed the actions relevant to the sort of analysis that the user wishes to carry
on, the tool delivers the probability of completing the passage between them in the given
time bound.

2 Analysis in MarCaSPiS

MarCaSPiS is the Markovian extension of CaSPiS [2]. In MarCaSPiS, each output ac-
tivity (service invocation, concretion and return) is equipped with a parameter (a rate,
λ ∈ IR+) characterising a random variable with a negative exponential distribution, mod-
eling the duration of the activity. Furthermore, each input activity (service definition and
abstractions) is annotated with a weight (ω ∈ N+): a positive integer that will be used
for determining the probability that the specific input is selected when a complementary
output is executed.

In this section we show how MarCaSPiS can be used for specifying and verifying
quantitative aspects of the Finance Case-Study. A MarCaSPiS specification of the Fi-
nance Case-Study is obtained from the one in CaSPiS, presented in Chapter 2-1, by
adding rates (and weights) to actions.

Parties considered in the specification are:

– the supervisor and clerk that can be asked to review the request;
– the portal that acts as an interface for clients and that coordinates the whole pro-

cedure;
– auxiliary services, login and rating, invoked by the portal in order to assist in

the request evaluation.

Each of the above parties is rendered as a service that is waiting for an invocation.
We let portal, login and rating be replicated services. Hence, they are always able
to react to invocations. On the contrary, supervisor and clerk, which describe the
behaviour of people involved in the decision process, are not replicated.

A client that wants to submit a credit request has to first log into the system. If the
login is successful then he will be asked for some credit data (e.g. the amount) and for
some balance and security guarantees. Then the request review phase starts. A rating
is computed for the client: either the credit is immediately granted (rating AAA) or the
intervention of either a clerk or a supervisor is required (rating BBB and CCC). The
decision (decline or accept) is then communicated to the client.

In the analysis proposed in this section we study how system performance is in-
fluenced by the client distributions within the three rating categories. The following
scenarios are considered:



www.manaraa.com

Quantitative Analysis of Services 525

S1: 50% of clients have rate AAA, 33% rate BBB, and 17% rate CCC.
S2: 25% of clients have rate AAA, 50% rate BBB, and 25% rate CCC.
S3: 17% of clients have rate AAA, 33% rate BBB, and 50% rate CCC.

In the analysis the following properties will be considered:

1. System performance, how fast the system is able to handle pending requests;
2. Supervisor and Clerk workload, how much time supervisor and clerk spend to

review requests;
3. System reactivity, how much time a system needs to manage a request.

These properties are specified by means of SoSL (Service-Oriented Stochastic Logic).
This is a temporal logic that permits describing the dynamic evolution of the system.
SoSL is both action- and state-based and it is equipped with primitives that permits
the use of real-time bounds in the logical characterisation of the behaviours of interest.
Moreover, SoSL is a probabilistic logic that permits expressing not only functional
properties, but also properties related to performance and dependability aspects.

In the analysis we assume that, on the average, portal takes a decision every time
unit, clerk takes a decision every 5 time units, and supervisor takes a decision every 10
time units. Moreover, we also assume that login and rating handle 10 invocations per
time units on the average.

2.1 System Performance

We aim at verifying the capability of the system to handle pending requests. For this
reason, we consider a configuration where the credit portal is in parallel with n clients
(n ∈ {1, 2, 3}). We are interested in determining the probability (p) that all the clients
are served within t time units (All the clients are served when the system reaches a
deadlock state). This property can be expressed in SoSL by the following formula:

P�p(TRUE �U<t [�]FALSE)

In Figure 1 is shown how the probability p varies as a function of time t. In all the
considered cases (1, 2 and 3 clients) the greater is the percentage of clients with rating
AAA, the higher is the probability of serving all the requests within t time units.

2.2 Supervisor and Clerk Workload

Besides system performance, it could be also interesting to verify the workload of su-
pervisor and clerk. This analysis could help system designers to evaluate the number of
people to engage.

In order to perform this analysis we consider a system where a client continuously
contacts the portal. In this case we are interested in studying the probability that services
supervisor and clerk are under-used. We say that a service is under-used if the proba-
bility is less than 0.4 that the service is used within 10 time units. Under-utilization for
service s can be rendered in SoSL with formula Φs defined as follows:

Φs
�
= P<0.4(TRUE �U<10←→s TRUE)



www.manaraa.com

526 I. Cappello et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

S1
S2
S3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

S1
S2
S3

(1 client) (2 clients)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

S1
S2
S3

(3 clients)

Fig. 1. System performance

Clerk Supervisor

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

S1
S2
S3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

S1
S2
S3

Fig. 2. Supervisor and Clerk workload

We are interested in those states such that the probability is larger than or equal to p
that, by time t, a state is reached where supervisor (resp. clerk) is under-used.

These properties are rendered in SoSL as follows:

P�p(TRUE �U<t Φsupervisor) P�p(TRUE �U<t Φclerk)

In Figure 2 is reported the result of the analysis. In the considered specification both the
clerk and the supervisor are under-used.

2.3 System Reactivity

In Section 2.2 we have studied a performance measure of the Finance Case-Study. This
is expressed in terms of the probability to completely handle a set of clients in a given



www.manaraa.com

Quantitative Analysis of Services 527

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  5  10  15  20

S1
S2
S3

Fig. 3. System reactivity

time with a given probability. However, this measure is also influenced by many aspects
that are not under the control of the designer. For instance, the time spent by a client for
sending data.

In this section we study system reactivity. This aims at measuring the capacity of the
system to react to external interactions. In particular, we will consider a property of the
form: “if a client contacts the portal and sends the data, then with probility p the portal
will send the decision within t time units”.

This property can be specified in SoSL as follows:

∇x.�s(x) · x : 〈ID〉 · x : 〈AMNT〉��1P�p(TRUE �U<t �s(x) · x : (DEC)��1TRUE)

In Figure 3 is reported the result of the analysis where, as expected, we have better
performance in scenario S1 while the worst case is scenario S3.

3 Analysis in sCOWS

In this section we report on some analysis results obtained by using two tools which
have been developed within the Sensoria Project to verify quantitative properties of
services described in a stochastic extension of COWS [9]. The detailed description of
the stochastic calculus, named sCOWS, is outside the scope of this paper. Here we
just mention that, in the tradition of stochastic process calculi, the main syntactic dif-
ference between sCOWS and COWS is in the fact that in sCOWS basic actions are
associated with a random variable expressing their rates. Other differences - i.e., the
use of service identifiers vs replication, and the adoption of a labelled semantics vs a
reduction semantics - are ascribed to meet some technical requirements for the applica-
bility of Markovian techniques. For a detailed description of the sCOWS semantics the
interested reader is referred to either [11] (which shows the essence of the stochastic
enrichment on the monadic calculus) or [13] (where the extension of the full polyadic
calculus is presented).

COWS is a calculus strongly inspired by WS-BPEL which combines primitives of
well-known process calculi (like, e.g., the π-calculus [10,12]) with constructs for web
services orchestration. Differently from CaSPiS, no primitive for opening or ending
sessions is explicitly available in COWS. The communication paradigm of the calculus



www.manaraa.com

528 I. Cappello et al.

is rather based on a mechanism of best-matching of the parameters of complementary
invoke (send) and request (receive) activities. Briefly put, when an invoke (request,
resp.) can match more than on request (invoke, resp.), only the communications that
induce the least number of parameter actualizations are allowed. For instance, using an
asynchronous π-calculus like notation and assuming that integer numbers play the role
of ground constants, in the following parallel composition

x〈x, 7〉 | x(w, 7). P1 | x(y, z). P2 | x(z, 11). P3

one single communication would be allowed: the one between the sending process
x〈x, 7〉 and the receiving process x(w, 7). P1. Precisely, the pairing of x〈x, 7〉with x(z, 11)
would be made impossible by the mismatch of the ground constants, and the pairing of
x〈x, 7〉 with x(y, z) would instead be prevented by the fact that this is not the best avail-
able match for the output action. Indeed, pairing x〈x, 7〉 with x(y, z) would induce the
substitution of both y and z, while pairing x〈x, 7〉 with x(w, 7) results in substituting w
only. The above example simply shows how the mechanism of sessioning is rendered in
COWS. Just think of the ground constant 7 as a private session identifier: all the com-
munications reserved for that particular session will not be intercepted by concurrent
peers.

3.1 sCOWS Specification of the Scenario

We present below the sCOWS specification of the analyzed scenario. The setting is
of a bank credit request service, which can be invoked by customers. The example
presents the login phase of the scenario, which is implemented at two distinct levels of
abstraction. In the first case, referred to as fine-grained, the bank service is composed of
a portal service (acting as an interface towards customers) and a login database (which
may be thought of as a bank private service). In the second case, called coarse-grained,
the login database is not explicitly considered: the whole login process is modelled as
if it were completely handled by the portal implementation, and the existence of a login
database is abstracted away. Indeed, the two specifications interpret the login process
as seen by the bank and by the customer, respectively. The services involved in the two
cases are, respectively:

– Customer (Table 1) and Portal (Table 2) for the coarse-grained instance;
– Customer (the same as above), Portal’, and LoginDB (Table 3) for the fine-

grained instance;

where we use strings starting by ’V’ to denote variables.
In the coarse-grained specification of the scenario, the login process starts with an

invocation by the customer over the portal.customerLogin channel. The customer
provides his username (user), his password (pwd), and a private name (initialId),
which is used to distinguish among invocations by different customers. The comple-
mentary request action is performed by the Portal service, and another instance of
Portal is spawned to serve possible invocations from further customers. Since the



www.manaraa.com

Quantitative Analysis of Services 529

Table 1. Definition of Customer for both the coarse- and the fine-grained specifications

Customer() = [user] [pwd] [initialId](

(portal.customerLogin!<user, pwd, initialId>,1.0)

| (

(portal.loginKo?<initialId>,1.0).nil

+ [VmyKey](portal.loginOk?<initialId, VmyKey>,1.0).(

(initialId.customerLoginOk!<loginOk>,1.0)

) ) )

Table 2. Definition of Portal for the coarse-grained specification

Portal() = [VtheUser][VthePwd][VtheId](

(portal.customerLogin?<VtheUser, VthePwd, VtheId>,1.0).(

[lkey][ndc](

(ndc.ndc!<ndc>,1.0)

|(

(ndc.ndc?<ndc>,failRate).

(portal.loginKo!<VtheId>,1.0)

+ (ndc.ndc?<ndc>,okRate).

(portal.loginOk!<VtheId, lkey>,1.0)

) )

| Portal()

) )

login database service is not present in the current scenario, the task to decide whether
a login attempt is successful or not is fully delegated to the portal. The outcome of
the login attempt is abstracted as the mutually exclusive choice between two internal
communications over the ndc.ndc channel. In case of successful login, a private name
(lkey) is sent to the customer. This private name models a session identifier, which will
be persistently used in further interactions between the customer and any additional ser-
vice provided by the bank. In the definition of Portal, most of the actions are given
basic rate 1.0. Here we observe that this is not the case for the two receiving actions
on ndc.ndcwhich are associated with the symbolic values failRate and okRate. As
explained below, these values can be eventually instantiated after the generation of both
the labelled transition system and the Markov Chain. This feature, which takes advan-
tage of the PRISM built-in facilities, allows us to model check different configurations
of the same sCOWS specification re-using the same PRISM model and just tuning the
values of symbolic basic rates.

In the fine-grained specification, the decision whether an attempted login is success-
ful or not is taken by Portal’ on the basis of the outcome of its interactions with
the login database LoginDB. The portal service forwards to LoginDB the credentials
received by the Customer, and conversely sends the response back to the relevant cus-
tomer. As in the coarse-grained instance, the request actions involved in the outcome of
the login attempt are associated with symbolic basic rates.



www.manaraa.com

530 I. Cappello et al.

Table 3. Definition of Portal’ and of LoginDB for the fine-grained specification

Portal’() = [VtheUser][VthePwd][VtheId](

(portal.customerLogin? <VtheUser, VthePwd, VtheId>,1.0).(

[lkey](

(db.login!<lkey, VtheUser, VthePwd>,1.0)

| (

(db.userKo?<lkey>,1.0).(portal.loginKo!<VtheId>,1.0)

+ (db.userOk?<lkey>,1.0).(

(portal.loginOk!<VtheId, lkey>,1.0)

| (portal.creditRequest?<lkey>,1.0)

.(portal.createInst!<lkey>,1.0)

) ) )

| Portal’()

) )

LoginDB() = [VrespKey][Vusr][Vpwd](db.login?<VrespKey, Vusr, Vpwd>,1.0).(

[nd1][ch1](

(nd1.ch1!<ch>,1.0)

| (

(nd1.ch1?<ch>,okRate).

(db.userOk!<VrespKey>,1.0)

+(nd1.ch1?<ch>,failRate).

(db.userKo!<VrespKey>,1.0)

) )

| LoginDB()

)

3.2 Probabilistic Model Checking in sCOWS

Probabilistic model checking of sCOWS specifications is based on a Java tool called
sCOWS LTS that provides input to PRISM, a probabilistic model checker for the anal-
ysis of properties expressed in CSL (Continuous Stochastic Logic).

The developed tool first implements the sCOWS operational semantics to get the
Labelled Transition System (LTS) associated with the input service. For instance, for
three parallel customers, Figure 4 and Figure 5 show the LTSs of the fine- and of the
coarse-grained specifications, respectively. For the sake of readability, the labels associ-
ated with transitions are omitted by both the two graphs. Apart from the lower number
of nodes in the coarse-grained case, notice that both LTSs have the same number of
absorbing states, representing the possible final configurations of the global service that
only depend on the number of successfully logged on customers (0, .., 3).

The second computational phase of the developed tool consists in the generation of
the Continuous Time Markov Chain (CTMC) in PRISM notation. To ease expressing
and checking relevant quantitative properties, PRISM allows the association of CTMC
states with variables. In order to take full advantage of this feature, when the LTS is
translated into the CTMC, the user can specify which sort of actions are relevant to the



www.manaraa.com

Quantitative Analysis of Services 531

Fig. 4. LTS of the fine-grained specification (labels omitted)

analysis he intends to carry on. For example, the user can choose to associate the com-
munication over a given channel with the increment of an integer PRISM variable. This
is indeed what was done for the examples of analysis that are shown below. In those
cases we were interested in checking properties depending on the number of success-
fully logged on customers. Then we used the variable finished to trace the number of
communications over the channel portal.loginOk.

Examples of properties against which sCOWS models can be checked are given
below. The first one (1) is a property for transient analysis, and the second one (2) is a
steady-state property, namely they refer, respectively, to the transient evolution of the
system, and to its behaviour at steady-state. Formally:

P=?[trueU[T, T ] finished = N] (1)

i.e., “What is the probability that exactly N customers are logged on at time T?”, and

S =?[finished = N] (2)

i.e., “What is the long-run probability of being in a state where exactly N customers
are logged on?”. Relatively to (2), notice that, since in the configuration at hand there
is no steady-state, the use of the CSL S operator expresses the long-run probability
of reaching one of the final configurations of the system. Also, the results obtained
by checking (2) represent the asymptotic view of the results for the transient analysis
of (1).

Exploiting the support for symbolic rates, we checked our specifications with two
different instances of the pair (okRate, failRate). In particular, we considered the



www.manaraa.com

532 I. Cappello et al.

Fig. 5. LTS of the coarse-grained specification (labels omitted)

Table 4. Parametric probabilities to get a particular final configuration (rok stays for okRate, and
r f stays for okRate)

Logins 0 1 2 3

Probability
(

r f

rok+r f

)3
3
(

rok
rok+r f

) (
r f

rok+r f

)2
3
(

rok
rok+r f

)2 (
r f

rok+r f

) (
rok

rok+r f

)3

pair (okRate = 4.0, failRate = 2.0) where the two values are much similar, and the
pair (okRate = 30.0, failRate = 2.0) in which the okRate is fifteen times bigger than
failRate. The results of the analysis are collectively reported in Figure 6. As expected,
for both the two instances of the pair (okRate, failRate), the fine-grained specifica-
tion shows to be slower than the coarse-grained one. Notice however that the additional
transitions of the fine-grained model are executed before deciding upon the success
or the failure of the login attempt, and hence belong to the transient behaviour of the
global system, while property (2) refers to steady-state. For this reason, once fixed spe-
cific values for the pair (okRate, failRate), one would expect comparable results for
both the coarse- and the fine-grained specifications. In fact, the probability to reach a
particular final configuration is driven by a binomial distribution B

(
3, okRate
okRate+failRate

)
which only depends on the values assigned to the symbolic rates (okRate, failRate).

Table 5. Long-run probabilities of being in one of the absorbing states in the different instances
of the two specifications

Logins
(okRate = 4.0, failRate = 2.0) (okRate = 30.0, failRate = 2.0)

Fine Coarse Analytical Fine Coarse Analytical
0 0.0370369 0.0370370 0.037 2.441 × 10−4 2.441 × 10−4 2.44140625 × 10−4

1 0.2222216 0.2222220 0.2 1.09863 × 10−2 1.09863 × 10−2 1.0986328125 × 10−2

2 0.4444432 0.4444438 0.4 0.1647944 0.1647947 0.164794921875
3 0.2962957 0.2962958 0.296 0.8239731 0.8239734 0.823974609375



www.manaraa.com

Quantitative Analysis of Services 533

0 5 10 15 20 25 30
Time

0

0,2

0,4

0,6

0,8

1

Pr
ob

ab
ili

ty

numEnded = 0
numEnded = 1
numEnded = 2
numEnded = 3

0 5 10 15 20 25 30
Time

0

0,2

0,4

0,6

0,8

1

Pr
ob

ab
ili

ty

numEnded = 0
numEnded = 1
numEnded = 2
numEnded = 3

0 5 10 15 20 25 30
Time

0

0,2

0,4

0,6

0,8

1

Pr
ob

ab
ili

ty

numEnded = 0
numEnded = 1
numEnded = 2
numEnded = 3

0 5 10 15 20 25 30
Time

0

0,2

0,4

0,6

0,8

1

Pr
ob

ab
ili

ty

numEnded = 0
numEnded = 1
numEnded = 2
numEnded = 3

Fig. 6. Long-run probability that N customers are successfully logged on at time T: basic rates
(okRate = 4.0, failRate = 2.0) (top) and (okRate = 30.0, failRate = 2.0) (bottom); coarse-
grained specification (left) and fine-grained specification (right)

Table 5 sums up the experimental data we obtained when checking (2) and compares
them to the theoretical analytical values resulting from the instantiation of the expres-
sions in Table 4. The numerical values obtained by the model checker are approximated
to seven digits. There are a few discrepancies (always bound by 10−6) between corre-
sponding experimental and theoretical data. We ascribe this shift to the rounding errors
introduced by the model checker computations.

3.3 Approximate Model Checking in sCOWS

Despite of the many optimizations implemented in sCOWS LTS, on some occasions
the state space of a specification can be so big that the generation of the CTMC, as well
as the application of numerical algorithms to solve the chain, become really demanding
tasks. To face this problem and check properties of sCOWS services without generating
their complete transition systems, we also developed a tool for approximate statistical
model checking. The tool, called sCOWS AMC, is based on the generation of simula-
tion traces obtained by running a Monte Carlo algorithm. At high level, given a formula
φ, its model checking consists in the following steps:

– computation of a number of execution traces obtained by direct simulation of the
source sCOWS specification;



www.manaraa.com

534 I. Cappello et al.

– evaluation of φ against each of the traces;
– statistical reasoning based both on the number of samples performed and on the

desired error threshold.

Our tool currently supports the verification of CSL transient time-bounded path formu-
las like, for instance, the following ones:

P�0.8[finished < 2 U[10, 20] finished >= 2] (3)

i.e., “Is there a probability of at least 80% that in the execution time range [10, 20] the
number of logged-on customers varies from a value less than two to a value greater or
equal two?”,

P?[finished < 2 U[10, 20] finished >= 2] (4)

i.e., “What is the probability that in the execution time range [10, 20] the number of
logged-on customers varies from a value less than two to a value greater or equal two?”

The truth value of CSL probabilistic formulas of the type of (3) is calculated by
means of the sequential probability ratio test [15] and is inspired by the same approach
used Ymer [16]. This method requires to perform a sequence of observations of the
hypothesis to be tested. After each observation an error estimation is made, taking into
account the results of all the previous observations. When a given error threshold is
crossed, the hypothesis is either accepted or rejected. In our case, performing an obser-
vation corresponds to testing the formula over an execution trace, which is generated on
demand. This approach does not involve the estimation of the probability with which
the property is verified: it only checks whether the probability lies below or beyond the
given threshold.

Statistical checking of probability estimation formulas, like e.g. (4), requires a dif-
ferent technique which is based on the choice of two parameters: the approximation
parameter ε, and the confidence parameter δ. As in the above case, the analysis is com-
puted on a series of observations on random walks over the LTS. This time, however, the
number of observations necessary to obtain the desired approximation level is estimated
before observations are made. As shown in [5], taking a sample of

4 × log 2
δ

ε2

observations, ensures that the probability that the obtained estimation diverges from the
real value by more than ε is less than δ. Also, the complexity of this probability estima-
tion method is linearly dependent on the number of observations, and hence on log 1

δ

and on 1
ε2 . So the value of the approximation parameter has to be carefully selected.

Given the best-matching communication policy of sCOWS, all the possible transitions
exiting from a state must be computed on the fly at each step of the simulation. Hence
random walks over sCOWS specifications are more costly than over CTMCs. To get
a good balance between approximation value and execution time, we carried out our
experiments by choosing δ = 10−1 and ε = 10−2, so testing properties over 52042
execution traces.



www.manaraa.com

Quantitative Analysis of Services 535

Table 6. Comparative view of the model checking approach and the statistical checking approach
(time expressed in seconds)

Coarse-grained specification
Customers State space size LTS generation time Model Checking time Simulation time

2 20 1.4 1.5 417.3
3 55 3.5 1.5 988.7
4 125 25.3 1.4 1,979.5
5 251 287.7 3.4 2,801.0

Fine-grained specification
Customers State space size LTS generation time Model Checking time Simulation time

2 44 3.2 1.5 1,125.6
3 164 22.5 1.5 3,271.8
4 494 310.6 7.4 4,958.9
5 1,286 48,420.5 69.5 11,734.3

3.4 Comparison between the CTMC- and the Simulation-Based Approaches

Table 6 shows a comparative view of the results we obtained by applying probabilistic
and statistical model checking. Comparison is in terms of execution time. As expected,
for the coarse-grained specification the simulation-based method is less efficient than
the other. This is due to the fact that the state space is not very large, and thus rela-
tively cheap to build. Conversely, when the number and the complexity of the involved
services increase, the method based on the generation of the complete LTS gets outper-
formed by the approach used in sCOWS AMC.

4 Analysis in PEPA

We turn now to modelling of the credit request scenario in PEPA [6] and analysis of the
model using the PEPA software tools developed within the Sensoria Project [3,14].

We begin with a description of the bank’s customers and the process which they
follow in order to secure a loan from the bank. This presents the customer’s view of the
process in terms of activities and choices along the way.

The customer’s first action is to initiate a loan (request). To carry this through they
must enter their balance data and securities (enterData) and send this to the credit por-
tal with an XBRL upload (uploadData). (XBRL is the eXtensible Business Reporting
Language.) The customer then waits to see if the request will be approved or declined
(the approve and decline activities respectively). If the request is approved the customer
has no further business and the next waiting customer can be considered. If the request
is declined the customer can try again (reapply) and will do so with probability t0. If
they do not wish to reapply they can yield to the next customer.

This behaviour is described in PEPA thus. A rate is associated with each activity and
a probability is associated to this when the customer is making the decision of what
course of action to take next.



www.manaraa.com

536 I. Cappello et al.

Customer
def
= (request, rrequest).Entering

Entering
def
= (enterData, renterData).Upload

Upload
def
= (uploadData, rupload).Wait

Wait
def
= (approve,�).Customer
+ (decline,�).Decide

Decide
def
= (reapply, rreapply × t0).Entering
+ (reapply, rreapply × t1).Customer

The service is a reactive system. It takes no action until the upload of XBRL data is
complete. At this point it validates the data by using a validation web service which
determines whether or not the balance data is valid (validateData). We are not interested
in the processing of invalid data in this scenario and so the next behaviour which we
model is passing the valid data to the bank (sendBank). The service is then ready to
receive the next request.

Service
def
= (uploadData,�).Validate

Validate
def
= (validateData, rvalidate).SendBank

SendBank
def
= (sendBank, rsendBank).Service

The relevant business functions of the bank are expressed in the Bank component. This
documents the “predecision” phase which can have three possible outcomes. Some ap-
plications can be immediately approved, and others immediately declined. Some pro-
portion need to be processed by a bank employee who will either decline the loan, or
approve it (which requires confirmation, which may or may not be forthcoming).

Bank
def
= (sendBank,�).PreDecide

PreDecide
def
= (predecide, rpredecide × p0).Approve
+ (predecide, rpredecide × p1).Decline
+ (predecide, rpredecide × p2).Employee

Employee
def
= (decide, rdecide × q0).Confirm
+ (decide, rdecide × q1).Decline

Confirm
def
= (decide, rdecide × s0).Approve
+ (decide, rdecide × s1).Decline

Approve
def
= (approve, rinform).Bank

Decline
def
= (decline, rinform).Bank

To complete the model description we need to compose the sequential components
defined above and require them to cooperate on their shared activities. This leads to the
following model composition, which defines the initial state of the model.

Customer ��
{uploadData,approve,decline} (Service ��

{sendBank}Bank)

In order to numerically evaluate this model it is necessary to assign particular values
to the rates and probabilities used in the model. These values can be found in Tables 7
and 8. A screenshot of the PEPA Eclipse Plug-in processing the model can be found in
Figure 7.



www.manaraa.com

Quantitative Analysis of Services 537

Table 7. Table of rate values used in the model. All rates are expressed at the granularity of
minutes. The reciprocal of the rate gives the mean or expected value of the duration of the activity.
Thus, the average time for one bank employee to decide on a loan is about 82 minutes (1/rdecide =

81.90008).

Customer rates Service rates Bank rates
rrequest = 3.11944 rvalidate = 1.43141 rpredecide = 5.15757

renterData = 0.04667 rsendBank = 1.53785 rdecide = 0.01221
rupload = 0.88424 rinform = 0.45729
rreapply = 0.02036

Table 8. Table of probability values used in the model. Each column sums to 1.

Employee Supervisor
Predecision decision decision Reapplication
p0 = 0.20907 q0 = 0.17441 s0 = 0.56423 t0 = 0.08970
p1 = 0.32075 q1 = 0.82559 s1 = 0.43577 t1 = 0.91030
p2 = 0.47018

Fig. 7. Screenshot of the PEPA Eclipse Plug-in processing the credit request scenario. The PEPA
model is displayed in the editor and the Abstraction view gives a graphical presentation of the
Customer component. Performance results are shown in the Performance Evaluation view.



www.manaraa.com

538 I. Cappello et al.

The computational difficulty of the problem is compounded as usual in service-
oriented computing because we face the problem of being uncertain about which in-
stance of a service centre will be selected at run-time. Because of this we must evaluate
the model not just one time but repeatedly, once for each possible binding of rate pa-
rameters to rate constants. This parameter sweep must consider the full combinatorial
potential of rate parameter assignments and the credit portal must satisfy its service-
level agreement for every possible parameter assignment.

We queried the model using the XSP performance query language [4]. The query
which we applied was the following:

request:start, (approve | decline):stop

Informally, we can think of this query as starting a clock when a request arrives and
stopping this clock when the request is either approved or declined. More formally, this
query defines a set of start states (all those states reachable via activity request), a set
of end states (all those states reachable via activities approve or decline), and the set of
all paths through the model’s underlying labelled transition system from start states to
end states. The analysis results computed by the PEPA tools deliver the probability of
completing the passage from the start states to the end states for any given time bound.
We present these results in Figure 8.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  50  100  150  200  250  300

P
r

Time

r_decide
1.5 * r_decide
2.0 * r_decide
3.0 * r_decide
4.0 * r_decide

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  50  100  150  200  250  300

P
r

Time

r_enterData
1.5 * r_enterData
2.0 * r_enterData
3.0 * r_enterData
4.0 * r_enterData

Fig. 8. Two cumulative distribution functions showing the effect of scaling rates r decide and
r enterData

One of the uses of these results is to allow us to identify those activities which are
bottlenecks for the passage of interest. By varying the rates in the model we can experi-
ment to find that changes to the rate of entering data (r enterData) have little impact—
see the right-hand graph in Figure 8. In contrast, changes in the rate of human decision
making (r decide) have a much greater impact—compare the left-hand graph in Fig-
ure 8. From investigations such as these we can decide where effort would be best spent
in improving functions within the entire business process.



www.manaraa.com

Quantitative Analysis of Services 539

5 Concluding Remarks

We presented a number examples of quantitative analysis of scenarios taken from the
Sensoria Finance Case-Study. The shown applications are based on tools developed
within the Project for three distinct stochastic process calculi: MarCaSPiS, sCOWS,
and PEPA.

The tool SoSL-MC, built around the MRMC model checker, allows checking Mar-
CaSPiS specifications against properties expressed in SoSL, a service oriented stochas-
tic logics. The examples presented in the paper show how the distribution of clients
among the three possible rating classes influences system performance.

Relative to sCOWS, two tools have been illustrated. They adopt distinct approaches
to the model checking of CSL formulas. The tool sCOWS LTS generates the transition
system corresponding to the given sCOWS specification, then converts it into a CTMC
to be used as input for PRISM. In sCOWS AMC, instead, statistical reasoning is ap-
plied to get the wanted results (possibly with a small approximation error) starting from
simulations rather than from LTSs. The two tools have been applied to compare the
long-run probability of successful login for both different rates in the specifications and
different implementation of the login procedure. Also, the range of applicability of the
two tools has been briefly commented upon in a comparative way.

The latest kind of analysis reported in the paper was the one carried out using PEPA
and the query language XSP of stochastic probes. This setting has been used to perform
sensitivity analysis over the basic rates associated to actions embedding the waiting
time for loan approval or decline.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time markov
chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)

2. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for structured ser-
vice programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
19–38. Springer, Heidelberg (2008)

3. Clark, A.: The ipclib PEPA Library. In: Harchol-Balter, M., Kwiatkowska, M., Telek, M.
(eds.) Proceedings of the 4th International Conference on the Quantitative Evaluation of
SysTems (QEST), pp. 55–56. IEEE, Los Alamitos (2007)

4. Clark, A., Gilmore, S.: State-aware performance analysis with eXtended Stochastic Probes.
In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 125–140. Springer, Hei-
delberg (2008)

5. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model
checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 307–329.
Springer, Heidelberg (2004)

6. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University
Press, Cambridge (1996)

7. Katoen, J.-P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: Quantitative
Evaluation of Systems (QEST), pp. 243–244. IEEE CS Press, Los Alamitos (2005)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Checking for Perfor-
mance and Reliability Analysis. ACM SIGMETRICS Performance Evaluation Review 36(4),
40–45 (2009)



www.manaraa.com

540 I. Cappello et al.

9. Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

10. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Universtity
Press, Cambridge (1999)

11. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Heidelberg (2007)

12. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge Uni-
verstity Press, Cambridge (2001)

13. Schivo, S.: Statistical model checking of Web Services. PhD thesis, Int. Doctorate School in
Information and Communication Technologies, University of Trento (2010)

14. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA Eclipse Plug-in. Performance Evaluation
Review 36(4), 28–33 (2009)

15. Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical Statis-
tics 16(2), 117–186 (1945)

16. Younes, H.L.S.: Ymer: A statistical model checker. In: Etessami, K., Rajamani, S.K. (eds.)
CAV 2005. LNCS, vol. 3576, pp. 429–433. Springer, Heidelberg (2005)



www.manaraa.com

Methodologies for Model-Driven Development
and Deployment: An Overview�

László Gönczy, Ábel Hegedüs, and Dániel Varró

Department of Measurement and Information Systems,
Budapest University of Technology and Economics

{gonczy,hegedusa,varro}@mit.bme.hu

Abstract. Sensoria proposes a model-driven approach for the entire
development cycle of services-based applications and infrastructures in-
cluding the design, formal analysis, deployment and re-engineering of
services. This chapter presents the model-driven engineering vision of
the project and a summary of achievements to demonstrate the feasibil-
ity of the approach. This approach and the challenges in model driven
development are illustrated on the example of an end-to-end model trans-
formation chain which bridges BPEL with precise formal model checking
technologies and supports the back-annotation of the analysis results di-
rectly to the engineering level design model.

1 Introduction

This chapter introduces a model-driven Sensoria approach for service engineer-
ing. The project delivered a comprehensive approach for service modeling, anal-
ysis and deployment with novel modeling languages, qualitative and quantitative
techniques for service analysis, automated model driven deployment mechanisms
and legacy transformations. Model transformation served as a key technology for
model-driven service engineering. The first part of the chapter first discusses the
overall methodology and then briefly overviews some key contributions of the
project (Sec. 2). Obviously, these individual contributions are presented from
the viewpoint of model-driven development. Most of these are discussed in de-
tail in other chapters of this book or in publications related to the project.

The second part (Sec. 3) presents a selected ”end-to-end” example for using
model-driven techniques for analyzing services. Here high-level, standard models
of business processes and their correctness requirements are translated to a for-
mal model (namely, transition systems and temporal logic formulae) in order to
enable exhaustive verification by a model checker, which is a common scenario
in the Sensoria project.

Furthermore, this forward model transformation is also complemented with
the back-annotation of analysis results to the original service models. The tech-
nique we present enables the easy visualization/simulation of model checker

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 541–560, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

542 L. Gönczy, Á. Hegedüs, and D. Varró

results right on the original business processes, therefore enabling the service
developer to correct design flaws.

The tool support integrated into the Sensoria Development Environment
is briefly discussed in Sec. 3.5. Finally, Section 4 discusses related work and
Section 5 concludes the paper.

2 Overview on Model-Driven Methodologies

2.1 The Sensoria Service Engineering Approach

This crosscutting chapter presents the engineering vision of the Sensoria project,
which facilitates a model-driven development approach. After a brief conceptual
introduction, the chapter presents a high-level overview in order to demonstrate
the feasibility of the approachby summarizing selected achievements in the project
from a practical, engineering and tool-oriented viewpoint.

Actors in a service-oriented project. A primary goal of the Sensoria

project is to provide support for different stakeholders and actors during the
entire project lifecycle for developing service-oriented overlay systems of a justi-
fiable quality. These participants inevitably include the following ones:

– Domain experts are responsible for synthesizing requirements from business-
related knowledge such as organization-specific roles, typical business sce-
narios or workflows, or business-critical data. While domain experts are
obviously experts in their own application domain, they typically lack general
software (and service) engineering skills, thus high-level, easy-to-understand
languages are essential for them to record their business knowledge.

– Service modelers are in charge of the technical design of service-oriented
systems, which has to meet the business-related requirements. Service mod-
elers are typically engineers with skills in modern service-oriented modeling
languages and design technologies. However, they are typically less knowl-
edgeable in how to provide guarantees for the proven quality of service.

– Service certifiers are frequently a project-independent entity or authority
being responsible for assuring the approved quality of services. While today,
this role is still restricted to dedicated application areas (such as mission or
safety-critical applications), it is expected that the role of dependability (i.e.
justifiable quality of services) will drastically increase in traditional business
areas. Service certifiers are typically skilled in formal (mathematical)analysis
and testing techniques in order to carry out precise analysis of the service,
which is currently in the design phase.

– Service managers are in charge of the proper deployment and maintenance
(e.g. upgrade) of business-critical services. They are experts in the underlying
service infrastructures.

Sensoria proposes a model-driven approach for the entire development cycle of
services based applications and infrastructures including the design, the formal



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 543

Fig. 1. The Sensoria engineering approach

analysis, the deployment and re-engineering of services. The core ideas of the
Sensoria engineering approach are illustrated in Fig. 1.

The main contributions of Sensoria can be summarized from an engineering
perspective as follows:

– Precise capturing of domain-specific requirements
– High-level front-end service modeling languages
– Hidden formal analysis of services
– Deep semantic analysis for certification
– Automated deployment of services to various infrastructures
– Customizable orchestrator for tool integration
– Model transformations for bridging models and languages
– Reengineering of legacy services
– Standards-compliant languages and service infrastructure

The current paper provides a brief, high-level overview of selected contributions
within each category above.

Experience on using these methods on Sensoria case studies is collected in
Chapter 7-2.

2.2 Contributions of Sensoria

Precise capturing of domain-specific requirements. This work is an en-
hancement of the Requirement Engineering technique presented previously. Here
the emphasis was on Business Process Reengineering where functional and se-
curity requirements must be guaranteed during the engineering process. Thus
the connections between business processes and requirement models were in-
vestigated and the notion of goal equivalence was introduced. A framework was
defined to support Goal Equivalent Secure Business Process Reengineering in [1].



www.manaraa.com

544 L. Gönczy, Á. Hegedüs, and D. Varró

High-level front-end service modeling languages. In order to support
service modelers, Sensoria facilitates the use of high-level front-end service
modeling languages. A primary means for that is the definition of a service-
oriented UML Profile, thus off-the-shelf UML CASE tools can be used by ser-
vice engineers to construct service models. UML4SOA is described in detail
in Chapter 1-1.

As an alternate solution, Sensoria proposes a new domain-specific model-
ing language (called SRML) for a rich semantic definition of components and
services. A visual SRML editor, and an EMF-compliant SRML metamodel is
developed, the approach is reported in detail in Chapter 1-2.

Hidden formal analysis of services. As a core contribution, Sensoria fa-
cilitates a model-driven, hidden formal analysis of service-oriented overlay sys-
tems. Since service modelers typically lack mathematical skills to carry out an
in-depth analysis of the system in an early phase of design, we carry out au-
tomated model analysis by transforming high-level service models into precise
mathematical models in order to carry out quantitative and qualitative analysis.
Results of the mathematical analysis are aimed to be back-annotated to the high-
level models service engineers, thus hiding the technicalities of the underlying
mathematical analysis.

A method was created for model-based qualitative analysis of services via call
by contract. Here UML models are passed to a static checker by automated model
transformations in order to analyze service behavior against security policies [2].

Techniques for model-based quantitative performance analysis of services by
extracting a performance model from high-level service models captured in UML
were also investigated. The performance model is mapped onto a stochastic
process of the PEPA framework whose analysis allows the service modeler to
obtain quantitative measures such as throughput and utilization (Chapter 5-2
and Chapter 5-3).

We proposed the use of Modes to abstract a selected set of services, and use
UML2 models to analyze self-managing and reconfigurable service architectures
for consistency and constraints. In addition, coordination processes may be syn-
thesized to manage the changes in architecture as environmental changes occur.
The approach is illustrated through the use of the Sensoria Development En-
rivonemnt with collaborating UML2, Darwin and Ponder2 model-transformation
to deployment artefacts (see Chapter 4-4).

Recently, we developed novel model-based analysis methods for service orches-
tration designed in UML4SOA. Here we check consistency and protocol confor-
mance of service compositions described as UML activity diagrams and protocols
defined by UML state machines. Details of this method are provided in [3].

Finally, we also help service developers to estimate the cost of reliability (in
terms of response time overhead) by introducing performability analysis tech-
niques for reliable messaging middleware. UML4SOA models with specifica-
tions on non-functional parameters of service communication are transformed
into PEPA models according to messaging mode/characteristics and the cost of



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 545

middleware configuration alternatives can be evaluated by sensitivity analysis
(see [4] for details).

Deep semantic analysis for certification. The service-oriented calculi de-
veloped in WP2 are intended for deep semantic analysis carried out by service
certifiers having in-depth mathematical knowledge. Previously we also demon-
strated that a model-driven approach is also applicable here as well by bridging
UML models of service orchestrations and sound formal notations. More specif-
ically, a transformation is presented, which maps UML activity diagrams to the
saga calculus. This allows a sound formal analysis of the orchestration’s control
flow based on a simple and formally easily amenable representation.

A transformation has also been developed to map UML4OSA models to Jolie
orchestrations, which permits the use of the analysis features provided by SOCK,
the formal background of Jolie [5]. This transformation is part of the MDD4SOA
toolkit.

Automated deployment of services to standards-compliant service in-
frastructures. Service managers responsible for deploying and maintaining
service-oriented applications need to face the challenge that more and more
emphasis is put on the reliability, availability, security, etc. of such services. In
order to meet such non-functional requirements, a service needs to be designed
for reliability by making design decisions on a high, architectural level. Details
of the techniques are presented in [6], where a model-driven approach for the au-
tomated deployment of services to standards-compliant service infrastructures
is described. Starting from a platform-independent service model enriched by
non-functional attributes for reliable messaging, low-level service configuration
descriptors are generated by appropriate model transformations for standards-
compliant middleware supporting reliable and secure messaging. This year we
extended existing model transformations to include the Apache Axis2 platform
as target execution environment.

As a ”side effect” of these developments, a novel approach is being investi-
gated to facilitate the development of customizable model transformations. As
illustrated by the above techniques, there are multiple model transformations
during analysis and development of service-oriented systems. In these transfor-
mations, typically there are steps where a high level system model is parsed in
order to generate a subset of the model, which is relevant for a particular anal-
ysis method (performance, security, etc) while other steps aim at the creation
of deployment artifacts for different platforms (e.g. Web service implementation
on Apache/IBM, considering different configuration constraints). These steps
all need similar model transformations/translations, which can be ”parameter-
ized” by high level engineering models. This approach needs the development of
models rather than transformations.

Customizable orchestrator for tool integration. Different application do-
mains and organizations frequently need to customize the overall development



www.manaraa.com

546 L. Gönczy, Á. Hegedüs, and D. Varró

process to the specific needs of the domain. However, when new tools are in-
tended to be added to the workflow of the organization, this requires significant
efforts in tool integration. In order to bridge the gap between the development
process and the development tools (thus reducing the complexity of tool inte-
gration), the Sensoria Development Environment (SDE) is provided, acting as
a central orchestrator for individual tools and services. SDE uses Eclipse based
de facto standards, such as EMF-based interfaces for models and OSGI services
for design, analysis, model transformation and deployment steps.

Advances on the SDE and currently integrated tools are described in
Chapter 6-5.

Model transformations for bridging models and languages. The model-
driven development, analysis and deployment of services with justifiable quality
necessitates that the automated model transformations bridging different lan-
guages and tools are precise themselves. Sensoria builds on modern Eclipse-
based model transformation frameworks (such as Viatra2 [7] and the TIGER
EMF Transformer) supporting standards EMF-based interfaces with precise
mathematical foundations provided by the paradigm of graph transformation.

Furthermore, we have also investigated innovative ways for accelerating the
process of designing model transformations. Model transformation by example
is a novel approach in model-driven software engineering to derive model trans-
formation rules from an initial prototypical set of interrelated source and target
models, which describe critical cases of the model transformation problem in a
purely declarative way.

Recently, we investigated techniques for incremental, live model transforma-
tions. We adapted the well-known RETE algorithm from the field of rule-based
systems to make pattern matching more efficient, therefore reducing execution
time of model transformations. We implemented the algorithm for the Viatra2

model transformation framework. Unlike batch transformations, live transfor-
mations are triggered by model changes and they are executed incrementally to
synchronize models.

Furthermore, the Moment-GT model transformation engine has been devel-
oped to facilitate verifiable model transformations using the Maude rewriting logic
engine as formal background. These techniques are presented in Chapter 6-2).

Reengineering of legacy services. In order to support the reengineering and
redeployment of existing legacy applications to more modern service-oriented
platforms, the reengineering methodology is summarized from the global soft-
ware engineering view of Sensoria. Each instantiation of the methodology de-
termines what programming language can be used as input and what concrete
platform will the services adhere to. Reengineering is also carried out by model
transformations (Chapter 6-4).



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 547

Standards-compliant languages and service infrastructure. In order to
widen the practical usability of results, interfaces and platforms used within
the Sensoria engineering approach are compliant with standards and/or indus-
trial best practices. For instance, service models are captured in UML, BPEL
or using EMF-compliant graphical editors in Eclipse. Target deployment plat-
forms include service infrastructures supporting various WS-* standards on sev-
eral (IBM, Apache) platforms. Services are deployed by using standard service
descriptors such as WSDL, and currently there is an ongoing development to
support SCA.

3 From BPEL to SAL and Back: an End-to-End Example
on Model-Driven Analysis

The development of a fully-fledged verification tool directed by model-driven
analysis necessitates the application of numerous model-based techniques. In
this section these techniques are presented through a complex end-to-end ex-
ample implementation providing design-time verification support for business
processes. First the verification approach is described, followed by a short pre-
sentation of the challenges in model-driven analysis. Finally the usage of the
different techniques are described on the example implementation.

3.1 Practical Design-Time Verification of Business Processes

Motivation. Business processes are often used to coordinate the work of dif-
ferent stakeholders in business-to-business collaborations as well as Enterprise
Application Integration. Since these workflows set up the cooperation between
actors, their quality is critical to the organization and any malfunction may have
a significant negative impact on financial aspects. To minimize the possibility of
failures, designers and analysts need powerful tools to guarantee the correctness
of business workflows.

Fig. 2. BPEL verification approach overview

Approach. The main steps of the method presented in [8] are illustrated in Fig. 2.
In the current chapter, we restrict our investigations to using BPEL as an in-
put language. However, the Sensoria toolset offers the higher-level UML4SOA



www.manaraa.com

548 L. Gönczy, Á. Hegedüs, and D. Varró

models to capture business processes and derive actual BPEL descriptions by
automated model transformation. In the next step, the input BPEL business
process description is transformed into a formal model in the form of state tran-
sition systems. In the second stage, this transition system is projected into the
language of the Symbolic Analysis Laboratory (SAL) [9]. The actual verification
is then carried out with symbolic or bounded model checking techniques [10].

Requirements against the business process are captured as the expressions of
the Linear Temporal Logic [11]. General (application-independent) requirements
and arbitrary business process-specific requirements may be verified with the
model checking technique. As a distinctive feature of this verification technique,
it provides support for analyzing error propagation between variables.

In the method, model checking is used for verification purposes. The result of
model checking is a sequence of actions, which violate the requirement (counter-
example). The system satisfies the requirement if a counter-example cannot be
found. The counter-example represents an execution of the BPEL process, but
deriving and presenting this execution is non-trivial.

Running example. The Sensoria project incorporates complex case studies from
different domains, which are used for demonstration purposes. We selected the
Finance Case Study [12] as a running example for our paper. The case study
includes a credit request process, which we modeled in BPEL, a simplified version
of the process is shown on Fig. 3.

The credit request process starts with a Login part where the client logs
in the system, if the login is successful, the main part (Scope) of the process
starts, enabling an Event handler executed if the process is canceled and a
Fault handler for catching errors. Next a cycle is started (Repeat until),
which repeats as long as the request is not accepted and updates are made.
The cycle core starts with creating a new request, followed by entering the
Balance and Security data and Calculating the rating. If the rating is AAA
the rating is accepted at once, otherwise BBB ratings are approved by a clerk,
the rest are approved by a supervisor.

After the approval is returned (Wait for approval), the request is accepted
if the rating was accepted (Rating accepted?). If the request is rejected (Reject
request), the client can update the request and try again. Finally the process
finishes after logging out.

Verification example. The implemented running example business process was
verified using general requirements. Fig. 3 illustrates a snapshot from the ani-
mation of the execution.

The validated requirement stated that the Update desired variable is always
written during the execution before reading (i.e. no uninitialized reading occurs).
Verification revealed that the process does not satisfy this requirement.

Specifically, this variable is only written if the request is rejected and the client
wishes to update some of the data to try again (during the Reject request

part). Therefore, when the request is accepted on the first try (Accept request),



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 549

Fig. 3. Credit request BPEL process

the evaluation of the condition for the Repeat until activity leads to an unini-
tialized variable reading error.

This minor error can be corrected multiple ways including: initializing the
variable at the beginning of the process, before executing the cycle the first time
or updating the variable when accepting the request.



www.manaraa.com

550 L. Gönczy, Á. Hegedüs, and D. Varró

3.2 Methodological Overview

The Sensoria engineering approach (see Sec. 2.1) includes the usage of hidden
formal methods. A more detailed view of this part of the approach is presented
through the BPEL verification method.

Fig. 4. Methodological overview

The general overview of model-
driven design is shown on Fig. 4. The
high-level system models are used to
create formal models by model trans-
formation. The definition of the syn-
tax of the models are created by
metamodeling. Model importers are
defined for creating instance models
conforming to metamodels from ex-
ternal data and code generation is
employed for exporting the gener-
ated formal model for external anal-
ysis tools. Traceability information
created during the transformation is used for defining requirements verified dur-
ing analysis and for aiding the back-annotation of the analysis results to the
high-level system model.

3.3 Challenges in Model-Driven Analysis

Automated model transformations are widely used for creating analysis models
from design models for executing validation, verification, qualitative or quantita-
tive analysis. Although numerous approaches were defined for analyzable model
generation, they often lack solutions for processing analysis results automatically
and thus fail to present them to the analyst in an intuitive, design model level
representation. This reverse transformation problem, called back-annotation is
non-trivial and appears as an additional challenge in most analysis techniques.

Storing the information regarding the correspondence of the design and anal-
ysis models is strongly related to back-annotation. Traceability is a common
requirement in software development and specifically in model transformations.
Several aspects of model-based design necessitate traceability information for
either automatic execution or aiding user interaction. These aspects include
multiple-phased transformations, requirement definition and back-annotation.

Defining requirements for analysis models is a core aspect for numerous analy-
sis techniques. In order to ensure that formal methods remain hidden through the
approach, intuitive requirement definition support is essential. Instead of assem-
bling a formula manually, the user should be able to define them on a graphical
user interface where general requirements can be parameterized based on the
actual model and domain-specific ones can be assembled using domain-specific
terms.



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 551

3.4 Implementation

The implementation of the method requires the application of a combination
of MDA techniques. Note that it is possible to start out from a UML4SOA
service orchestration by generating the business process with the MDD4SOA
toolkit. In order to be able manipulate model instances, first the metamodels for
both the BPEL business processes (source) and the transition systems (target)
are created using the metamodeling capabilities of Viatra2. The source model
instances are created from the XML format process description files using an
importer. The target model is then constructed from the source model with the
execution of an automatic model transformation. The transition system descrip-
tion (SAL model) is created using a special transformation, which implements
code generation. The analysis is carried out by model checking requirements de-
fined against the business process on the generated model. Back-annotation of
the model checking results is provided by another transformation, which uses
the traceability information generated during the source-target transformation.
The various tools and their input-outputs are illustrated in Fig. 5.

Fig. 5. BPEL verification approach steps

Metamodeling. Metamodels for the source and target models are created using
the Viatra2 Textual Metamodeling Language (VTML). VTML is capable of
describing arbitrary model structures including type and containment hierarchy,
instantiation and user defined relations. The BPEL metamodel is systematically
created using the XML schema definition provided with the standard. The tran-
sition systems metamodel is also systematically created, based on the official
SAL DTD.



www.manaraa.com

552 L. Gönczy, Á. Hegedüs, and D. Varró

Traceability. An additional supporting metamodel is used during the BPEL2SAL
transformation for storing the traceability information between the source and
target model instance elements (see Fig. 5). It is also called the static traceabil-
ity metamodel, which is used for representing the correspondence between the
structure of models. The metamodel is separated from both the source or tar-
get models to ensure that arbitrary formal models can be utilized for analysis
purposes without having to change the source metamodel. The elements of the
metamodel are called traceability records.

The results of the analysis represent an execution trace of the business process
described as a counter-example in the transition system. Note that the meta-
models defined for BPEL and SAL describe only the structure of the language
while an execution trace contains both runtime and history information as well.
Therefore additional metamodels are required for supporting back-annotation
(see Fig. 5).

Counter-example and execution traces. The SAL counter-example is modeled
by taking into account two aspects of the language. First the actual state of
the transition system has to be modeled by storing runtime information such
as the values of the variables and the states of the transitions. Then a execution
trace metamodel is defined, which is capable of storing the history of changes
in the runtime model. Similarly, the same kind of metamodels are defined for
BPEL representing the actual state of the executed process instance and the
changing of the state due to execution. Furthermore, as the steps of the counter-
example correspond to the BPEL execution, the correspondence between the
behavior of the models is stored by connecting the steps in the source and tar-
get trace models. This is called the dynamic traceability model. Note that from
the back-annotation point of view, BPEL process is the source static model of
the BPEL2SAL transformation while the BPEL trace model is the target of the
SAL2BPEL transformation.

Model import. The static metamodels define an abstract syntax for BPEL
processes that can be used for creating instance models. However these instance
models have to be created from the BPEL process description (concrete syntax).
Although possible, manual model creation is strongly discouraged due to high
error-probability.

Instead, importers are implemented to provide support for creating source
models automatically from the business process description XML files. The im-
porter utilizes that the metamodel corresponds to the schema of the XML file
and creates the model instance using a generic solution by retrieving the meta-
model elements based on the type of the currently parsed XML element.

It is important to note that BPEL processes created manually can also contain
unintentional syntax errors. The MDD4SOA toolset can be used for generating
the BPEL description from higher-level UML4SOA models, thus eliminating the
possibility of such errors.



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 553

Model transformation. The BPEL2SAL transformation is the main compo-
nent of the implementation, which constructs the target model by traversing
the source model using complex model transformation rules and patterns. Al-
though BPEL includes numerous element types, which have different semantics
it is possible to extract several generic rules to decrease the complexity of the
transformation program.

The SAL transition system has separate parts, which are generated at differ-
ent phases of the transformation. Although the traceability records are created
when the variable declarations are handled, the variables are needed in both the
variable initialization and transition construction phases. Thus the traceabil-
ity model is used repeatedly to find the corresponding variables to the relevant
BPEL elements (e.g. find the SAL element corresponding to the BPEL variable
Balances, which is written during the execution of the Enter balance data ac-
tivity). Note that generally transformations can be separated to various phases
thus this scenario appears in many cases.

Model export. The model generated by the BPEL2SAL transformation cannot
be used for verification as it is. Similarly to the importers, an automatic solution
is needed for exporting abstract models to their concrete syntax.

Code generation is used to export the target model to a file in the appropriate
format in order to be verifiable by the SAL model checking framework. This
transformation traverses the target model using simple rules and patterns, which
correspond to the grammar of SAL described in its Data Type Definition.

Requirement definition. The requirements against business process are de-
fined as LTL formulae evaluated through model checking. Note that the require-
ments, which are validated against the business process can be best described
using the source model (i.e. the BPEL process itself [13]). However, for realiza-
tion they have to be formally specified as an LTL formula using the formalism of
the target model (in this case, the SAL transition system variables). The trace-
ability model can be used to identify which SAL variable should be used for a
given BPEL element (e.g. to describe that the Login activity always finishes the
corresponding SAL variable is needed).

User-guided definition. General requirement patterns can be defined by using the
actual BPEL process as a parameter. By creating general requirement templates
the effort required to assemble an LTL formula can be removed. For example
a requirement template can be the following: G(< variable > / = onlyRead)
where < variable > is the parameter selected from the variables of the veri-
fiable BPEL process. Such templates are used to provide a user interface for
requirement definition.

Syntax checking. LTL formulae can be tailored to express arbitrary require-
ments, however it is easy to make syntax errors when this is done manually.
Although such errors are recognized by well-formedness checks in the model



www.manaraa.com

554 L. Gönczy, Á. Hegedüs, and D. Varró

checking framework, it is advantageous to validate the formula before initial-
izing the framework. A formula parser integrated into the user interface and
implementing the grammar of LTL gives instant feedback by pointing out which
part of the formula is grammatically incorrect.

Further improvement possibilities. The definition of process-specific require-
ments has two aspects for which integrated user interface support would be
essential. One is the automatic translation of the BPEL process elements to
transition system variable names by selecting them in the graphical process
developer interface. The other is the introduction of intuitive BPEL-specific re-
quirement building blocks, such as “happens after”, “is in given state”, “happens
once/never in all/at least one execution”. The combination of these techniques
could result in an effective requirement definition interface.

From counter-example to trace model. The SAL trace model is created
automatically from the plain text counter-example returned by the model check-
ing framework. The implementation takes advantage of the built-in generic EMF
metamodel and importer of the Viatra2 framework by generating first an EMF
model for the transition system and the counter-example, which can be imported
into the Viatra2 framework.

The imported Viatra2 EMF model conforms to the EMF metamodel and
contains abundant information unnecessary for the back-annotation. Therefore
a preprocessing transformation is used for generating the domain-specific SAL
trace model from the EMF model. This trace model conforms to the SAL sim-
ulation trace metamodel.

Back-annotation transformation. The execution of the business process is
represented with a BPEL trace model generated from the SAL trace model
by the back-annotation transformation. The back-annotation transformation is
implemented as an interface in the sense that it provides the following functions
for handling the BPEL trace: (1) initialize for creating the dynamic BPEL model
and the empty trace; (2) forward step for updating the dynamic model according
to the next step in the trace, the step is generated based on the corresponding
SAL trace step if it does not exist yet; (3) backwards step for reverting the
dynamic model to the state before the actual step; and (4) reset for returning
to the start of the trace and the initial state of the dynamic model. After the
execution of each function, the state changes of the BPEL elements are exported
so that they can be used outside the model transformation framework (e.g. to
drive the animation of the BPEL process).

The transformation uses the traceability information (a model instance of the
static traceability metamodel, which is one of the assisting metamodels) gener-
ated during the BPEL2SAL transformation. Furthermore dynamic traceability
information is created whenever a forward step requires the generation of a BPEL
step. This information is used for identifying the step in the SAL trace model
from which the transformation has to continue.



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 555

Exporting model changes. The changes in dynamic model are exported
for driving the animation of the business process execution. The changes are
described as a pair containing the fully qualified name of the element and
its new state. Exporting is implemented by defining a new function for the
Viatra2 framework, which can be used during model transformation.

As the changes have to be stored in memory until the transformation fin-
ishes, a service-based export manager is implemented that provides two service
operations. The first can be used from the transformation function for storing
the changes, the second is used for retrieving the changes. By implementing the
export manager as a service, the back-annotation transformation and the tool
used for presenting the BPEL execution are completely separated and either can
be replaced by alternative techniques.

Summary. In this section the challenges and techniques related to model-driven
design were described through an end-to-end example providing design-time ver-
ification for business processes. The Finance case study is used to illustrate how
the verification results are represented with the animation of the BPEL pro-
cess execution. Among the challenges of model-driven analysis, back-annotation,
traceability and requirement definition were described. The model-driven tech-
niques present in the example were detailed from the implementation point of
view.

3.5 Overview of Integrated Toolchain

The implemented development tool provides complex functionality including
a user interface for verifying business processes with general and user defined
requirements and an extension for the Eclipse BPEL Designer [14] graphical
business process developer tool. This extension is capable of animating the busi-
ness process execution derived from the counter-example returned by the model
checker. This high-level tool depends on several other tools, which are integrated
in order to hide from the user the technical details and the formal methods used.

Tool-integration. Using the Sensoria Development Environment (SDE), the
low-level analysis and transformation tools are completely separated from the
high-level tool. Fig. 6 shows how the different tools are connected to form the
complete verification assistant tool. The functionality of both the Viatra2

framework and the SAL framework is available through integration tools de-
veloped for the SDE. The BPEL2SAL Tool implements functions corresponding
to the steps of the method such as transforming a business process, checking
certain requirements and exporting the verification results. These tools provide
their functionality as services through the SDE.

The verification is carried out by the user through the Verification User Inter-
face integrated into the Eclipse framework. The graphical interface is separated
from the Verification Controller, which contains the business logic for the verifi-
cation tool. It performs the selected operation by first checking the acceptability



www.manaraa.com

556 L. Gönczy, Á. Hegedüs, and D. Varró

Fig. 6. Integrated tools overview

of the parameters then calling the service of the BPEL2SAL Tool, finally the
results are displayed on the interface.

The back-annotation is implemented as animation of the BPEL process exe-
cution in the BPEL Designer. An Animation User Interface is used for selecting
an exported verification result and controlling the animation. The business logic
for this interface is implemented in the Model Controller that is responsible for
directing the back-annotation transformation and uses the Export Manager ser-
vice for retrieving the changes corresponding to the next step in the execution.

Business process execution animation. The execution derived from the
counter-example can be presented on the graphical interface of the BPEL de-
signer tool. Thus the results of the verification are illustrated with the same
interface that was used to create the business process. The implementation ex-
tends the designer tool non-intrusively (i.e. without modifying the original im-
plementation) with functions accessible from outside the tool. These functions
provide support for setting the runtime state of the business process elements.
The state is illustrated by coloring the graphical representation of the element
(e.g. green for startable activity, red for erroneous variable).

The animation of the execution can be controlled with an easy-to-use interface
either in a step-by-step or continuous way. It is possible to step forward and
backward in the execution trace and the animation can be reset to the initial
state. These functions correspond to the back-annotation transformation (see
Sec. 3.4) Furthermore the animation can be toggled for fast stepping when several
steps are executed at once.

Traceability visualization. The traceability information generated by the
transformations is used for multiple purposes throughout the approach. As these
include use cases when the traceability model is handled manually (e.g. domain-
specific requirement definition), the visualization of these models is essential
for aiding the analysis. The model visualization component1 of the Viatra2

1 Additional details of the visualization are found on the website:
http://home.mit.bme.hu/~ujhelyiz/pub/traceabilityvisualization.html

http://home.mit.bme.hu/~ujhelyiz/pub/traceabilityvisualization.html


www.manaraa.com

Methodologies for Model-Driven Development and Deployment 557

framework was extended with support for domain-specific layouts to visualize
traceability models.

Summary. In this section the overview of the integrated toolchain was de-
scribed. First the existing and new tools and their connections are presented.
The implemented graphical user interface is introduced, which provides a fron-
tend for the verification method and animation support for visualizing the re-
sults. Finally the traceability information can be visualized using a component
of the transformation framework.

As for the integration of this work in the Sensoria chain, other modeling
frontends such as Activity Diagrams in the UML4SOA notations can be easily
integrated, however, this would need a modification of the editor to have the
same simulation/back-annotation functionality.

4 Related Work

As this overview chapter presented several approaches of Sensoria, here we
cannot detail technical related work to all methods. These are covered in chapters
of this book and other publications mentioned in Sec. 2.

It is worth mentioning that the above techniques were combined in several
approaches, among others in [15] with a focus on management of non-functional
properties in the development of Service-Oriented Systems, or in [16] to achieve
advanced composition analysis support. In [17], ”patterns” for service engineer-
ing were collected.

Business process verification. The verification of business processes has been
thoroughly studied in the recent years. The early approaches only dealt with
single processes, neglecting effects resulting from the fact that these workflows
usually take part in multi party, distributed cooperations.

In [18] a subset of Petri nets was defined that models structurally sound
workflows. Several structural properties of business processes could be analyzed.
However, the proper utilization of a specific subset (omitting flow links) of the
BPEL language can guarantee the soundness of the business process. In [19]
an approach is introduced that enables model checking of business processes
implemented in BPEL v1.1. The workflow implementation is transformed into
Petri nets. The authors report that they have modeled the entire semantics of
the language.

Foster et al. [20] propose Finite State Processes and the use of LTSA to
verify Web services compositions. They use Message Sequence Charts to specify
criteria, which is also one of the intended future research directions. The objective
of [21] was to provide an analysis method that is capable of the modeling and
verification of the four examples presented in the standard of BPEL v1.1 [22].
Hence event, fault and compensation handlers are not dealt with.

Garcia-Fanjul et al. in [23] describe a similar technique with a different pur-
pose: they use SPIN to generate test cases for given requirements. However,



www.manaraa.com

558 L. Gönczy, Á. Hegedüs, and D. Varró

their work aims at finding proper test suites for the implementation of BPEL
processes and does not address design flaws. Recent works concerning the se-
mantics of BPEL v1.1 processes, e.g. [24], are based on π-calculus. However, the
definition of the requirements which can be checked by using this semantics is
very general. To our best knowledge, [25] is one of the few works dealing with
the data flow in service compositions.

Traceability. Triple graph grammars [26] (TGG) is a technique where the corre-
spondence between two different types of models is defined in a declaratively, this
can be used to define synchronization model transformations. [27] uses TGG for
UML model-based tool integration, which supports the synchronization between
various languages throughout the development process. [28] defines correspon-
dence models interconnecting the source and target models of the incremental
model synchronization also using TGGs.

QVT Relations [29] is an OMG standard with specific focus on bidirectional
transformations for incremental model synchronization and defines a formalism
similar to TGGs.

[30] includes similar traceability models to synchronize abstract and concrete
syntax of domain-specific modeling languages. Live model transformations and
synchronization requires precise traceability information although the use cases
are often different from ours. The paper also includes a detailed evaluation of
the state-of-the-art of traceability aspects.

[31] uses traceability to store the execution trace of the transformation, which
generates Alloy models from UML. The back-annotation transformation is au-
tomatically generated based on this trace using a QVT-based implementation.
However traceability information is only used for automated execution, visual-
ization is not supported.

5 Conclusions

This chapter presented an overview on the Sensoria engineering approach
where model-driven technologies can be connected to develop trustworthy
service-oriented systems. These technologies have some common problems (trace-
ability, back-annotation, intuitive requirement definition, etc.) to face in order to
be effective for a day-by-day use in engineering process. Such issues and an end-
to-end solution were also presented (BPEL2SAL). Please note that this method
is extendable, either the input can be an orchestration in UML4SOA (which
would need additional transformations) or the analysis infrastructure can be
replaced.

We envision that more and more ”orchestrations” for service development
would be composed in order to meet requirements of different service domains
(e.g. automotive or financial systems) using the above techniques and exploiting
the benefits of model-driven service engineering.



www.manaraa.com

Methodologies for Model-Driven Development and Deployment 559

References

1. López, H.A., Massacci, F., Zannone, N.: Goal-Equivalent Secure Business Process
Re-engineering. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907,
pp. 212–223. Springer, Heidelberg (2009); To appear as Springer Verlag book

2. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic–based detection of conflicts
in appel policies. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767,
pp. 257–271. Springer, Heidelberg (2007)

3. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-Driven Service Orchestra-
tion. In: Proceedings of the 12th IEEE International EDOC Conference. IEEE, Los
Alamitos (2008)

4. Gönczy, L., Déri, Z., Varró, D.: Model Transformations for Performability Analysis
of Service Configurations, pp. 153–166. Springer, Heidelberg (2009)

5. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: SOCK: A calculus
for service oriented computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.
LNCS, vol. 4294, pp. 327–338. Springer, Heidelberg (2006)

6. Gönczy, L., Varró, D.: Engineering Service Oriented Applications with Reliability
and Security Requirements. In: Developing Effective Service Oriented Architec-
tures: Concepts and Applications in Service Level Agreements, Quality of Service
and Reliability. IGI Global (2010) (to be published)

7. Viatra2 Framework: Eclipse GMT Subproject, http://www.eclipse.org/gmt/
8. Kovács, M., Varró, D., Gönczy, L.: Formal Analysis of BPEL Workflows with

Compensation by Model Checking. IJCSSE 23(5) (November 2008)
9. Shankar, N.: Symbolic Analysis of Transition Systems. In: Gurevich, Y., Kut-

ter, P.W., Vetta, A., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp. 287–302.
Springer, Heidelberg (2000)

10. Sorea, M.: Bounded Model Checking for Timed Automata. Electronic Notes in
Theoretical Computer Science 68(5) (2002)

11. Emerson, E.A.: Temporal and Modal Logic. Formal Models and Semantics, vol. B,
pp. 995–1072. Elsevier, Amsterdam (1990)

12. Alessandrini, M., Dost, D.: Sensoria Deliverable D8.3.a: Finance case study: Re-
quirements modelling and analysis of selected scenarios. Technical report, S&N AG
(August 2007)

13. Xu, K., Liu, Y., Wu, C.: Bpsl modeler – visual notation language for intuitive
business property reasoning. Electron. Notes Theor. Comput. Sci. 211 (2008)

14. Eclipse BPEL Designer: Eclipse Project, http://www.eclipse.org/bpel/
15. Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Varró, D.: Non-Functional Properties

in the Model-Driven Development of Service-Oriented Systems. Journal of Software
and Systems Modeling (2010) (accepted)

16. Foster, H., Mayer, P.: Leveraging integrated tools for model-based analysis of ser-
vice compositions. In: ICIW 2008: Proceedings of the 2008 Third International
Conference on Internet and Web Applications and Services, pp. 72–77. IEEE Com-
puter Society, Washington (2008)

17. Wirsing, M., Hölzl, M., Acciai, L., Banti, F., Clark, A., Nicola, R.D., Fantechi, A.,
Gilmore, S., Gnesi, S., Gönczy, L., Koch, N., Lapadula, A., Mayer, P., Mazzanti,
F., Pugliese, R., Schroeder, A., Tiezzi, F., Tribastone, M., Varró, D.: Sensoria

patterns: Augmenting service engineering with formal analysis, transformation and
dynamicity. In: Proceedings of the 3rd International Symposium on Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA 2008) (2008)

http://www.eclipse.org/gmt/
http://www.eclipse.org/bpel/


www.manaraa.com

560 L. Gönczy, Á. Hegedüs, and D. Varró

18. van der Aalst, W., van Hee, K.: Workflow Management Models, Methods, and
Systems. The MIT Press, Cambridge (2002)

19. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to petri nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

20. Foster, H.: A Rigorous Approach To Engineering Web Service Composition. PhD
thesis, Inperial College London (2006)

21. Nakajima, S.: Model-Checking Behavioral Specification of BPEL Applications.
ENTCS 151(2), 89–105 (2006)

22. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu,
K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business
Process Execution Language for Web Services Version 1.1. IBM, BEA Systems,
Microsoft, SAP AG, Siebel Systems (May 2003)

23. Garćıa-Fanjul, J., Tuya, J., de la Riva, C.: Generating Test Cases Specifications
for Compositions of Web Services. In: Bertolino, A., Polini, A. (eds.) Proc. of WS-
MaTe2006, Palermo, Sicily, Italy, June 9, pp. 83–94 (2006)

24. Mazzara, M., Lucchi, R.: A Pi-Calculus Based Semantics for WS-BPEL. Journal
of Logic and Algebraic Programming (2006)

25. Kazhamiakin, R., Pistore, M.: Static Verification of Control and Data in Web Ser-
vice Compositions. In: Proc. of ICWS 2006, pp. 83–90. IEEE Comp. Soc., Wash-
ington (2006)

26. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

27. Becker, S.M., Haase, T., Westfechtel, B.: Model-based a-posteriori integration of
engineering tools for incremental development processes. Software and Systems
Modeling 4(2), 123–140 (2005)

28. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. Springer, Heidelberg (2006)

29. The Oject Management Group. Meta Object Facility (MOF) 2.0 Query/View/
Transformation, QVT (2008), http://www.omg.org/spec/QVT/

30. Ráth, I., Ökrös, A., Varró, D.: Synchronization of Abstract and Concrete Syntax in
Domain-specific Modeling Languages. Journal of Software and Systems Modeling
(2009)

31. Shah, S.M.A., Anastasakis, K., Bordbar, B.: From UML to Alloy and back again.
In: MoDeVVa 2009: Proceedings of the 6th International Workshop on Model-
Driven Engineering, Verification and Validation, pp. 1–10. ACM, New York (2009)

http://www.omg.org/spec/QVT/


www.manaraa.com

Advances in Model Transformations by Graph
Transformation:

Specification, Execution and Analysis�

Gábor Bergmann2, Artur Boronat1, Reiko Heckel1, Paolo Torrini1,
István Ráth2, and Dániel Varró2

1 Department of Computer Science, University of Leicester
{aboronat,pt95,reiko}@le.ac.uk

2 Department of Measurement and Information Systems,
Budapest University of Technology and Economics

{bergmann,rath,varro}@mit.bme.hu

Abstract. Model transformations are a core technology of today’s model-driven
software development processes. Graph transformations provide a state-of-the-
art formalism to specify and execute such transformations in practice. This was
the case in the SENSORIA project, where graph transformations have been used as
enabling technology in a number of applications, as well as the basis of research
in many topics. In this chapter, we overview the research results that have been
achieved in the theory and practice, concentrating on three key areas: (i) the high-
level specification of transformations, (ii) correctness analysis of transformations
using formal methods, and (iii) novel event-driven execution schemes relying on
incremental graph pattern matching technology.

1 Introduction

Model transformations serve a key role in the model-driven development of service-
oriented applications. Numerous concrete model transformations have been developed
within the scope of the SENSORIA project to support the design, deployment, verifica-
tion, and code generation for services. The rule and pattern based paradigm of graph
transformations frequently served as formal background of such transformations. How-
ever, in addition to using transformations as an enabling technology for service-oriented
computing, valueable research results have been achieved in the theory and practice of
model transformations themselves throughout the project. Summarizing such innova-
tive results is the main scope of the current chapter.

First, traditional batch-like transformations have been complemented with event-
driven, live transformations [1], which immediately react to model changes in an in-
cremental way (Section 2). The efficient execution of such model transformations have
been guaranteed by incremental graph pattern matching techniques [2] by adapting
the well-known RETE algorithm, which enabled to transform models with well over a
million model elements within the VIATRA2 model transformation framework [3, 4].

� This work has been partially sponsored by the project SENSORIA, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): SENSORIA Project, LNCS 6582, pp. 561–584, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

562 G. Bergmann et al.

In order to ease the specification of transformations for non-experts, a novel ap-
proach called model transformation by example (MTBE) [5] was proposed, which aims
at semi-automatically deriving transformation rules from a prototypical set of source
and target model pairs (Section 3).

In order to investigate non-functional properties for models exceeding the capabili-
ties of model checkers, stochastic graph transformation [6] (Section 4) has been pro-
posed as specification technique where events (rule matches) are associated with general
probability distribution imposing generalized semi-Markov schemes.

Finally, to assure the correctness of model transformations such as checking invari-
ants or temporal properties, the MOMENT2 framework (Section 5) formalized MOF
metamodels with precise algebraic semantics [7]. Furthermore, model transformations
themselves were formalized with rewriting logic as provided by the underlying Maude
framework [8].

2 Live and Incremental Model Transformations

Traditionally, model transformation tools support the batch execution of transformation
rules, which means that input is processed “as a whole”, and output is either regen-
erated completely, or, in more advanced approaches, updated using trace information
from previous runs. However, in software engineering using multiple domain-specific
languages, models are evolving and changing continuously. In case of large and com-
plex models used in agile development, batch transformations may not be feasible.

Incremental model transformations are aimed at updating existing target models
based on changes in the source models (called target incrementality in [9]), and to
minimize the parts of the source model that needs to be reexamined by a transformation
when the source model is changed (source incrementality). To achieve target incremen-
tality, an incremental transformation approach creates “change sets” which are merged
with the existing target model instance. In order to efficiently calculate which source
element may trigger changes (source incrementality), the transformation context has to
be maintained, which describes the execution state of the model transformation system
(e.g. variable values, partial matches). Depending on whether this is possible or not,
there are two main approaches to incremental transformations, as discussed in Fig. 1
(adapted from [10]):

(a) Re-transformation (b) Live transformation

Fig. 1. Incremental transformation approaches



www.manaraa.com

Advances in Model Transformations by Graph Transformation 563

– Systems employing re-transformations lack the capability to maintain the transfor-
mation context over multiple execution runs, thus the entire transformation has to
be re-run on the modified source models. This approach generates either new out-
put models which must be merged with existing ones, or change sets which can be
merged in-situ. As noted in [10], since the transformation context is lost, a merging
strategy has to be employed. This involves the computation of which model ele-
ments are involved in the change, and which elements should be left untouched by
the transformation.

– In contrast, live transformations maintain the transformation context continuously
so that the changes to source models can be instantly mapped to changes in target
models. Live transformations are persistent and go through phases of execution
whenever a model change occurs. Similarly to re-transformations, the information
contained in trace signatures is used in calculating the source elements that require
re-transformation. However, as the execution state is available in the transformation
context, this re-computation can be far more efficient.

2.1 Demonstrating Example

We demonstrate our approach by the incremental on-the-fly validation of a complex
dynamic modeling constraint for user editing events, in the context of the Petri net
domain-specific modeling language (Fig. 2(a)). In this use case, the user is editing
models using a domain-specific editor which is capable of enforcing static type con-
straints so that only syntactically correct Petri net graphs can be produced. However,
an advanced framework may go beyond this and provide immediate feedback if more
dynamic constraints, such as a capacity constraint (e.g. the user tries to assign too many
tokens to a place), are violated.

(a) Petri net metamodel (b) Marker metamodel for con-
straints

(c) Model instances

Fig. 2. VIATRA metamodels and model instances

In order to provide support for the editor, the modeling environment makes use of
a marker metamodel which is a special type of trace model depicted in Fig. 2(b). A
Constraint denotes a particular run-time constraint being enforced within the editor,
e.g. “PlaceCapacity”. For each constraint, we explicitly mark all the (Petri net) ele-
ments, which are required to evaluate the constraint within a given context by a Con-
straintCheck element. Each evaluation context of a Constraint is explicitly marked by



www.manaraa.com

564 G. Bergmann et al.

a ConstraintCheck instance (i.e. separately for each Petri net place and its respective
tokens in our case).

The isValid relation indicates whether the constraint is valid currently for the context
defined by the ConstraintCheck instance; the runtime environment makes use of this
relationship to indicate graphical feedback to the user. In Fig. 2(c), place p0 contains
two tokens but has a capacity of 1, thus, the associated ConstraintCheck instance indi-
cates that the PlaceCapacity constraint is violated in this context. In our demonstrating
example used throughout this section, we aim at providing an incremental evaluation
of the capacity constraint in all contexts in response to elementary changes or complex
transactions initiated by the user or another transformation.

2.2 Incremental Pattern Matching

Core idea. In case of incremental pattern matching, the occurrences of a pattern are
readily available at any time, and they are incrementally updated whenever changes are
made. As pattern occurrences are stored, they can be retrieved in constant time1, mak-
ing pattern matching a very efficient process. Furthermore, changes of occurrence sets
can be treated as events and handled appropriately. Besides memory consumption, the
drawback is that these stored result sets have to be continuously maintained, imposing
an overhead on update operations.

In this approach, we rely on the incremental pattern matcher component of the VI-
ATRA2 framework; it is based on the RETE algorithm [11], which is a well-known
technique in the field of rule-based systems. This section is dedicated to giving a brief
overview on how we adapted the concepts of RETE networks to implement the rich
language features of the VIATRA2 graph transformation framework.

Tuples and Nodes. The main ideas behind the incremental pattern matcher are concep-
tually similar to relational algebra. Information is represented by a tuple consisting of
model elements. Each node in the RETE net is associated with a (partial) pattern and
stores the set of tuples that conform to the pattern. This set of tuples is in analogy with
the relation concept of relational algebra.

– The input nodes are a special class of nodes that serve as the underlying knowledge
base representing a model.

– Intermediate nodes store partial matches of patterns, or in other terms, matches of
partial patterns.

– Finally, production nodes represent the complete pattern itself.

Joining. The key component of a RETE is the join node, created as the child of two
parent nodes, that each have an outgoing RETE edge leading to the join node. The role
of the join node can be best explained with the relational algebra analogy: it performs a
natural join on the relations represented by its parent nodes.

Fig. 3(a) shows a simple pattern matcher built for the sourcePlace pattern illustrating
the use of join nodes. By joining three input nodes, this sample RETE net enforces two
entity type constraints and an edge (connectivity) constraint, to find pairs of Places and
Transitions connected by an out-arc.

1 Excluding the linear cost induced by the size of the result set itself.



www.manaraa.com

Advances in Model Transformations by Graph Transformation 565

(a) Matcher network (b) Propagation phase I. (c) Propagation phase II.

Fig. 3. RETE matcher for the sourcePlace pattern

Updates after model changes. The primary goal of the RETE net is to provide in-
cremental pattern matching. To achieve this, input nodes receive notifications about
changes on the model, regardless whether the model was changed programmatically
(i.e. by executing a transformation) or by user interface events.

Fig. 3(b) shows how the network in Fig. 3(a) reacts on a newly inserted out-arc.
The input node for the relation type representing the arc releases an update token. The
join node receives this token, and uses an effective index structure to check whether
matching tuples (in this case: places) from the other parent node exist. If they do then
a new token is propagated on the outgoing edge for each of them, representing a new
instance of the partial pattern “place with outgoing arc”. Fig. 3(c) shows the update
reaching the second update node, which matches the new tuple against those contained
by the other parent (in this case: transitions). If matches are found, they are propagated
further to the production node.

2.3 Live Transformations Driven by Incremental Pattern Matching

Based on our incremental pattern matching technology introduced in Sec. 2.2, we now
propose a novel approach to live model transformations.

Overview of the approach. In our approach, a model change is detected by a change
in the match set of a graph pattern. The match set is defined by the subset of model
elements satisfying structural and type constraints described by the pattern. Formally:
a subgraph S of the model G is an element of the match set M(P) of pattern P, if S is
isomorphic to P.

Changes in the matching set can be tracked using the RETE network. A model
change occurs if the match set is expanded by a new match or a previously existing
match is lost. Since a graph pattern may contain multiple elements, a change affecting
any one of them may result in a change in the match set. The RETE-based incremen-
tal pattern matcher keeps track of every constraint prescribed by a pattern, thus it is
possible to determine the set of constraints causing a change in the match set.



www.manaraa.com

566 G. Bergmann et al.

Our approach can be regarded as an extension of the fact change approach [10]. It
provides support for the detection of changes of arbitrary complexity; not only atomic
and compound model change facts (with simple and complex patterns respectively), but
also operations, or sequences of operations can be tracked using this technique (either
by representing operations directly in the model graph, or by using reference models).

Explicit specification. In addition to targeting the incremental execution of model syn-
chronization transformations, our approach is intended to support a broader range of
live transformations. For this purpose, incremental transformation rules, called triggers
are explicitly specified by the transformation designer. A trigger is defined in the form
of a graph transformation rule: the precondition of its activation is defined in the form of
a graph pattern, while the reaction is formulated by arbitrary (declarative or imperative)
transformation steps.

In fact, not only tool integration, but many application scenarios can be formulated
as incremental transformations, especially, in the context of domain-specific modeling
such as (i) model execution (simulation), where triggers may be used to execute the dy-
namic semantics of a domain-specific language [12]; (ii) constraint management, where
incremental transformations are used to check and enforce the validity of a complex
constraint [1]; (iii) event-driven code generation [13], where the textual representation
of abstract models may be incrementally maintained as the source model changes.

Triggers. In our approach, the basic unit of incremental transformations is the trigger.
The formal representation of a trigger is based on a simplified version of the graph
transformation rule: it consists of a precondition pattern and an action part consisting
of a sequence of VIATRA2 transformation steps (including simple model manipulations
as well as the invocation of complex transformations).

@Trigger(priority=’10’, mode=’always’, sensitivity=’rise ’)
gtrule initPlace() = {
precondition pattern pre(P) = {
Place(P);
Place.Place_Capacity(PC);
Place.capacity(Cap,P,PC);
neg pattern placeSet(P) = {

Constraint.ConstraintCheck(CC);
Constraint.ConstraintCheck.nodeElement(NE,CC,P);

}
}
action {
new(Constraint.ConstraintCheck(CC));
new(Constraint.ConstraintCheck.nodeElement(NE, CC, P));

}}

Fig. 4. Place instance initialisation

In Fig. 4, a simple trigger is shown. It is automatically fired after the user creates a
new Place and the modeling environment creates (as a complex model change involving
multiple elements) an additional Capacity and a ConstraintCheck marker element for
the new Place-Place Capacity pair. As a common technique in graph transformation



www.manaraa.com

Advances in Model Transformations by Graph Transformation 567

based approaches, we use a negative application condition to indicate that the action
sequence should only be fired for new pairs without a marker element.

This simple example highlights a number of extensions that constitute our addi-
tions to the VIATRA2 transformation language: the new Trigger annotation is used
to indicate that the graph transformation rule should be executed as an event-driven
transformation.

Complex change detection. With triggers, more complex model changes (such as the
creation of complex structures, deletions, as well as attribute updates) can be speci-
fied as preconditions to fire model manipulation sequences. For more details, see [1]
and [14].

2.4 Related Work

Incremental updating techniques have been widely used in different fields of computer
science. Now we give a brief overview on incremental techniques that are used in the
context of graph transformation.

Incremental pattern manipulation. The transformation engine of TefKat [15] performs
an SLD resolution based interpretation during which a search space tree is constructed
to represent the trace of transformation execution. This tree is maintained incrementally
in consecutive steps of transformations as described in [16]. The uniform, incremental
handling of model elements and patterns can be considered a unique, advanced feature
of the approach.

View updates. In relational databases, materialized views, which explicitly store their
content on the disk, can be updated by incremental techniques like Counting and DRed
algorithms [17]. As reported in [18], these incremental techniques are also applicable
for views that have been defined for graph pattern matching by the database queries
of [19].

RETE networks used for graph transformation. RETE networks [11], which stem from
rule-based expert systems, have already been used as an incremental graph pattern
matching technique in several application scenarios including the recognition of struc-
tures in images [20], and the co-operative guidance of multiple uninhabited aerial vehi-
cles in assistant systems as suggested by [21]. Our contribution extends this approach
by supporting a more expressive and complex pattern language.

3 Model Transformation by Example

3.1 Motivation

When designing model transformations, transformation designers need to understand
not only the transformation problem, i.e. how to map source models to target models,
but significant knowledge is required in the transformation language itself to formalize
the solution. Unfortunately, many domain experts, who are specialized in the source
and target languages, lack such skills in underlying transformation technologies.



www.manaraa.com

568 G. Bergmann et al.

Model transformation by example (MTBE) is a novel approach [5,22] to bridge this
conceptual gap in transformation design. The essence of the approach is to derive model
transformation rules from an initial prototypical set of interrelated source and target
models, which describe critical cases of the model transformation problem in a purely
declarative way. A main advantage of the approach is that transformation designers use
the concepts of the source and target modeling languages for the specification of the
transformation, while the implementation, i.e. the actual model transformation rules are
generated (semi-)automatically. In our context, (semi-)automatic rule generation means
that transformation designers give hints how source and target models can potentially
be interconnected in the form of a mapping metamodel. Then the actual contextual
conditions used in the transformation rules are derived automatically based upon the
prototypical source and target model pairs.

3.2 Overview of Model Transformation by Example

Model transformations by example (MTBE) is defined as a highly iterative and interac-
tive process as illustrated in Fig. 5.

Fig. 5. Model transformation by example: process overview

Step 1: Set-up of prototype mapping models. The transformation designer assem-
bles an initial set of interrelated source and target model pairs, which are called
prototype mapping models in the rest of the paper. These prototype mapping mod-
els typically capture critical situations of the transformation problem by showing
how the source and target model elements should be interrelated by appropriate
mapping constructs.

Step 2: Automated derivation of rules. Based on the prototype mapping models, the
MTBE framework should synthesize a set of model transformation rules, which
correctly transform as many prototypical source models into their target equivalents
as possible.

Step 3: Manual refinement of rules. The transformation designer can refine the rules
manually at any time by adding attribute conditions or providing generalizations of
existing rules.

Step 4: Automated execution of rules. The transformation designer validates the cor-
rectness of the synthesized rules by executing them on additional source-target



www.manaraa.com

Advances in Model Transformations by Graph Transformation 569

model pairs as test cases, which will serve as additional prototype mapping models.
Then the development process is started all over again.

The main vision of the “model transformations by example” approach is that the trans-
formation designer mainly uses the concepts of the source and target languages as the
“transformation language”, which is very intuitive. He or she does not need to learn a
new formalism for capturing model transformations.

While certain steps can be partially automated, we regard MTBE as a highly iterative
and interactive process. Our experience also shows that it is very rare that the final set
of transformation rules is derived right from the initial set of prototype models. Fur-
thermore, transformation designer can overrule the automatically generated rules at any
time, especially, when certain critical abstractions or generalizations are not detected
automatically.

Concerning correctness issues, one would expect as a minimum requirement that the
derived model transformation rules should correctly transform all prototypical source
models into their target equivalent. However, this is not always practical, since over-
specification or incorrect specification in prototype mapping models may decrease the
chance of deriving a meaningful set of model transformation rules. Since MTBE takes
prototype mapping models as specifications, (unintended) omissions in them might eas-
ily result in incorrect rules. Therefore, MTBE approaches should ideally tolerate a cer-
tain amount of “noise” when processing prototype mapping models.

Steps of automation. From a technical point of view, the process of model transfor-
mation by example can be split into the following phases to support the semi-automatic
generation of transformation rules:

1. Set up an initial prototype mapping model. In the first step, an initial prototype
mapping model is set up manually from scratch or by using existing source and
target models.

2. Context analysis. Then we identify (positive and negative) constraints in the source
and target models for the presence of each mapping node. For instance, only top-
level classes are related to database tables or a table related to a class always con-
tains a primary key column. For this purpose, we first examine the contexts of all
mapped source and target nodes.

3. Connectivity analysis. For each edge in the target metamodel, we identify contex-
tual conditions (in the source and mapping models) for the existence of that target
edge.

4. Derive transformation rules for target nodes. Then we derive transformation rules
for all (types of) mapping nodes that derive only target nodes using the informa-
tion derived during context analysis. Informally, the context of source nodes will
identify the precondition of the derived model transformation rules, while the con-
text of target nodes will define the postcondition of model transformation rules. As
a result, we create target nodes from source nodes interconnected by a mapping
structure (of some type).

5. Derive transformation rules for target edges. Finally, we derive transformation
rules for each target edge based upon the information gained during connectivity
analysis of source and target elements.



www.manaraa.com

570 G. Bergmann et al.

6. Iterative refinement. The derived rules can be refined at any time by extending the
prototype mapping model or manually generalizing the automatically generated
rules.

In the scope of the SENSORIA project, we investigated [5] how the MTBE approach can
be automated by using inductive logic programming [23] as an underlying framework.
Our investigations demonstrated that it is possible to construct relatively small proto-
type mapping models for practical problems from which the complete set of model
transformation rules can be derived semi-automatically. Furthermore, we also identi-
fied critical transformation problems where our approach failed to derive a complete
solution, as in case of non-deterministic model transformation problems or counting in
transformations.

3.3 Prototype Tool Support

We have implemented a prototypical tool chain (illustrated in Fig. 6) to automate MTBE
by integrating an off-the-shelf model transformation tool with an ILP engine using
Eclipse as the underlying tool framework.

Fig. 6. A prototype tool chain for automating MTBE

– Source and target metamodels and models as well as prototype mapping models
are constructed and stored as ordinary models in the VIATRA2 model space.

– Then a first transformation takes prototype mapping models and generates a set of
ILP problems.

– These models are fed into the Aleph ILP engine to induce inference rules (for con-
text analysis or connectivity analysis) or learn negative constraints. Obviously, this
step is hidden from the user, as Aleph runs in the background.



www.manaraa.com

Advances in Model Transformations by Graph Transformation 571

– Ongoing work aims at integrating the Prover9 theorem prover in order to filter
redundant constraints.

– Based upon the discovered inference rules, transformation rules are synthesized in
the graph transformation based language of the VIATRA2 framework [24].

– These transformation rules are then executed as ordinary transformations within
VIATRA2 to complete the lifecycle of our model transformation by example
approach.

This initial tool chain was already a great help for us in carrying out our experiments.
Since a different ILP problem is submitted to Aleph for each type of mapping node or
target edge, their manual derivation was already infeasible in practice.

However, additional future work should be carried out to improve the usability of the
tool chain. Probably the most critical issue is that prototype mapping models need to be
defined using the abstract syntax of the language, which is frequently too complex no-
tation for domain experts. Ideally, mappings could be defined using the concrete syntax
of source and target languages.

3.4 Related Work

While the approach presented here is based on [5, 22], Strommer et al. independently
presented a very similar approach for model transformation by example in [25]. The
main conceptual difference between the two approaches is that [25] presents an object-
based approach which finally derives ATL [26] rules for model transformation, while
[22] is graph-based and derives graph transformation rules.

In a recent paper of Strommer [27], their MTBE approach is applied to a model trans-
formation problem in the business process modeling domain and several new MTBE
operators used on the concrete syntax were identified. Disregarding the string manipu-
lation (which is obviously out of scope for the current paper), all the rest can be incor-
porated in our approach. In this sense, our limitations only arise in significantly more
complex model transformation problems.

Naturally, the model transformation by example approach shows correspondence to
various “by-example” approaches, like

– query-by-example [28] to derive queries for relational data constructed from sample
tables

– programming-by-example [29, 30] where the programmer demonstrates actions on
example data, and the computer records and possibly generalizes these actions or

– XML schema transformer derivation approaches [31, 32, 33, 34], which generate
XSLT code to carry out transformations between XML documents.

4 Stochastic Simulation

Non-functional aspects such as performance and reliability play a critical role in con-
current architectures and particularly SOA. In order to formalise, measure, and predict
these properties, stochastic methods are needed. At the same time such systems are
characterised by a high degree of architectural reconfiguration. Viewing the architecture



www.manaraa.com

572 G. Bergmann et al.

of a distributed system as a graph, this is naturally modelled as graph transformation.
Stochastic graph transformation systems (SGTS) [35] support integrated modelling of
architectural reconfiguration and non-functional aspects. In its simplest form a SGTS
is a graph transformation system (GTS) where each rule name is associated with a
rate of an exponential distribution governing the delay of its application. However, this
approach has its limitations.

– Exponential distributions do not always provide the best abstraction. For example,
the time it takes to make a phone call or transmit a message is more likely to follow
a normal distribution.

– There are situations where the distributions do not only depend on the rules, but
also on the graphs and matches they are applied to. For example, the time it takes
to deliver a message may depend on the distance it has to travel, which may be an
attribute of the connection.

To counter these limitations, generalised SGTS [36] allow for general distributions de-
pendent on rule - match pairs (rather than just rule names). Generalised semi-Markov
processes provide a semantic model for such systems, supporting stochastic simulation.
Rather than model checking, simulations provide a more flexible tradeoff between anal-
ysis effort and confidence in the result and so allow to verify soft performance targets
in large-scale systems.

In [6] we have presented a tool called GraSS, for Graph-based Stochastic Simulation,
to enable the analysis of such processes. The tool is developed in Java-Eclipse, extend-
ing the VIATRA2 model transformation plugin with a control based on the SSJ library
for Stochastic Simulation in Java [37]. The main performance challenge, which essen-
tially consists of finding, at each state of the simulation, all the matches of all rules, is
alleviated by VIATRA2’s RETE-style incremental pattern-matching approach [38].

4.1 Simulating Stochastic Graph Transformations

The interface between the stochastic control component of the simulation and the graph
transformation engine is based on a generic definition of SGTS. Refining [39], a graph
transformation approach is given by a class of graphs G , a class of rules R , and a
R ×G-indexed family of sets of rule matches Mr,G for rule r into graph G. Transfor-
mation is defined by a family of partial functions ⇒r,m: G → G , such that ⇒r,m (G)
is defined if and only if m ∈ Mr,G. This captures the idea that rule application is well-
defined and deterministic if m is a match for r in G.

For a set of rules R, ER is the set of events, i.e., compatible pairs 〈r,m〉. S = 〈R,G0,F〉
is a stochastic graph transformation system with set of rules R, initial graph G0, and
F : ER → (R → [0,1]) assigning each event a continuous distribution function such that
F(e)(0) = 0.

We encode SGTS into generalised semi-Markov schemes (GSMS), a generalisation
of Markov chains associated with generalised semi-Markov processes [40]. Here tran-
sitions are independent of past states, but unlike Markov chains they may depend on
the time spent in the current one, i.e., interevent times may be non-exponentially dis-
tributed. Formally, a GSMS is a structure

P = 〈 S, E, act : S →℘(E), trans : S×E → S, δ : E → (R → [0,1]), init : S 〉



www.manaraa.com

Advances in Model Transformations by Graph Transformation 573

where S is a set of states (given by all graphs reachable in S ), E is a set of events (the rule
matches ER), init is the initial state (graph G0), act gives the set of events (rule matches)
enabled in a state (graph), trans is the transition function (given by trans(G,〈r,m〉) =
⇒r,m (G)), and δ defines the cumulative probability distribution for each event (given
by F).

The simulation component uses VIATRA2 as a graph transformation tool to imple-
ment the elements of the GSMS that depend on the representation of states and events,
notably S,E,act,trans, init, i.e., GTSs are represented as VIATRA2 models. Probabil-
ity distributions are loaded from an XML file, where the type of distribution (either
exponential or normal) as well as its parameters (either rate or mean and variance,
respectively) can be specified.

Based on this data, a GSMS simulation in GraSS consists of the following steps

1. Initialisation — the simulation time T is initialised to 0 and the set of the en-
abled matches (active events) is obtained from the graph transformation engine.
For each active event, a scheduling time te is computed by a random number gen-
erator (RNG) based on the probability distribution assigned to the event. Timed
events are collected as a list ordered by time (state list).

2. At each simulation step
(a) the first element k = (e,t) is removed from the state list
(b) the simulation time is increased to t
(c) the event e is executed by the graph transformation engine
(d) the new state list s′ is computed, by querying the engine, removing all the

elements that have been disabled, adding to the list an event for each newly en-
abled match m with time t = T +d, where d is provided by the RNG depending
on F(m), and reordering the list with respect to time

One can specify the number of runs for experiment and their max depth (either by num-
ber of steps or simulation time). GT rules with empty postconditions can be used as
probes. Statistics about the occurrences of probe rule precondition patterns are com-
puted as SSJ tally-store class reports, giving average values for each run as well as over
all of them. GraSS uses the VIATRA2 Eclipse interface, and allows for standard (i.e.
automated) simulation execution as well as step-by-step execution with visualisation
— useful to debug models.

4.2 Case Study: A P2P Network Model

We illustrate the application of GraSS by the SGTS modelling and simulation of the
P2P reconfiguration model presented in [35] — more details to be found in [6]. The
GTS below models basic P2P network reconfigurations. Rule new on the left adds a
new peer, registers it and links it to an existing peer. Rule kill deletes a peer with all
links attached. Predicate disconnected checks if there are exist two nodes that are not
connected by a path of links labelled l.



www.manaraa.com

574 G. Bergmann et al.

The two rules on the right create redundant links to increase reliability in case a peer
is lost. Rule random creates a link between p2 and p3 unless there is one already or
the number of additional connections of either p2 or p3 is greater than two. Rule smart
creates a link if there is no two-hop path between p2 and p3 apart from the one via p1.

We can consider two families of systems, SGTSrandom,x and SGTSsmart,x. The former
has rules {new,kill,random} and rates σ(new) = σ(kill) = 1 and σ(random) = x. In
the latter, random is replaced by smart with σ(smart) = x. In both cases x ranges from
1 to 10,000 to test different ratios between basic and redundancy rules.

Experimental results have confirmed the inverse dependency observed in [35] be-
tween the rate of the smart rule and the probability of being disconnected, whereas for
the random rule an increased rate does not lead to any significant change in reliabil-
ity. The performance (number of simulation steps per sec) is limited by the complexity
of pattern disconnect which, in a network of n peers, checks for (non-) existence of
n2 paths. This may be hard due to transitive closure. However, given initial models of
small size, simulations of 5 runs with a time limit of 10s have always been carried out in
less than a minute. Reliance on incremental pattern matching means that — discounting
rules that involve full state space search, such as disconnect — the size of the model
only affects simulation up to number of RNG calls, whereas increase in number and
complexity of the rules can add to the cost of graph transformation, too.

5 Analysis and Verification of Graph-Based Model
Transformations

Our approach focuses on the formalization of MOF-model transformations in rewrit-
ing logic by reusing the theory of graph transformation systems [8]. In this way, MO-
MENT2 enhances the application of Maude tools reachability analysis and LTL model
checking [41] to model transformations (and graph transformation systems). At the
same time, MOMENT2 provides the rewriting logic semantics of graph transforma-
tions so that the computational semantics of graph rewriting is given by term rewriting,
by adding the novel feature of defining production rules as equations.

This approach opens new possibilities to verify properties on model transformations
and graph transformation systems based on rewriting logic and Maude, model checking
of model transformations with LTL and with the temporal logic of rewriting [42], ver-
ification of model-based real-time systems with Real-Time Maude [43], and the verifi-
cation of model-based probabilistic systems based on PMaude [44], by means of OMG
standards such as MOF [7], OCL [45] and QVT.



www.manaraa.com

Advances in Model Transformations by Graph Transformation 575

In this section, we concentrate on presenting the MOMENT2 tool, which brings the
model transformation approaches based on graph grammars and informal approaches
extending MOF, such as QVT, significantly closer. MOMENT2 provides support for
defining model transformations, executing them, and model checking their properties
by means of the underlying Maude tool.

Specifically, in MOMENT2 a user can define MOF model transformations in EMF
by using QVT and graph-based notions. Transformation rules are similar to SPO pro-
duction rules where model patterns are specified with QVT syntax, preconditions can
be defined as negative model patterns and as OCL conditions, and attribute values
can be manipulated with OCL expressions. Distinctive features of MOMENT with
respect to graph transformation approaches are that the semantics of containment re-
lations in models is preserved and that production rules can be defined either as equa-
tions, to encode deterministic behaviour, or as rewrite rules, to encode non-deterministic
behaviour.

A model transformation is automatically compiled into a rewrite theory providing its
rewriting logic sematics, which is directly executable in the underlying Maude rewrite
engine. In this way, model transformations can be directly executed; and they can be
also model checked both for satisfaction of invariants and of linear temporal logic (LTL)
properties.

5.1 Specification: Modelling a Distributed MUTEX Algorithm

A distributed mutual exclusion algorithm is used in operating systems and DBMS to
ensure that a resource is never used by more than one process at a time. However, each
request of a process for a resource must eventually be granted without running into a
deadlock.

In our approach, a model represents the state of the system, where all the objects that
may be part of the model are instances of the classes that appear in the metamodel in
Fig. 7.(a). Fig. 7.(b) provides both a model describing a deadlock state (bottom part of
the figure) and its representation in the concrete syntax (top part of the figure) that we
use for explaining the transformation: processes are drawn as black nodes and resources
as light boxes. An edge from a process to a resource models a request. A solid edge in
the opposite direction shows that the resource is currently held by the process. A dashed
edge from a resource to a process asks the process to release the resource.

Fig. 8 provides two sets of production rules describing: (i) the mutual exclusion
algorithm (ME) and (ii) the distributed deadlock detection mechanism (DDD).

Mutual exclusion. The system state consists of a cyclic list of processes, where an edge
between two processes points to the next process, and a collection of resources. For each
resource in the system there is a token, represented by an edge with a white flag, which
is passed from process to process along the ring. If a process wants to use a resource,
it waits for the corresponding token. Mutual exclusion is ensured because there is only
one token for each resource in the system.

Among the ME rules, pass(p, r) describes that a process having the token may pass
it to the next process in the ring, provided that it does not have a request on the corre-
sponding resource. This negative application condition is visualized by the crossed-out



www.manaraa.com

576 G. Bergmann et al.

(a) Metamodel (b) Model representing deadlock state 

1 : Process 

id = “p0” 

2 : Process 

id = “p1” 

3 : Resource 

id = “r0” 

4 : Resource 

id = “r1” 

next

next

heldBy heldBy
request request

Fig. 7. (a) Metamodel M . (b) Model representing a deadlock state (bottom) and its representation
using concrete syntax (top).

request edge from the process to the resource. If a process wants to use a resource, it
may generate a request. This is modeled by the rule req(p, r), which is only applicable
if the process does not have any requests yet, and if the particular resource is not used
already by this process. If a process receives a token and there is a request for the re-
source, the process will chose the rule take(p, r) replacing the token and the request by a
heldBy edge from the resource to the process. When it has finished its task, the process
may release its resource and give the token to the next process using rel(p, r) and give(p,
r). This will happen only when there are no pending requests, which is modeled by a
negative application condition at rel(p, r).

pass(p,r)

r r

p p

take(p,r)

r

p

r

p
rel(p,r)

r

p

r

p

req(p,r)

r

p

r

p

give(p,r)

r r

p p

blocked(p,r)

r r

p p

waiting(p,r)

r

p

= r

p

unlock(p,r)

r

p

r

p
ignore(p,r)

r

p

r

p

Fig. 8. Algorithm for mutual exclusion

Distributed deadlock detection. In a model representing a state, a deadlock is repre-
sented as a cycle of request and heldBy edges. The distributed deadlock detection uses
blocked messages in order to detect cyclic dependencies. They are represented by edges
with a black flag from a resource to a process. In order to detect such cycles in a dis-
tributed way, a process holding a resource requested by another process will use the



www.manaraa.com

Advances in Model Transformations by Graph Transformation 577

rule blocked(p, r) to send a blocked-message to that process. If this process itself blocks
another one, it will use the waiting(p, r) rule to pass this message on. The inequation
in this rule ensures that resource r is not the original one. If the process does not hold
any resource, it deletes the message with ignore(p, r). Thanks to the mutual exclusion,
each resource is held by only one process. Hence, if the message arrives at a process
who holds the original resource, this is the original sender of the message. The deadlock
thus detected is broken by the unlock(p, r) rule which replaces the heldBy edge and the
blocked message with a release edge, asking the ME-rule give(p, r) to give the token to
the next process.

We use this algorithm to show how model transformations are defined in
MOMENT22. In the resulting model transformation, we verify safety and liveness prop-
erties. On the one hand, we model check the safety property MUTEX-safe: a resource
cannot be held by two different processes, by means of reachability analysis of an invari-
ant defined with a model pattern. On the other hand, the liveness property MUTEX-live:
each request of a resource by a process will eventually be granted, by means of model
checking of LTL properties.

Model transformation rules can be defined either as equations or as rewrites by the
respective keywords eq or rl, respectively. A model transformation rule always consists
of three elements: a label, a left-hand side (LHS) pattern and a right-hand side (RHS)
pattern, where the LHS and RHS patterns correspond to collections of object template
patterns in the QVT terminology, or to graph patterns in the graph tranformation ter-
minology. Optionally, we can add a set of (possibly conditional) negative application
conditions (NACs) to each model transformation rule and a global condition with the
when clause.

A model pattern is a collection of object patterns that are applied over a specific
domain model. The LHS model pattern of the rel(p,r) model rewrite in Fig. 9 can be
applied over a model that conforms to the metamodel in Fig. 7.(a). In this model pattern,
an object of type Process points to an object of type Resource through a holds reference.
We also match the value of attribute id of the Resource object with the variable R1ID to
illustate how attributes can be included in model patterns. This model pattern is shown
as a graph pattern in Fig. 9.

5.2 Execution

Model transformations are declared with several parameters, called domains. Each do-
main may correspond to a different metamodel. To execute a transformation, a user can
specify either an input or an output model for each domain of the transformation. Input
models are EMF models that are used as input data and output models are paths in the
filesystem where the corresponding resulting models are persisted as EMF models. For
the example above, there is a single domain in the transformation. Since the simulation
for this example is non-terminating, we do not need to specify a value for the output
model. This facility enables the use of MOMENT2 for executing model transformations
and for analysing them within the EMF as discussed below.

2 More details on the encoding of the transformation can be found in [8].



www.manaraa.com

578 G. Bergmann et al.

holds 

release 

request 

lhs 

nac 

relNoRequest 

rhs 

rel 

requestrrequest r

holdsholds

relleaselllreleaseee

lhs 

nac 

relNoRequesssstttt 

rhs 

Fig. 9. Rewriting rule in MOMENT2

(Bounded) Model Checking Model-Based Invariants. For R =(Σ,E∪A,R) a rewrite
theory obtained by compiling model equations into corresponding equations E , and
model rewrites into rules R, we are interested in cheking invariants, that is, predicates
that hold of a given initial state and of all states reachable from it by state transitions.
The invariants in question can be graph-based. This means that if they hold for a state
representing a graph with a given choice of names, they should also hold for any other
choice of names which is a permutation of the original names. This can be guaran-
teed by construction if we define the negation of such a state predicate by means of a
pair (P,C), where P is a model pattern (so that the names involved in the pattern P are
generic names described by name variables), with P describing potentially “bad” states,
and where C is an equational condition (which may involve Boolean OCL expressions)
imposing additional semantic restrictions on the graph pattern P. The compilation pro-
cess then transforms the pair (P,C) into a corresponding pair (t,C′), where t is the term
pattern corresponding to P, and C′ is a Boolean condition involving the variables of t
that expresses C at the term level. The invariant I¬(t,C′) defined by (t,C′) is then the
complement of the set of states satisfying (t,C′), that is, the complement of the set of
states that are substitution instances of t and satisfy C′.

If the number of states reachable from init is infinite, breadth-first search become a
semi-decision procedure to verify the violation of the invariant: if any such violation
exists, we are guaranteed to find it. The same search command in Maude provides such
a semi-decision procedure.

In the example, we want to verify the mutual exclusion algorithm by ensuring that
a resource will never be held by two different processes. This invariant can be verified
with the command:

search [1, unbounded] =>* domain model {
p1 : Process { holds = r1 : Resource{} }
p2 : Process { holds = r1 : Resource{} }

}

Model Checking LTL Properties. A model transformation (M ,T ) is formalized as
a rewrite theory �(M ,T ) specifying a model transition system where models M : M
constitute system states and where the application of model rewrites constitute state
transitions.



www.manaraa.com

Advances in Model Transformations by Graph Transformation 579

Maude provides support for model checking LTL safety and liveness properties. MO-
MENT2 uses Maude’s LTL model checker by defining state predicates over models
through equations and OCL expressions. In this section, we provide (i) the definition of
model predicates, (ii) the notion of model transition system, and (iii) the verification of
LTL properties in a model transition systems.

In the example, the equation in Fig. 10(a) indicates when the request(P, R) predi-
cate is satisfied in a given state M, such that M : M , where P and R are string variables.
That is, the request(P, R) predicate is satisfied in a state, when there is a process with
id P that requests a resource with id R. The parameters of a predicate can be either
constants or variables that are bound in a domain pattern.

Fig. 10. Predicate equations: (a) request - (b) heldBy

It is important to make sure that satisfaction of state predicates is defined for all
the cases in which a model predicate holds. The cases where a model predicate is not
satisfied do not need to be specified. The following equation defines the satisfaction
of the state predicate heldBy(R, P), specifying when a resource with id R is held by a
process with id P (Fig. 10(b)).

Verification of LTL properties in model transition systems. LTL properties can be de-
fined in MOMENT2 by using Maude’s LTL specification and model predicates as
defined above. In a LTL formula, model predicates can be used as propositions. In
the example, we want to verify that each process that request a resource is always
eventually served. This can be specified with the LTL formula requests("p0", "r0") |->

heldBy("r0","p0"), which is equivalent to [] (requests("p0", "r0") -> <> heldBy("r0", "p0")).
MOMENT2 compiles the model predicates and the LTL formula into Maude follow-

ing the guidelines provided in [41] so that the Maude model checker is used to verify the
MUTEX-live property in the theory �(M ,T )∪�(D). The tool generates the following
command and executes it in Maude, without user interaction:

red modelCheck( mutexAlgorithm(model,0 ),
requests("p0","r0") |-> heldBy("r0","p0") ) .

By using the model in Fig. 7 as initial state, Maude’s model checker found a path
in which the property cannot be verified. In particular, the two processes p0 and p1
request the resource r0 and the pass rule is henceforth applied over the resource r1.
This is due to the fact that the rules are not applied in a fair way, i.e., all rules are not
equally applied in all possible paths. In the example, this problem can be solved by
forcing the application of the take rule. In the metamodel in Fig. 7, we have added the



www.manaraa.com

580 G. Bergmann et al.

properties rule and currentProcess to the Ring class. The rule property indicates which
rule has been applied and the currentProcess property indicates which process has been
activated by the application of a rule. In the model transformation, model rules have to
be modified so that each rule updates the rule and currentProcess in the Ring object as
in the take rule (Fig. 11(a)).

Fig. 11. (a) Rule take - (b) Predicates enabled-take and take

Two more model predicates (shown in Fig. 11(b)) are needed to check when the take
rule has not been applied (enabled-take) and when it has been applied (take).

The MUTEX-live property can be model checked by encoding the fairness of the take
rule in the LTL formula as follows:

([] <> enabled-take( "p0" ) -> [] <> take( "p0" )) ->
(requests("p0", "r0") |-> heldBy("r0", "p0"))

which is verified by Maude’s model checker:

ModelChecker: Property automaton has 4 states.
ModelCheckerSymbol: Examined 5299 system states.
rewrites: 2253359 in 13756ms cpu (13895ms real) (163803 rewrites/second)
result Bool: true

5.3 Related Work

In the formal analysis of dynamically evolving systems, several approaches based on
model-checking provide automated procedures for formal verification. On the one hand,
model-checking tools with specific support for graph transformations have been imple-
mented. GROOVE [46] is a graph-based analysis tool that provides model checking for
LTS whose states are graphs. Augur [47,48] is an analysis tool based on the translation
of graph transformations to Petri nets and the application of Petri net analysis tech-
niques. On the other hand, generic model checkers have been used, such as SPIN [49],



www.manaraa.com

Advances in Model Transformations by Graph Transformation 581

an on-the-fly model checker that has a CSP-based input language, Promela. In contrast
with state space-based approaches, on-the-fly model checking can work without gen-
erating full Kripke model. Another generic tool that has been used in this context is
Bogor [50], an extensible model-checking framework.

There are other approaches that use Maude for encoding graph transformations. In
particular, [51] maps visual graph transformations in Atom3 to rewrite rules in Maude
where graphs encoded as collections of objects can be rewritten modulo structural
axioms (associativity and commutativity). Reachability analysis with Maude’s search
command is used to check properties of models in domain-specific languages. How-
ever, the approach is not MOF conform (no containment relations are taken into ac-
count), there is no support for operations on attributes, and no concept of production
rules as equations.

6 Conclusion

In this chapter, we reported on the research progress that has been achieved in graph
transformation over the four years of the SENSORIA project. Overall, graph transforma-
tion approaches have served well as enablers in a number of case studies and demon-
strators (e.g. in UML model transformations, web services deployment generation, and
BPEL analysis). The case studies and applications scenarios of SENSORIA have stimu-
lated research in three key areas:

– Model transformation by example has provided a novel and intuitive way of trans-
formation specification, by easing the learning curve of transformation languages
by allowing the designer to map source and desired target models directly.

– Live and incremental transformations have significantly improved the efficiency of
transformation execution in a number of crucial scenarios, e.g. in giving a perfor-
mance boost to WSDL code generation that was part of BUTE’s contribution.

– Graph transformation verification by rewriting logic has been a pioneering achieve-
ment by providing a formal semantics to graph transformations and an efficient tool
to execute and verify concrete transformations with respect to structural constraints
as well as temporal invariants and properties.

– Finally, stochastic graph transformations, based on incremental transformations,
provided a novel, cross-over application into the networking simulation domain
with promising early results.

In the future, the results of SENSORIA will live on in the form of continued research
in all of these areas, since a lot of goals remain to be reached: we need more refined
tool support and improved scalability, to be elaborated in more complex experimen-
tal scenarios, to all of which the case studies and demonstrators will provide further
inspiration.

Acknowledgements. All the work presented in this chapter was supported by the
SENSORIA FET-GC2 IP European Union research project (IST-3-016004).



www.manaraa.com

582 G. Bergmann et al.

References

1. Ráth, I., Bergmann, G., Ökrös, A., Varró, D.: Live model transformations driven by in-
cremental pattern matching. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008.
LNCS, vol. 5063, pp. 107–121. Springer, Heidelberg (2008)

2. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the
VIATRA transformation system. In: GRaMoT 2008, 3rd International Workshop on Graph
and Model Transformation, 30th International Conference on Software Engineering (2008)

3. VIATRA2 Framework. An Eclipse GMT Subproject, http://www.eclipse.org/gmt/
4. Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework.

Science of Computer Programming 68(3), 214–234 (2007)
5. Varró, D., Balogh, Z.: Automating model transformation by example using inductive logic

programming. In: Cho, Y., Wainwright, R.L., Haddad, H., Shin, S.Y., Koo, Y.W. (eds.) Pro-
ceedings of the 2007 ACM Symposium on Applied Computing (SAC), Seoul, Korea, March
11-15, pp. 978–984. ACM, New York (2007)

6. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation systems. In:
Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp. 154–157. Springer,
Heidelberg (2010)

7. Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF. In: Fiadeiro, J.L., Inverardi, P.
(eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg (2008)

8. Boronat, A., Heckel, R., Meseguer, J.: Rewriting logic semantics and verification of model
transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 18–
33. Springer, Heidelberg (2009)

9. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–645 (2006)

10. Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evolu-
tion of Model-Driven Systems. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoD-
ELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

11. Forgy, C.L.: Rete: A fast algorithm for the many pattern/many object pattern match problem.
Artificial Intelligence 19(1), 17–37 (1982)

12. Ráth, I., Vágó, D., Varró, D.: Design-time Simulation of Domain-specific Models By In-
cremental Pattern Matching. In: 2008 IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC (2008)

13. Ráth, I., Varró, G., Varró, D.: Change-driven model transformations. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 342–356. Springer, Heidelberg (2009)

14. Ráth, I., Ökrös, A., Varró, D.: Synchronization of abstract and concrete syntax in domain-
specific modeling languages. Journal of Software and Systems Modeling (2009) (accepted)

15. Lawley, M., Steel, J.: Practical declarative model transformation with Tefkat. In: Bézivin,
J., Rumpe, B., Schürr, A., Tratt, L. (eds.) Proc. of the International Workshop on Model
Transformation in Practice (MTiP 2005) (October 2005),
http://sosym.dcs.kcl.ac.uk/events/mtip05/

16. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the evolution
of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

17. Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: ACM
SIGMOD Proceedings, Washington, D.C., USA, pp. 157–166 (1993)

18. Varró, G., Varró, D.: Graph transformation with incremental updates. In: Heckel, R. (ed.)
Proc. of the 4th Workshop on Graph Transformation and Visual Modeling Techniques (GT-
VMT 2004), Barcelona, Spain. ENTCS, vol. 109, pp. 71–83. Elsevier, Amsterdam (2004)

http://www.eclipse.org/gmt/
http://sosym.dcs.kcl.ac.uk/events/mtip05/


www.manaraa.com

Advances in Model Transformations by Graph Transformation 583

19. Varró, G., Friedl, K., Varró, D.: Graph transformation in relational databases. Journal of
Software and Systems Modelling 5(3), 313–341 (2006)

20. Bunke, H., Glauser, T., Tran, T.H.: An efficient implementation of graph grammar based on
the RETE-matching algorithm. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph
Grammars 1990. LNCS, vol. 532, pp. 174–189. Springer, Heidelberg (1991)

21. Matzner, A., Minas, M., Schulte, A.: Efficient graph matching with application to cognitive
automation. In: Nagl, M., Schürr, A. (eds.) Proc. of the 3rd International Workshop and
Symposium on Applications of Graph Transformation with Industrial Relevance, Kassel,
Germany, pp. 293–308 (October 2007)

22. Varró, D.: Model transformation by example. In: Wang, J., Whittle, J., Harel, D., Reggio, G.
(eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer, Heidelberg (2006)

23. Muggleton, S., de Raedt, L.: Inductive logic programming: Theory and methods. Journal of
Logic Programming 19(20), 629–679 (1994)

24. Balogh, A., Varró, D.: Advanced model transformation language constructs in the VIATRA2
framework. In: ACM Symposium on Applied Computing — Model Transformation Track
(SAC 2006), Dijon, France, pp. 1280–1287. ACM Press, New York (2006)

25. Wimmer, M., Strommer, M., Kargl, H., Kramler, G.: Towards model transformation gener-
ation by-example. In: Proc. of HICSS-40 Hawaii International Conference on System Sci-
ences, Hawaii, USA (January 2007)

26. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool. Sci. Comput.
Program 72(1-2), 31–39 (2008)

27. Strommer, M., Murzek, M., Wimmer, M.: Applying Model Transformation By-Example on
Business Process Modeling languages. In: Proc. 3rd International Workshop on Foundations
and Practices of UML

28. Zloof, M.M.: Query-by-example: the invocation and definition of tables and forms. In: Kerr,
D.S. (ed.) VLDB, pp. 1–24. ACM, New York (1975)

29. Cypher, A. (ed.): Watch What I Do: Programming by Demonstration. The MIT Press, Cam-
bridge (1993)

30. Repenning, A., Perrone, C.: Programming by example: programming by analogous exam-
ples. Communications of the ACM 43(3), 90–97 (2000)

31. Lechner, S., Schrefl, M.: Defining web schema transformers by example. In: Mařı́k, V., Rets-
chitzegger, W., Štěpánková, O. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 46–56. Springer,
Heidelberg (2003)

32. Ono, K., Koyanagi, T., Abe, M., Hori, M.: XSLT stylesheet generation by example with
WYSIWYG editing. In: Proceedings of the 2002 Symposium on Applications and the In-
ternet (SAINT 2002), Washington, DC, USA, pp. 150–161. IEEE Computer Society, Los
Alamitos (2002)

33. Yan, L.L., Miller, R.J., Haas, L.M., Fagin, R.: Data-driven understanding and refinement of
schema mappings. In: Proc. ACM SIGMOD Conference on Management of Data (2001)

34. Erwig, M.: Toward the automatic derivation of XML transformations. In: Jeusfeld, M.A.,
Pastor, Ó. (eds.) ER Workshops 2003. LNCS, vol. 2814, pp. 342–354. Springer, Heidelberg
(2003)

35. Heckel, R.: Stochastic analysis of graph transformation systems: A case study in P2P net-
works. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS, vol. 3722, pp. 53–69.
Springer, Heidelberg (2005)

36. Khan, A., Torrini, P., Heckel, R.: Model-based simulation of VoIP network reconfigura-
tions using graph transformation systems. In: Corradini, A., Tuosto, E. (eds.) Intl. Conf.
on Graph Transformation (ICGT) 2008 - Doctoral Symposium. Electronic Communications
of the EASST, vol. 16 (2009),
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/26

http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/26


www.manaraa.com

584 G. Bergmann et al.

37. L’Ecuyer, P.L., Meliani, L., Vaucher, J.: SSJ: a framework for stochastic simulation in Java.
In: Proceedings of the 2002 Winter Simulation Conference, pp. 234–242 (2002)

38. Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the
viatra model transformation system. In: GRaMoT 2008: Proceedings of the Third Interna-
tional Workshop on Graph and Model Transformations, pp. 25–32. ACM, New York (2008)

39. Kreowski, H.J., Kuske, S.: On the interleaving semantics of transformation units - a step into
GRACE. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994.
LNCS, vol. 1073, pp. 89–106. Springer, Heidelberg (1996)

40. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems part I: Stochastic automata. Inf.
Comput. 203(1), 1–38 (2005)

41. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Martı́-Oliet, N., Talcott, C.: All
About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Hei-
delberg (2007)

42. Meseguer, J.: The temporal logic of rewriting. Technical Report UIUCDCS-R-2007-2815,
CS Dept., University of Illinois at Urbana-Champaign (February 2007)

43. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. Higher-Order
and Symbolic Computation 20(1-2), 161–196 (2007)

44. Agha, G.A., Meseguer, J., Sen, K.: Pmaude: Rewrite-based specification language for prob-
abilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239 (2006)

45. Boronat, A., Meseguer, J.: Algebraic semantics of OCL-constrained metamodel specifica-
tions. In: Oriol, M., Meyer, B. (eds.) TOOLS EUROPE 2009. LNBIP, vol. 33, pp. 96–115.
Springer, Heidelberg (2009)

46. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz, J.L., Nagl,
M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg
(2004)

47. König, B., Kozioura, V.: Augur—a tool for the analysis of graph transformation systems.
EATCS Bulletin 87, 125–137 (2005); Appeared in The Formal Specification Column

48. König, B., Kozioura, V.: AUGUR 2—a new version of a tool for the analysis of graph trans-
formation systems. In: Proceedings of GT-VMT 2006 (Workshop on Graph Transformation
and Visual Modeling Techniques). Electronic Notes in TCS (2008)

49. Holzmann, G.J.: The SPIN Model Checker. Addison-Wesley, Reading (2003)
50. Robby, Dwyer, M.B., Hatcliff, J.: Bogor: An extensible and highly-modular model checking

framework. In: Proceedings of the Fourth Joint Meeting of the European Software Engineer-
ing Conference and ACM SIGSOFT Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2003 (2003)

51. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behavioral semantics
of visual modeling languages with maude. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.)
SLE 2008. LNCS, vol. 5452, pp. 54–73. Springer, Heidelberg (2009)



www.manaraa.com

Runtime Support for Dynamic and Adaptive
Service Composition �

Arun Mukhija1, David S. Rosenblum1, Howard Foster2, and Sebastian Uchitel2

1 London Software Systems, Dept. of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

{a.mukhija, d.rosenblum}@cs.ucl.ac.uk
2 London Software Systems, Dept. of Computing, Imperial College London,

180 Queen’s Gate, London SW7 2BZ, UK
{hf1, su2}@doc.ic.ac.uk

Abstract. The ability to dynamically compose autonomous services for
optimally satisfying the requirements of different applications is one of
the major advantages offered by the service-oriented computing (SOC)
paradigm. A dynamic service composition implies that services requesters
can be dynamically bound to most appropriate service providers that
are available at runtime, in order to optimally satisfy the service require-
ments. At the same time, the autonomy of services involved in a com-
position means that the resulting composition may need to be adapted
in response to changes in the service capabilities or requirements. Natu-
rally, the infrastructure and technologies for providing runtime support
for dynamic and adaptive composition of services form the backbone of
the above process. In this chapter, we describe the Dino approach for
providing the runtime support for dynamic and adaptive service compo-
sition. The Dino approach provides comprehensive support for all stages
of a service composition life-cycle, namely: service discovery, selection,
binding, delivery, monitoring and adaptation.

1 Introduction

Software systems are already a part of our everyday life, and are destined to be-
come even more pervasive in the coming years. These systems will be increasingly
distributed, and operate in dynamic conditions. The high value and efficiency
offered by a multitude of software systems comes at a price of high complexity
involved in the development and operation of these systems.

The complexity of software systems can be divided into: computational com-
plexity and coordination complexity. While the efforts to deal with computational
complexity have been ongoing for the last several years with considerable suc-
cess, the focus on managing coordination complexity has been more recent and
is mainly driven by the advent of highly distributed software systems.

Service-oriented computing (SOC) offers a promising solution for managing
coordination complexity in distributed software systems. SOC builds on the idea
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 585–603, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

586 A. Mukhija et al.

of modeling interactions between distributed software components as services
provided and consumed by the components. The notion of services allows loose
coupling between software components, as the services can be described and ac-
cessed using standard (platform- and implementation language-independent) ser-
vice description languages and communication protocols. The loose coupling in
turn allows reusability of software components, implying that a new software sys-
tem can be developed by composing many of the existing independently-deployed
and readily-accessible software components, while requiring to implement only
a minimal number of new application-specific components to be integrated with
the existing components.

The work on SOC so far has been mostly targeted toward enabling integration
of business applications – either within an enterprise (i.e. enterprise application
integration) or, more commonly, beyond enterprise boundaries (i.e. B2B inte-
gration). However, the potential of SOC is immense in enabling collaborations
between autonomous service requesters and providers in open dynamic envi-
ronments. Service composition in open dynamic environments, though build-
ing on the foundational techniques for integration of business applications, is
significantly more complex and challenging than the latter. Below we discuss
some of the major challenges involved in composing services in open dynamic
environments.

The earliest applications as well as focus of research on SOC have been toward
composing services at design time rather than at runtime. Design time service
composition is the preferred approach when service partners are known in ad-
vance, for example in restricted business environments. However, design time
service composition is not feasible in open dynamic environments where services
participating in a composition may not be known in advance, i.e. these services
can be discovered and composed only at runtime.

Dynamic service composition implies that all steps related to the composition
process i.e. service discovery, selection, binding and delivery are done at run-
time and in an entirely automated manner. This, in turn, imposes additional
challenges for rich description of services and intelligent matchmaking. More-
over, since service partners are not known in advance and are discovered only
at runtime, the level of trust between partners is typically low. This calls for
appropriate monitoring of service delivery, and preferably maintaining a trust
rating for different service providers.

Another challenge is that the current SOC techniques mostly assume a rel-
atively stable execution environment. That is, once a service composition is
formed, the composition is assumed to be largely stable for the period of exe-
cution, with only a limited fault-tolerance capability provided to deal with any
unforeseen changes in the environment. In open dynamic environments, on the
other hand, runtime changes in the execution environment are a norm, such as
changes in the QoS provided by a service or the availability of the service itself.
Runtime changes in the execution environment therefore call for an approach
for self-adaptive service composition able to deal with such changes.



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 587

The above challenges have motivated our work on developing the Dino ap-
proach for proving runtime support for dynamic and adaptive composition of
autonomous services. This chapter describes the Dino approach, and shows how
it helps in meeting the above challenges effectively.

The rest of this chapter is organized as follows. In Section 2, we give an
overview of the Dino approach. In Section 3, we provide a detailed descrip-
tion of the design of the Dino runtime infrastructure for enabling dynamic and
adaptive composition of autonomous services. This section includes sub-sections
describing the runtime support provided by Dino for different stages of a service
composition life-cycle. In Section 4, we discuss the implementation of a proto-
type of the Dino runtime infrastructure. In Section 5, we discuss the related
work, and finally in Section 6, we present the concluding discussion.

2 Overview of the Dino Approach

W3C defines a service as “an abstract resource that represents a capability of
performing tasks that form a coherent functionality from the point of view of
providers entities and requesters entities. To be used, a service must be realized
by a concrete provider agent.” [18].

In the SOC paradigm, distributed software components interact with each
other by providing services to other components and consuming services pro-
vided by other components. A software component providing a certain service is
called a service provider, and a software component interested in consuming a
service provided by another component is called a service requester. The service
requester and service provider are just the logical roles played by a software com-
ponent. In practice, the same software component can – and, in fact, is likely to
– play the role of a service provider as well as service requester in a given com-
position. That is, a component might provide certain services, and at the same
time require some services from some other components. Services are provided
and consumed by way of message exchanges between a service requester and a
service provider. We will simply refer to a software component providing and/or
requiring a service as a service entity when the role played by the component is
not relevant.

The service composition approach of Dino builds on the idea of rich specifica-
tion of service requirements and capabilities to allow automated discovery and
selection of services. Dino provides a runtime infrastructure for service compo-
sition. The runtime infrastructure consists of a number of Dino brokers, which
are responsible for service discovery, selection, binding, delivery, monitoring and
adaptation. Detailed description of the various stages of service composition in
the Dino approach is given in the next section.

First, we introduce the concept of modes of a service entity. A service entity
might have alternative modes of operation, only one of which is active at a
given time. A change in mode is usually triggered by a change in the execution
environment of the service entity, such as a change in the resources available or
a change in the user’s needs or preferences. A change in mode implies a change



www.manaraa.com

588 A. Mukhija et al.

in the internal configuration of a service entity. From an external perspective,
a change in mode means a change in service requirements or capabilities of
the service entity. Hirsch et al. [6] provide an architectural approach, based on
the Darwin architecture description language [8], for modeling different modes
of a software component in terms of differences in their required and provided
interfaces. We build on the foundational work by Hirsch et al. for modeling
modes of a service entity at the architecture level, and provide support for the
different modes of operation of service entities during service composition. The
modeling of the different modes of a service entity is described in Chapter 4-4.

The Dino runtime infrastructure is responsible for service composition. Fig. 1
gives an overview of the service composition process in the Dino approach. Ev-
ery service requester needs to provide its service requirements to a Dino broker
in a standard format. The Dino broker carries out matchmaking between the
service requester and potential service providers, based on the specifications of
the respective service requirements and capabilities. Once the most appropriate
service providers for the given service requirements are determined, the Dino
broker establishes bindings between the service requester and service providers.
The Dino broker is also responsible for (partially) monitoring the service deliv-
eries, and carrying out an adaptation of the service composition in response to
changes in the service capabilities or requirements.

To illustrate the design and operation of Dino in the following section, we
consider an example scenario from the Automotive case study, which is briefly
described in Chapter 0-3. A service entity called Driving-Assistant provides a
route planning service (RPS) for providing route-guiding instructions to a driver.
Driving-Assistant, in turn, requires some other services to be able to provide
the RPS. The services required by Driving-Assistant depend upon its current
mode of operation. That is, a change in mode implies a change in the service
requirements of Driving-Assistant. This example will be further elaborated in
the following discussion.

3 Design of the Dino Runtime Infrastructure

3.1 Specification of Service Requirements and Capabilities

Specifications of service requirements and capabilities play a very important role
in the automated composition of services. Ideally, these specifications should be
as unambiguous and comprehensive as possible. A simple syntactic specification
of a service interface, such as the one described using industry standard WSDL
(Web Services Description Language), does not offer a completely unambiguous
solution. Recent work on semantic specification of services, led by OWL-S [12],
aims to utilize shared ontologies for avoiding any potential ambiguity in service
descriptions.

In Dino, every service requester is required to specify its service requirements
in an XML-based document called ReqDoc. Similarly, every service provider
is required to specify its service capabilities in an XML-based document called



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 589

Service

Requester

ReqDoc

Dino Broker

a. ReqDoc sent to a Dino broker

Dino Broker

ReqDoc CapDoc
matching

b. Functional and QoS matching

Service

Requester
Dino Broker

Service

Provider

request

response

request

response

c. Service delivery through the Dino broker

Fig. 1. Service composition in the Dino approach

CapDoc. Both ReqDoc and CapDoc rely on OWL-S [12] for specifying service
functionality, which is an OWL-based ontology for the semantic specification
of services. In addition, ReqDoc and CapDoc include specifications of the QoS
for each required and provided service. Although OWL-S allows extension of its
basic specification for describing non-functional properties, it is not expressive
enough for describing various QoS policies for automated composition of ser-
vices. Therefore, we have developed our own language for describing the QoS.
The functional and QoS descriptions are maintained separately in ReqDoc and
CapDoc for easy manageability. In particular, for every service, the functional-
ity of the service is described in a .owl file and the QoS is described in a .qos
file. QoS dimensions described in the .qos file can refer to the service operations
described in the .owl file, as required.

Both ReqDoc and CapDoc are divided into mode segments, with each mode
segment specifying services required or provided in the corresponding mode. Fig.
2 shows a simplified version of the ReqDoc of Driving-Assistant service entity.
Driving-Assistant has three possible modes: autonomous, convoy and detour. In
the autonomous mode, the route is planned autonomously by Driving-Assistant,
and it requires only a GPS service and Map service. In the convoy mode, the
driver needs to follow another vehicle, and therefore Driving-Assistant requires



www.manaraa.com

590 A. Mukhija et al.

input from the RPS of the leading vehicle of the convoy. And in the detour mode,
the vehicle is guided by an external emergency system (to avoid some problems,
such as accident or works in the street), and therefore Driving-Assistant requires
highway emergency service (HES).

<ReqDoc name="Driving-Assistant">

<mode name="autonomous">

<service name="GPS" functional="gps-req.owl" qos="gps-req.qos"/>

<service name="Map" functional="map-req.owl" qos="map-req.qos"/>

</mode>

<mode name="convoy">

<service name="RPS" functional="rps-req.owl" qos="rps-req.qos"/>

</mode>

<mode name="detour">

<service name="HES" functional="hes-req.owl" qos="hes-req.qos"/>

</mode>

</ReqDoc>

Fig. 2. Requirements document of Driving-Assistant

<CapDoc name="Driving-Assistant">

<mode name="autonomous, convoy, detour">

<service name="RPS" functional="rps-cap.owl" qos="rps-cap.qos"/>

</mode>

</CapDoc>

Fig. 3. Capabilities document of Driving-Assistant

In Fig. 2, the .owl file referred by the functional attribute of a <service>
element contains the functional description of the service in OWL-S, and the
.qos file referred by the qos attribute contains the QoS description of the service.
The name of a service is used for internal reference only. As mentioned above,
maintaining the functional and QoS descriptions separately allows easy man-
ageability. In particular, the QoS description is likely to change more frequently
than the functional description. For example, due to a change in the execution
environment conditions, a service provider may need to update the QoS it can
offer, while continuing to provide the same functionality as before. Maintaining
these two descriptions separately allows easily updating one, without interfering
with the other. The format of CapDoc is similar to that of ReqDoc, as shown in
Fig. 3. The service requirements and capabilities of a service entity can change
independently of each other with a change in the mode of the entity. For in-
stance, in the above example, only the service requirements of Driving-Assistant
change with a change in mode, while its service capabilities remains the same in
all three different modes. The functional description in ReqDoc is more abstract
than the one in CapDoc, as explained below.



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 591

An OWL-S description of a service consists of three parts: profile, process
model and grounding. A profile describes a service operation in terms of its in-
put, output, preconditions and effects. A process model describes details of ser-
vice operations in terms of atomic, simple and composite processes (only atomic
process descriptions are used in Dino). And a grounding describes details of how
to invoke a service operation, and is usually mapped to the WSDL description of
the service operation. The functional specification of a required service contains
the corresponding OWL-S profiles only, while that of a provided service contains
all three parts of the OWL-S description. The advantage of OWL-S is that the
descriptions of the required and provided services can refer to the shared on-
tologies for the common understanding of the terms used in the descriptions.
This helps in removing any ambiguity and allows for automated matchmaking.
Another advantage offered by OWL-S is that services can be described follow-
ing the principle of design-by-contract by including preconditions and effects for
every operation, as opposed to a simple interface specification that can be de-
scribed using WSDL. For more details on OWL-S, please refer to the OWL-S
specification [12].

For the QoS specification of services, there are currently no established stan-
dards. Although OWL-S allows specifying the non-functional properties of a
service as a list of name-value pairs, it is not rich enough for describing complex
QoS policies of service requesters and providers. The QoS properties of services
are defined using an XML-based specification language provided by Dino. Below
we give a brief overview of the QoS specifications in a .qos file. More details of
the QoS specifications in Dino can be found in [11].

Similar to the .owl file, the .qos file also contains pointers to the shared ontolo-
gies for the common understanding of the terms used in the QoS specifications.
The development of a QoS ontology for Web services is a separate and broad area
of research. A few independent proposals for defining a QoS ontology have been
presented, such as QoSOnt [3], OWL-QoS (formerly DAML-QoS) [20], work by
Maximilien and Singh [10] etc. However, none of these proposals is as yet ma-
ture enough to be established as a standard. There has also been an initiative to
combine the features of different ontologies, with an aim to propose a standard
QoS ontology [4].

The QoS dimensions of a service can be domain-independent, such as response
time, throughput, availability, security, cost, location, etc., or domain-specific,
such as accuracy of results, fidelity of data, etc. The domain-specific dimensions
are defined in a domain-specific QoS ontology, while the domain-independent
dimensions are defined in a generic QoS ontology. Some QoS dimensions might
actually be aggregate of other primitive QoS dimensions. For example, security
is an aggregate of encryption, authentication, authorization, confidentiality etc.
Each primitive QoS dimension is specified in a <qos> element in the .qos file.
The attributes of a <qos> element refer to the corresponding ontology where
these are defined. Each aggregate QoS dimension is specified using an enve-
lope element called <aggregate>, which contains all the constituent <qos>
or <aggregate> elements as its sub-elements. The QoS dimensions described



www.manaraa.com

592 A. Mukhija et al.

in the .qos file can refer to the service operations described in the .owl file, as
required.

The attributes of a <qos> element are: name (specifying the unique name of
the QoS dimension in the corresponding ontology), operation (reference to the
service operation(s) in the associated .owl file that is characterized by this QoS
dimension; if no operations are specified then this QoS dimension characterizes
all operations specified in the .owl file), unit (unit of measurement), minVal (for
numerically quantifiable values only; this is the lowest value of the offered QoS
dimension and it appears in CapDoc only), maxVal (opposite of minVal, i.e. the
highest value of the offered QoS dimension), mpVal (for numerically quantifiable
values only; this is the most preferred value of the required QoS dimension and
it appears in ReqDoc only), lpVal (opposite of mpVal, i.e. the least preferred
value of the required QoS dimension), enum (comma-separated enumeration of
discrete values; the order of enumeration is from the most preferred to least pre-
ferred when appearing in ReqDoc, while in CapDoc the order is not important),
confidence (confidence level of the service provider in these values), priority
(relative priority of this QoS dimension compared to other QoS dimensions; it
appears in ReqDoc only). Many of the above attributes are optional in a QoS
specification. An example QoS specification for the response time offered by a
Map service provider, and that required by Driving-Assistant is shown in Fig. 4.
The QoS values specified for a required or offered service can be computed us-
ing the quantitative analysis techniques developed within the Sensoria project,
which are described in Chapter 5-5.

<qos name="responseTime" operation="localMap" unit="ms"

minVal="100" maxVal="1100" confidence="0.99"/>

a. Response time offered by a Map provider

<qos name="responseTime" operation="localMap" unit="ms"

mpVal="0" lpVal="2000" confidence="0.95" priority="0.8"/>

b. Response time required by Driving-Assistant

Fig. 4. QoS specification of response time

Different QoS dimensions are further combined using elements such as <and>,
<or>, <xor>, <not>, etc., in order to specify complex QoS policies of the
service requesters and providers. These policies are taken into account by Dino
brokers during service matching and selection process. For example, a <xor>
element can be used by a service provider to indicate different alternative QoS
values it can offer, probably at different prices. An <and> element can be used
for grouping several different QoS dimensions together within a <xor> element,
to present these dimensions collectively as an atomic alternative. Further details
of the QoS specifications in Dino can be found in [11].



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 593

For the functional specifications, we assume that detailed descriptions of the
operations required and provided by service entities are sufficient for automated
matchmaking. The preconditions and effects described in the OWL-S specifica-
tions of operations provide implicit constraints on the order of invocation of these
operations. The conversation logic, i.e. what messages to exchange using these
operations, is implemented within the service entities involved in the exchange.
The conversation logic can be implemented in a conventional programming lan-
guage, or a special-purpose service orchestration language like WS-BPEL [16].
However, if the conversation logic is implemented in WS-BPEL, the conventional
use of WS-BPEL – which involves static service composition, and execution us-
ing a WS-BPEL engine – needs to be changed to take advantage of the Dino
runtime infrastructure for dynamic service composition.

The specifications of service requirements and capabilities, as required for dy-
namic service composition, can be generated directly from the service models.
An approach for generating these specifications from the service models is de-
scribed in a previous paper [5], and is also discussed in Chapter 4-4. Next, we
discuss the process of service discovery and selection in Dino.

3.2 Service Discovery and Selection

Once service entities have specified their service requirements and capabilities
in the respective ReqDoc and CapDoc documents, they can utilize the Dino
runtime infrastructure for collaborating with other service entities by forming a
service composition.

The process of service discovery is always initiated by a service requester. A
service requester invokes a Dino broker, and passes its ReqDoc to the broker
(refer Fig. 1a). Additionally, the service requester provides the broker with an
ordered list of modes that it is willing to accept. The list is ordered according to
the preference of the service requester. It is possible that the service requester
provides only a single mode that it is willing to accept. Providing a list of modes
gives more flexibility to the Dino broker such that if the most preferred mode
of the service requester cannot be accepted due to unavailability of the required
services, then the Dino broker may attempt to satisfy the requirements for the
next mode, and so on.

A Dino broker can be located anywhere in the network, e.g. on the same node
as a service requester or on a trusted third party node. However, as discussed
later, for the better monitorability reasons, it is recommended that a Dino broker
be hosted on the same node as a service requester interested in using the broker.

Upon invocation, the Dino broker begins search for the services that can
satisfy the service requirements specified in the ReqDoc passed to it. A search
for services can be done using a number of different mechanisms, depending
on the application domain and environment. The search mechanisms include
searching a centralized service registry, local registries of Dino brokers where
services can register, a search engine such as a peer-to-peer search engine for
services (based on Limewire) developed as a part of the Dino project [2], or
simply past records maintained by Dino brokers containing the previous search



www.manaraa.com

594 A. Mukhija et al.

results. The currently available modes are marked in a CapDoc for the purpose
of service discovery and selection. These modes can be changed by the service
provider, as and when the capability of the service provider changes.

The search for candidate services is done by matching both the functional
and QoS properties specified for the required service and the provided services
(refer Fig. 1b). The functional matching is done by matching the OWL-S profiles
described in service requirements with the OWL-S specifications in service ca-
pabilities descriptions. For the functional matching, a number of matchmakers
for OWL-S specifications are available. We have used the OWL-S API devel-
oped at MINDSWAP [9] for developing a matchmaker for functional matching.
For matching the QoS, we have developed our own matching algorithm. When
more than one service match a service requirement – as is likely in a services
marketplace envisioned for open dynamic environments – the Dino broker uses
a QoS-based selection algorithm for selecting the best match.

The QoS-based selection algorithm takes into account the relative benefit of-
fered by a provided service with respect to the QoS criteria specified by the
service requester, as well as the trustworthiness of the service provider. The
QoS-based selection algorithm, along with the language for QoS specifications,
is an important constituent of the service composition process in Dino. The
details of the QoS-based selection algorithm can be found in [11].

Once the best match for every required service in a given mode is selected,
the Dino broker establishes bindings with the selected service providers.

3.3 Service Delivery and Monitoring

Once all the required services are selected and the corresponding bindings have
been established, the delivery of services from the selected service providers to
the service requester can begin. As mentioned earlier, a service is delivered by
exchange of request and response messages between a service requester and a
service provider. For invoking a service, the service requester sends a request
message to the Dino broker. The Dino broker forwards this message to the cor-
responding service provider. Similarly, the response from the service provider is
sent to the broker, which then forwards this response to the service requester
(refer Fig. 1c). The service requester and service provider do not have a direct
reference to each other, and interact only through the Dino broker. This is use-
ful in case an adaptation of the service composition is required, in response to
a change in the service being delivered. However, Dino provides flexibility to
the service requester to opt for a direct delivery of service (i.e. without the in-
volvement of the Dino broker), if required, for example due to hard real-time
constraints on the response time etc. The option for direct delivery can be indi-
cated in the ReqDoc. In such a case, the Dino broker simply provides a reference
of the service provider to the service requester at the end of the service selection
phase, and the service requester and service provider interact with each other
directly thereafter. However, the default method of delivery is through a Dino
broker.



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 595

When a service is delivered through a Dino broker, the broker is able to per-
form syntactic mapping of the messages exchanged between the service requester
and service provider, when these messages have matching semantics but differing
syntax. Recall that the matchmaking is performed on the basis of semantic spec-
ifications of service requirements and capabilities. However, there might be syn-
tactic incompatibilities between the service requester and service provider, e.g.
they might use different names for an operation while assuming the same seman-
tics for the operation. To avoid this problem, the service requester always sends
messages using the same nomenclature as in the profile used to specify service
requirements in ReqDoc. The Dino broker internally translates these messages
into the nomenclature expected by the service provider, using the information
available from the service provider’s grounding description. This translation is
facilitated by the OWL-S API [9].

In addition to supporting delivery of service messages, Dino brokers play an
important role in monitoring the service delivery, in particular the QoS being
delivered. The actual monitoring is performed by a collaboration between the
service requester and Dino broker. This is because only a few QoS dimensions
can be monitored independently by the Dino broker (such as availability), while
others (such as accuracy of results) can be monitored by the service requester
only. For some QoS dimensions, such as response time, even though the precise
values can be obtained when monitored by the service requester, reasonably
approximate values can be obtained when monitoring is done by the Dino broker,
if the broker and the service requester are located on the same network node.
Our aim is to maximize the proportion of monitoring done by the Dino broker,
to relieve the service requester from the overhead involved in monitoring. For
the QoS dimensions that can be monitored by the service requester only, the
service requester provides feedback to the Dino broker in case the monitored
values deviate from the initially agreed values. The work by Raimondi et al.
[13] provides an excellent formal basis, based on timed automata, for monitoring
various commonly-used QoS dimensions, such as response time, availability etc.

Next, we discuss the adaptation actions performed by the Dino broker when
a service delivery deviates from the initially agreed values and consequently fails
to meet the requirements of the service requester.

3.4 Service Recomposition

When a Dino broker discovers that a services delivery has deviated from the
initially agreed values (either by monitoring on its own, or by getting feedback
from the service requester), and has consequently failed to meet the requirements
of the service requester, it initiates adaptation actions. At this stage, we are not
concerned with the actual cause behind a deviation of service delivery – be it
a hardware failure, mobility of a node, increased load on the service provider,
or even malicious behavior of the service provider. The adaptation involves se-
lecting an alternative service provider to replace the current service provider.
In addition, the trust rating of the current service provider is lowered when-
ever a services delivery deviates from the initially agreed values, even if it still



www.manaraa.com

596 A. Mukhija et al.

continues to meet the requirements of the service requester and hence no adapta-
tion action is taken by the Dino broker. Details of the trust ratings management
in Dino can be found in [11].

If more than one service provider had matched successfully during the initial
search, the Dino broker need not conduct a new search, and tries to establish a
binding with a service provider that had previously matched successfully. Oth-
erwise, the Dino broker needs to search for an alternative service provider, in
a similar manner as done initially. The criteria for selecting a service provider
from among several candidates remains the same as during the initial selection.
It is possible that no alternative service provider is found for a required service.
In this case, the service requester can either inform a new mode, or lower its
criteria for the selection of the required services in the current mode.

If an alternative service provider is found successfully and a new binding is
established, the Dino broker is responsible for managing the handover from the
old service provider to the new service provider, ideally in a way transparent to
the service requester. In case of stateful services, the handover involves trans-
ferring the state of the old service provider to the new service provider, so that
the new service provider is able to resume the execution correctly. For the state
transfer, we argue for a change in the conventional way of maintaining the per-
sistent state in a service entity (i.e. the state that needs to remain persistent in
between invocations). In the conventional way, the state of a software component
is its internal matter and is hidden from the external world. Even though some
parameters of the state can be queried, the overall state is largely oblivious to
other components. We argue that increasingly in SOC, a service requester might
be interested in switching its service provider at runtime, especially for long
running interactions. At the same time, the service requester would not like to
loose the results of its past computations, i.e. its state maintained by the service
provider. One option will be for the service requester to maintain a copy of the
state relevant to it at all times. However, this is likely to create an unnecessary
overhead for the service requester.

This is similar to a real world situation where a patient (i.e. service requester)
wants to switch her family physician (i.e. service provider), for example due
to relocation. But at the same time, the patient would not want to loose her
past medical history records, as these are very important for the patient. The
common solution in this case is for the patient’s current family physician to
send her records to her new family physician. These records are already in the
form that any qualified physician will be able to understand and make sense
of. The same model of transfer of records can be replicated in adaptive service
recomposition, with the state related to the service requester being transferred
from the old service provider to the new service provider. This transfer can take
place with the Dino broker acting as an intermediary. A fundamental problem
with this scheme, however, is that the new service provider should be able to
understand and make sense of the state being transferred to it, in order to use
the state properly.



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 597

A reasonable solution to the above problem is for all the service providers pro-
viding similar functionality, i.e. the ones that can potentially replace each other
at runtime, to have a common shared understanding of the persistent state to be
maintained. This solution can be realized by developing a standardized OWL-
based ontology for state representation, similar to the ones used for the semantic
specifications of the services themselves. Development of such a standardized on-
tology would require a group effort by different stakeholders, and is considered
a part of the future work.

However, in case of an abrupt loss of a service, the state transfer between
service providers may not be possible. The concerned service entities need to
implement appropriate recovery mechanisms for such a case.

Once the new service provider is ready, the service requests from the service
requester are forwarded to the new service provider instead of the old service
provider, even though the service requester itself might be oblivious to a change
in the actual service provider. During the time that the new service provider is
selected and activated, any service requests from the service requester are queued
within the Dino broker, to be forwarded to the new service provider once the
new service provider is ready to accept requests.

A runtime change in the mode of a service requester or service provider might
result in changes in the corresponding service requirements or capabilities. The
concerned Dino brokers are responsible for carrying out recomposition of services
accordingly to accommodate these changes. In particular, a change in the service
capabilities might result in the adaptation of the service composition as described
above, i.e. by replacing the old service provider with a new service provider.
Whereas, a change in the service requirements results in the service requester
invoking the Dino broker to discover and select new service providers for the
newly required services, in a similar manner as done initially, while bindings
with any obsolete (no longer required) services can be closed safely.

The dynamic service recomposition ability allows a Dino-managed service-
oriented application to continue its execution unhindered even in the wake of
unpredictable changes in its execution environment.

4 Implementation of the Dino Runtime Infrastructure

A prototype Dino broker is implemented in Java, and is accessible as a Web
service. A partial specification of the DinoBroker interface (showing basic oper-
ations) is shown in Fig. 5. A WSDL description is generated from the DinoBroker
interface for SOAP access.

The component diagram of the Dino Broker is shown in Fig. 6. The Broker

component handles requests from applications for registering ReqDocs and Cap-
Docs, changing modes, and invoking services. The Broker component also
manages sessions, and coordinates interactions between discovery engines, the
invocation engine, and the repository.

Continuing with the Automotive case study used earlier on in the description,
we take another example scenario from this case study. A mobile client in a mov-
ing vehicle is interested in performing location-sensitive search for restaurants.



www.manaraa.com

598 A. Mukhija et al.

public interface DinoBroker {

public String startSession();

public void quitSession(String sessionId);

public void registerReqDoc(String sessionId, String reqDocURL);

public void registerCapDoc(String sessionId, String capDocURL);

public SelectModeResponse selectMode(String sessionId,

String[] requestedModes);

public InvocationResponse invokeService(String sessionId,

String serviceName, Param[] params);

}

Fig. 5. Interface of the Dino broker

Fig. 6. Component diagram of the Dino broker

There are two modes in which the client can operate. The user-input-location
mode requires only the restaurant-search service. This service takes a num-
ber of inputs, including the location, which are used to search for restaurants.
In this mode, the client needs to ask the user for the current location. In the
gps-location mode, two additional services are required. The gps service re-
turns the latitude and longitude at which the client is located. This will be a
local service with access to a GPS device. The latlong-to-city service takes
a latitude and longitude, and returns the town or city which best corresponds
to the location. Generally, the client will ask for gps-location as the preferred
mode, and user-input-location as an alternative mode.

To start using the Dino broker, a client must call the startSession method.
This method returns a session identifier which must be used for all subsequent



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 599

communication with the Dino broker. As multiple clients can use the Dino bro-
ker simultaneously, and the Dino broker maintains state for each client, session
identification is necessary to match the client calls to the existing session state.

Having obtained a session, the client can register a ReqDoc using the
registerReqDoc method. This requires a URL to be provided from which the
Dino broker can retrieve the ReqDoc. Each session has a single ReqDoc, and
calling this method again results in an existing ReqDoc being replaced by the
new ReqDoc. Similarly, a service provider can register a CapDoc using the
registerCapDoc method.

Once a ReqDoc has been registered by a client, it must select which mode
it wants to use. This will determine what services the Dino broker has to
discover. The client provides an array of possible modes that it is willing to
accept, in the order of preference. The Dino broker attempts to satisfy the
requirements of one of the modes and, if successful, reports which mode it has
selected inside a SelectModeResponse object. If no mode can be satisfied, a
ServiceDiscoveryException is thrown. Once a mode has been selected, the
client can invoke services which are required in the selected mode, using the
invokeService method. The parameters passed to this method and returned
by it are OWL-S parameters, which are translated by the Dino broker into the
appropriate form using the OWL-S API [9] and the OWL-S description of the
invoked service.

In the restaurant search scenario, the gps service is invoked with no parame-
ters, and returns a parameter representing latitude and longitude. This output
in then used as input to the latlong-to-city service, which requires latitude
and longitude as input and returns the name of a city. This city name is then
used as one of the input parameters to the restaurant-search service.

As discussed above, a Dino broker performs the functional and QoS match-
making for every required service, in order to identify candidate service providers.
When more than one candidate service provider is found for a required service,
the broker selects the most appropriate service provider using the QoS-based ser-
vice provider selection algorithm. We have carried out the performance evalua-
tion for the functional matching, QoS matching, and QoS-based service provider
selection stages for varying numbers of service providers. For each execution,
service providers were generated such that half of the total number of service
providers satisfied the functional requirements, and half of those also satisfied
the QoS requirements (and therefore qualified as candidate service providers).
Five QoS dimensions were used for the experiments. The performance of func-
tional matching, QoS matching, and service provider selection was measured for
400 to 8000 service providers in increments of 400. In each case, the matching
and selection process was executed 10 times to find the average value. These ex-
periments were carried out on a personal computer running Windows XP with
1GB of RAM and a 3GHz dual-core processor.

The results of the experiments are shown in Fig. 7. These results show the total
time taken for service provider selection, and how the different stages contribute
to it. It can be seen that all stages in the above process scale linearly with the



www.manaraa.com

600 A. Mukhija et al.

number of service providers. The total time for service provider selection is only
90 ms for 8000 service providers, and all three stages contribute almost equally
to this time.

Fig. 7. Time for service matching and selection

5 Related Work

In the last few years, there has been a significant amount of work done in the area
of service composition. A large portion of the work on service composition, and
in particular the standardization effort so far, has been on providing specifica-
tion languages for describing service compositions. These languages are used for
modeling a service composition as a workflow of service interactions. The inter-
actions between service partners in a service composition can be described either
as an orchestration or a choreography. An orchestration describes a local view of
a service composition from the perspective of one service partner and its interac-
tions with other partners. A choreography, on the other hand, describes a global
view of a service composition comprising of all service partners and messages
exchanged between these partners. A choreography-based approach is, in effect,
a top-down approach where a choreography is designed and analyzed first, be-
fore it is executed by the corresponding service partners. An orchestration-based
approach, on the other hand, follows a bottom-up approach where each orchestra-
tion is designed and implemented individually, while the resulting choreography
is formed automatically at runtime by the executions of these orchestrations.

A choreography-based approach presumes that all services participating in a
composition are known in advance. This is possible only if the concrete providers
for the participating services are also known in advance, because different
providers providing the same type of service might have different service re-
quirements. That is, inclusion of different providers for a given service might
result in different compositions. Therefore, a global view of a service composi-
tion prior to its execution requires the knowledge of concrete service partners



www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 601

forming the composition. This may not be possible in open dynamic environ-
ments, where concrete service partners can be discovered and composed only at
runtime, rendering choreography-based approaches inappropriate for such envi-
ronments. Orchestration-based approaches are better suited for open dynamic
environments, as here each service partner needs to model only its own inter-
actions with other services, and this can be done at an abstract level without
requiring the knowledge of concrete service partners.

An emerging standard for describing a choreography is WS-CDL (Web Ser-
vices Choreography Description Language) [17], and that for describing orches-
trations is WS-BPEL (Web Services Business Process Execution Language) [16].
Both WS-CDL and WS-BPEL are XML-based languages. A service orchestration
described in WS-BPEL is like a flow-chart, specifying control logic and flows of
interactions between the host service partner (for which the orchestration is de-
scribed) and other partners involved in the orchestration. A number of execution
engines for service orchestrations described in WS-BPEL have been developed,
such as ActiveBPEL [1]. These execution engines support only design time ser-
vice composition. This is because WS-BPEL has been originally designed, and
mostly used, in restricted environments where service partners are known in ad-
vance, and service requirements and capabilities are not likely to change during
execution. However, the execution engines for WS-BPEL can, in principle, be
integrated with a Dino broker for allowing dynamic service composition. That is,
an execution engine may act as a service requester, and interact with the Dino
broker on behalf of the host service partner for which the service orchestration
is described.

Sycara et al. [14] propose a broker-based approach where brokers are del-
egated the task of service composition. This approach is therefore related to
our approach, as our approach also relies on the concept of brokers for service
composition. However, in contrast to the above approach, our approach provides
support for the specification of QoS in the description of service requirements and
capabilities, as the QoS plays an important role in selecting a service provider.
Moreover, our approach also provides support for automated adaptation of a
service composition.

Yu and Lin [19] also propose a broker-based approach for selecting and com-
posing services based on their QoS. However, this approach assumes a chore-
ography view of the service composition to be available, and aims to identify
appropriate service partners to be composed together in accordance with this
choreography view. Clearly, such an approach is not suitable for the open dy-
namic environments that our approach targets.

Liu et al. [7] and Wang et al. [15] provide more general approaches for QoS-
based service selection, and these approaches can be used for the local selection
of a service provider without regard to the choreography view. However, both
these approaches compare the QoS offered by a service provider with that of
other competing service providers during service selection, but they do not take
into account the QoS required by the service requester itself. As we have shown
in a previous paper [11], this can lead to sub-optimal solutions, as the QoS



www.manaraa.com

602 A. Mukhija et al.

required by the service requester should be an important criterion to be taken
into account for service selection.

6 Conclusion

In this chapter, we have described the Dino approach for providing runtime
support for dynamic and adaptive service composition, which is particularly
useful for composing autonomous services in open dynamic environments. The
approach is comprehensive in its support for different stages of a service com-
position life-cycle. The dynamic service composition is facilitated by formalizing
the specifications of functional and non-functional service requirements and ca-
pabilities. The runtime infrastructure provided by Dino consists of a number of
brokers, which are responsible for discovery, selection, binding and delivery of
services. In addition, the Dino brokers are responsible for (partially) monitoring
the services being delivered, and taking adaptation actions in response to changes
in the service capabilities or requirements, thereby enabling self-adaptive service
compositions.

References

1. ActiveBPEL Open Source Engine, www.activebpel.org/
2. Ali, F., et al.: Dinowire – A Peer-to-Peer Infrastructure for Service Discovery in

Service-Oriented Architectures, Group project report, University College London
(2007)

3. Dobson, G., Lock, R., Sommerville, I.: QoSOnt: A QoS Ontology for Service-
Centric Systems. In: Proc. of the 31st EUROMICRO Conference on Software En-
gineering and Advanced Applications (August-September 2005)

4. Dobson, G., Sanchez-Macian, A.: Towards Unified QoS/SLA Ontologies. In: Proc.
of the 3rd International Semantic and Dynamic Web Processes Workshop (Septem-
ber 2006)

5. Foster, H., Mukhija, A., Rosenblum, D.S., Uchitel, S.: A Model-Driven Approach
to Dynamic and Adaptive Service Brokering using Modes. In: Proc. of the 6th
International Conference on Service Oriented Computing (December 2008)

6. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for Software Architectures. In:
Proc. of the 3rd European Workshop on Software Architecture (September 2006)

7. Liu, Y., Ngu, A., Zeng, L.: QoS Computation and Policing in Dynamic Web Service
Selection. In: Proc. of the 13th International World Wide Web Conference (May
2004)

8. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software
Architectures. In: Proc. of the 5th European Software Engineering Conference
(September 1995)

9. Maryland Information and Network Dynamics Lab Semantic Web Agents Project,
OWL-S API, http://www.mindswap.org/2004/owl-s/api/

10. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web
Services Selection. IEEE Internet Computing 8(5), 84–93 (2004)

11. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-Aware Service Compo-
sition in Dino. In: Proc. of the 5th IEEE European Conference on Web Services
(November 2007)

www.activebpel.org/
http://www.mindswap.org/2004/owl-s/api/


www.manaraa.com

Runtime Support for Dynamic and Adaptive Service Composition 603

12. OWL-S: Semantic Markup for Web Services, W3C Member Submission, November
22 (2004), http://www.w3.org/Submission/OWL-S/

13. Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service
SLAs. In: Proc. of the ACM International Symposium on Foundations of Software
Engineering (November 2008)

14. Sycara, K., Paolucci, M., Soudry, J., Srinivasan, N.: Dynamic Discovery and Coor-
dination of Agent-Based Semantic Web Services. IEEE Internet Computing 8(3),
66–73 (2004)

15. Wang, X., Vitvar, T., Kerrigan, M., Toma, I.: A QoS-Aware Selection Model for
Semantic Web Services. In: Proc. of the 4th International Conference on Service
Oriented Computing (December 2006)

16. Web Services Business Process Execution Language Version 2.0, OASIS Standard,
April 11 (2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

17. Web Services Choreography Description Language Version 1.0, W3C Candidate
Recommendation, November 9 (2005), http://www.w3.org/TR/ws-cdl-10/

18. Web Services Glossary, W3C Working Group Note, February 11 (2004),
http://www.w3.org/TR/ws-gloss/

19. Yu, T., Lin, K.-J.: A Broker-Based Framework for QoS-Aware Web Service Com-
position. In: Proc. of the International Conference on e-Technology, e-Commerce
and e-Service (March-April 2005)

20. Zhou, C., Chia, L., Lee, B.: DAML-QoS Ontology for Web Services. In: Proc. of
the 2nd International Conference on Web Services (July 2004)

http://www.w3.org/Submission/OWL-S/
 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-gloss/


www.manaraa.com

Legacy Transformations for Extracting Service
Components�

Carlos Matos1,2 and Reiko Heckel2

1 ATX II Tecnologias de Software S.A.
Rua Saraiva de Carvalho 207C, 1350-300 Lisboa, Portugal

carlos.matos@atxsoftware.com
2 Department of Computer Science, University of Leicester

University Road, Leicester LE1 7RH, United Kingdom
{cmm22, reiko}@mcs.le.ac.uk

Abstract. This chapter presents an overview of the work on migration
of legacy systems towards Service-Oriented Architectures that is taking
place within the Sensoria project. In this context, a general method-
ology for software reengineering was developed and instantiated in two
dimensions to allow service components to be extracted from legacy ap-
plications. The main goal of this work is to provide a systematic way
of addressing such reengineering projects with a high degree of automa-
tion while being largely independent of the programming language. The
approach is based on a combination of techniques such as source code
analysis, graph transformation, and code transformation. The focus in
this text is on the description of the methodology, its dimensions for SOA,
a prototype implementation and preliminary results and conclusions.

1 Introduction

This chapter presents an overview of the work done in Sensoria project for the
migration of legacy systems towards Service-Oriented Architectures. This work
was motivated by the increasing demand for modernising existing systems, which
is driven, amongst other aspects, by the high frequency of change in business
requirements and evolution in technology.

SOA is steadily becoming adopted in software engineering practice. Reports
show that many newly developed applications and business processes designed
nowadays use service-oriented architectures to some extent [1]. It is estimated
that by 2011 (with 0.8 probability) more than 80% of existing applications will
be at least partly reengineered to participate in service-oriented architectures [2].

With this growth in SOA adoption, the need for a systematic approach
towards reengineering for SOA also increases. However, several principles of
service-orientation pose major challenges for these efforts:

1. The separation of business from presentation logic
2. The loosely coupled relationship between services
3. The coarse-grained nature of services

� This work has been partially sponsored by the project Sensoria , IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 604–621, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Legacy Transformations for Extracting Service Components 605

As legacy systems were not usually built with these concerns in mind, much
effort is needed to accommodate them. Approaches based on wrapping existing
applications into web service interfaces do not fully address these principles—a
deep restructuring approach is necessary.

This chapter presents a methodology to address migration of legacy software
to SOA complying with the above principles while allowing for a high degree of
automation, providing support for the full reengineering cycle and having into
consideration scalability matters.

Our proposal can be seen as an instance of the horseshoe model [3], a concep-
tual model for reengineering at different levels, with a focus on transformations
at the level of architectural models. In this paper, this goal is achieved by using
techniques such as code pattern matching and graph transformation. In order
to structure the process, we propose an overall methodology, instantiated in two
dimensions to address the technological and the functional evolution. The for-
mer is concerned with technical purpose of the code and the latter focuses on
its implementation of relevant business-level functionalities.

The remainder of this paper is organized as follows: Section 2 describes in more
detail the SOA properties mentioned above and Section 3 presents our general
methodology for architectural migration. Next, a summary of the technological
dimension in Section 4 is presented and the functional dimension is detailed in
Section 5. Section 6 presents a prototype implementation of the methodology,
together with initial results from a small case study. Section 7 discusses related
work and Section 8 concludes the paper and presents future work.

2 Challenges of SOA to Reengineering

For an approach to successfully support migration to SOA, it is necessary to
address the properties discussed in the previous section. These are discussed in
more detail in the following subsections.

2.1 The Separation of Business from Presentation Logic

In legacy applications it is common to find, mixed up in a kind of “architec-
tural spaghetti”, code fragments concerned with database access, business logic,
presentation aspects and exception handling, among others. However, it is not
possible to derive services directly while business logic is tightly coupled with
presentation logic. Therefore, an appropriate decomposition of the code is re-
quired such that business functions are isolated as candidate services or service
constituents.

2.2 The Loosely Coupled Relationship between Services

It is common to find a complex network of dependencies between different func-
tionalities in existing systems. However, service-orientation principles state that
services must interact without tight, cross-service dependencies [4]. Therefore,
a decomposition of different functionalities is required to provide a degree of
independence.



www.manaraa.com

606 C. Matos and R. Heckel

Fig. 1. Service granularity across application tiers

2.3 The Coarse-Grained Nature of Services

Legacy applications typically consist of elements that are of a fine-grained nature,
for instance components with operations that represent logical units of work,
e.g. reading individual items of data. Object-Oriented (OO) class methods are
an example of such fine-grained operations. The notion of service, however, is of
a different, more coarse-grained nature. Services represent logical groupings of,
possibly fine-grained, operations, work on top of larger data sets, and in general
expose a greater range of functionality. In particular, services that are deployed
and consumed over a network must exhibit such a property in order to limit
the number of remote consumer-to-provider roundtrips and the corresponding
processing cycles.

Fig. 1 presents a graphical representation of granularity across different appli-
cation tiers. In an SOA context, legacy logical units of work have to be appropri-
ately composed and reengineered in order to form services of desired granularity
and of adequate support for multi-party business processes.

3 General Methodology of Architectural Migration

This section describes the general methodology proposed for migrating the archi-
tecture of applications. Depending on the intended target architecture, changes
are required along either the technological or functional dimensions or, as is the
case with SOAs, both. Technological restructuring is used in the layering of soft-
ware systems and may lead to a 3-tiered architecture, separating logic, data, and
user interface (UI). This process addresses the principle of separation between
business and presentation logic. Functional restructuring separates components
which, after having replaced their UI tier with an appropriate interface and



www.manaraa.com

Legacy Transformations for Extracting Service Components 607

Annotated
Source Code

Source
Graph Model

R1

Annotated
Target Code

Target
Graph Model

Metamodel

3

4

2 4

Target
Constraints

R2 R3

Source Code 1

<<instantiates>> <<instantiates>> <<conforms-to>>

1. Code annotation
2. Reverse engineering
3. Redesign
4. Forward engineering

Fig. 2. General methodology

being grouped according to specific parameters, represent services. This dimen-
sion addresses the properties of loosely coupled services and their coarse-grained
nature.

The general methodology instanced for both technological and functional di-
mensions is presented in Fig. 2. This consists of the steps described in the next
subsections.

3.1 Code Annotation

At this stage, the source code is annotated by code categories. Blocks of source
code are labelled according to the different elements of the target architecture
they will be mapped to. This process is largely automated but, depending on
the source system and the specific dimension, requires some level of input from
the developer that is driving the process. This activity can thus be seen as an
interleaving of automated and manual code annotations.

The code categories to be used in this step depend on the target architecture. If
migrating to a 3-tier system, the categories to consider are UI, Logic and Data, as
is described in this paper for the technological dimension. The categories for the
functional dimension are related to the contribution of source code to particular
services (e.g. managing accounts, customers, etc).

3.2 Reverse Engineering

Based on the information gathered from the annotation process, this step obtains
a graph representation of the code. This graph will not have a 1-1 mapping with
the source code, and its level of detail depends on the annotation. Structural
elements that are annotated as contributing to just one category are represented
by a single node. If instead they are fragmented into several categories, each of
these fragments has a separate representation in the model. Since, for example,
a method completely identified as belonging to the user interface is represented



www.manaraa.com

608 C. Matos and R. Heckel

by one node only, this allows the model to be much more succinct than the code,
leading to highly scalable solution. Another benefit of a graph representation is
that it allows transformations to be described in an intuitive, visual way.

The graph model is based on a metamodel that consists of a type graph
that contains: code structure information, its categorization and association to
architectural elements. An example is shown later (cf. Section 6) when discussing
a prototype implementation. This metamodel is general enough to accommodate
both the source and target system, but also intermediate stages of the redesign
transformation. Additionally, it contains the code categories that were available
throughout the code annotation step.

3.3 Redesign

This step has the goal of producing the target model. For this purpose, it ap-
plies graph transformation rules to the source graph. The rules conceptually
extend the graph transformation suggested by Mens et al in [5] to formalize
refactoring [6]. The intended result is expressed by an extra set of constraints
over the metamodel, which are satisfied when the transformation is complete.
For instance, it is possible to specify a constraint that ensures there are no direct
edges from a code fragment of a specific category to another of a specific different
category. The code categorization provides the control required to automate the
transformation process, limiting the need for user input to the code annotation
step. Rule components (left-hand side, right-hand side and negative application
conditions), as well as source, target and intermediate graphs are instances of
the metamodel. In the technological dimension the rules aim to re-organize the
model into a 3-tier architecture, thus complying to the SOA property described
in section 2.1. The rules for the functional dimension restructure the model so
that services comply to the properties mentioned in sections 2.2 and 2.3.

3.4 Forward Engineering

The final step is the process of obtaining the target code. This can be achieved by
keeping a log of the transformations that are applied at model level and use this
to drive the code level transformations. The result of this step, the annotated
code in relation with a graph model, has the same structure as the input to
step 1, thus allowing for several iterations of the whole process.

This is particularly relevant if the reengineering is directed towards service-
oriented systems. In this case, the transformation has to address both technolog-
ical and functional dimensions, i.e., respectively, transformation into a three-tier
architecture and decomposition into functional components.

One of the main goals of this methodology is to allow a high degree of au-
tomation. Manual intervention, when applicable, is only required in step 1. A
more detailed description of the general methodology can be found in [7].



www.manaraa.com

Legacy Transformations for Extracting Service Components 609

4 Technological Dimension

In this section we summarize the instance of the general methodology for the
technological dimension. A more detailed description can be found in [8].

4.1 Code Annotation

The code annotation step of the technological dimension is based on code pat-
tern matching rules. These are used to automatically identify which source code
fragments belong to User Interface, Logic and Data access concerns. Rules can
be specific to a programming language (e.g. annotating with UI all static method
calls to Classes known to deal with presentation aspects), specific to a develop-
ment paradigm (e.g. assuming OO code) or even technology independent (e.g.
rules based on matches from other rules). Although a majority of code patterns
can be used in reused for multiple projects, differences in the involved tech-
nologies, or unusual coding patterns, may make it necessary to have manual
intervention.

Some code statements can be considered to fall within more than one category.
An example would be the result of a UI method call being used directly in a
Logic operation. Since we can perform the annotation at the abstract syntax tree
(AST) [9] level, it is possible to separate the parts that belong to one category
from the others. In terms of transformation this example would lead to the direct
UI call being replaced by a Controller method call (in the context of a Model-
View-Controller pattern). Similar approaches are used for other kinds of mixed
category statements.

4.2 Reverse Engineering

The reverse engineering step is fully automated and is achieved by taking the
annotated code as input and generating a graph model complying to the specified
metamodel. In this representation it is possible to see links between the different
architectural concerns and have an overall feel on how the original application
is structured.

4.3 Redesign

The redesign step is achieved by executing a set of graph transformation rules
over the source graph model. The resulting model, which is achieved automat-
ically, will comply to the specified target constraints and reflect a correct sep-
aration between the concerns UI, Logic and Data access. This guarantees, for
example, that there are no direct calls from the UI to the Data access layer or
calls from Data access to Logic.

4.4 Forward Engineering

In order to obtain the final code, the forward engineering step uses the infor-
mation gathered in the redesign step to drive code transformations. Regarding
object-oriented applications, this can be achieved via code refactorings.



www.manaraa.com

610 C. Matos and R. Heckel

5 Functional Dimension

In this section we describe the instance of the general methodology for the func-
tional dimension. Given that the steps of reverse engineering and forward en-
gineering are equivalent in both dimensions, taking advantage of following the
same methodology, these are not described here to avoid repetition.

5.1 Code Annotation

The code annotation phase in the functional dimension presents more challenges
than that of the technological dimension given its broader scope. While in the
latter there is a big common ground between different applications (especially if
they share the choice of technology), the former depends on application features
that can come from a number of different domains. This, and the different nature
of the two dimensions, also has an effect on the strategy of approach.

The functional code annotation phase consists of two tasks:

1. operation identification
2. grouping of operations into services

In this chapter, operation stands for a functionality that is likely to be at a too
low granularity to be considered as a service in an SOA context. The categories
used in this dimension are not known beforehand. It is during the code annota-
tion step that these will be extracted. The names drawn to identify each category
are based in the operation identifier thus, depending on the accuracy of these,
it may be necessary to intervene manually so adequate names are used.

The identification of operations in source code is performed by firstly locating
their entry points. The techniques used for this purpose include:

– Code belonging to the Logic layer that is invoked by the UI (as depicted in
Fig. 3)—Code that is directly called from user interface components typically
represent entry points to relevant functionality;

– External API’s (e.g. from IDL files) - APIs that are published for external
follow well known structures;

– Code that falls into a typical pattern of control/data flow—There are many
code patterns that can help to identify entry points to application function-
alities (an example is given in Section 6.1);

– Entry point for code that is mapped to more than one operation—Blocks
of code that are used by several different application functionalities have
entry points that are likely to lead to relevant operations (given that this is
a very general approach, granularity of code blocks identified using it may
vary greatly). This is represented in the graphical example of Fig. 3 as grey
triangles;

– Known feature location techniques as the case of Latent Semantic Indexing
(LSI) [10], a static approach, and Scenario Based Probabilistic (SBP) [11],
a dynamic technique. There are some feature location techniques that have
been tested in different environments, typically to aid in software mainte-
nance tasks, and that presented their effectiveness.



www.manaraa.com

Legacy Transformations for Extracting Service Components 611

Code View

Logic

Data

UI
External
interface

Fig. 3. Identification of operations

The dependencies between each operation entry point and remaining code can
be determined using slicing techniques. A list of candidate operations can then
be presented to the developer driving the process, allowing human intervention /
input either for manual adaptations (supported, for example, by feature location
techniques LSI and SBP as mentioned above) or for a new automated round of
operation identification.

In the second step of service extraction operations previously obtained are
grouped into coherent services. This is an inherently semi-automated task where
operations that are related in some manner are grouped together. Automation
proposes ranked groupings of operations by using metrics, including:

– overlapping between operations
– actors involved
– information about data accessed (including type of access: read, delete, etc)
– similarity measure (e.g. using LSI)

User input can then be given to decide which grouping to use, either by selecting
one from the proposed automatically or by making manual assignments. The
result is the source code annotated according to the operations and services
that it will be mapped to afterwards to produce the graph model and drive the
redesign process.

5.2 Redesign

The graph transformation rules used in this dimension are designed so that
operations are grouped into meaningful services (as defined in the annotation
step) and so that services have loosely coupled relations, thus complying with
the last two SOA properties mentioned in Section 2.

Where in the technological dimension we have mainly rules for decomposing
code structures, here there are, additionally, rules that compose/group code
structures. The former are used to guarantee loose coupling and the latter to
build the adequate granularity of services throughout the system.



www.manaraa.com

612 C. Matos and R. Heckel

6 Prototype

In the context of Sensoria project, a prototype is being developed to apply
the methodology described here. This currently supports the full reengineering
cycle, following the steps of code annotation, reverse engineering, redesign and
forward engineering. This implementation has as target the migration of Java
applications but, as described in the previous sections, following this methodol-
ogy provides a great degree of independence that is further explored throughout
this section.

The following subsections summarize this implementation together with
details of its use over an application included in the financial case study of
Sensoria.

6.1 Code Annotation

The code annotation step was implemented using CareStudio (Fig. 4 provides
a screenshot of the application). This is an Eclipse plugin based on a tool by
ATX (L-CARE) that, amongst other code analysis and reengineering function-
alities, allows the specification and execution of code pattern matching rules and
storing the resulting markings/annotations in XML format. The code patterns
are defined over an XML representation of the AST of the code. Rules for code
pattern matching are defined as XPath queries. XPath [12] is a query language
that enables the selection of elements from an XML document based on path ex-
pressions and conditions. The rules allowed in CareStudio can range from simple
XPath expressions to a combination of an arbitrary number of expressions, using
the output of expressions (“parameter equation <identifier>”) as parameters for
others. It is also possible to specify conditions (“condition <identifier>”) to the
main expression (“main <identifier>”). Next we present two examples of code
pattern matching rules that exist in the prototype, the first belonging to the
technological dimension and the second one to the functional dimension. Some
expressions were simplified for readability.

1. Attributes that belong to the user interface. Attributes of types that are
known a priori to belong to the UI code category can be directly identified
as such. The expression used to locate these cases is:
parameter equation UI_TYPES{getConst("uitypes")};
main equation ALL{//FieldDeclaration};
condition MAIN_EQ{$ALL[contains($UI_TYPES, concat(";",Type/Name/@value,";"))]};

2. Methods with high Fan-In. Methods that are called from a variety of locations
in source code are likely to have a significant role in an operation (albeit
potentially of too low granularity to be alone considered services). A detailed
discussion about this technique can be found in [13] where it was used in
the context of Aspect Mining. The expression used in CareStudio to locate
these situations is (variable N is a parameter for the rule):
main equation METHOD{//Method};
condition METHODCALLS{count(//FunctionOp[Name/@value=$METHOD/Name/@value]) >
$N};



www.manaraa.com

Legacy Transformations for Extracting Service Components 613

Fig. 4. CareStudio - an Eclipse plugin for code pattern matching - showing one occur-
rence of an UI attribute declaration (rule UI Attribute)

One consideration that can take place when analysing these pattern matching
rules is that while some have to be programming language specific to some
extent, others can be very general as is the case in the second set of examples.
Rules of the latter type have a big potential for reuse in multiple projects.

Currently there exist around 40 code annotation rules in this prototype, most
of which are programming language independent (approximately two thirds).
Additionally, even rules that need to take specific language aspects into consid-
eration can be configured in such a way that they can be easily ported to another
context. This is the case of the first rule where the list of a programming lan-
guage classes that are seen as belonging to the UI is stored in a global variable
called “uitypes”. This way, all rules that depend on this aspect, can work in
other contexts just by having a different configuration file.

Additionally, there are many rules of a higher abstraction level, in the sense
that they make use of the result of applying others first. Next we present two
examples of this kind of code pattern matching rules that exist in the prototype:

1. Data access methods. Methods in which all contents have already been iden-
tified as belonging to the Data code category can be categorized as belonging
to that category:

main equation METHODS{getMarkedNodes("Data_Blocks")/parent::*/parent::Method};



www.manaraa.com

614 C. Matos and R. Heckel

This rule and the following make use of function “getMarkedNodes” which
returns all nodes that have been annotated with a given rule. In the case of
the above, the rule “Data Blocks” had previously annotated blocks (sets of
statements contained in curly brackets - represented in the AST by element
“Block”) that belonged to the Data layer. The AST in CareStudio sets the
main block of a method in the path “Method/Statements/Block” hence this
rule selects “Method” elements whose main block was previously annotated
by rule “Data Blocks” (“parent::*” was used instead of “parent::Statements”
just for succinctness). “getMarkedNodes” is an example of a function that
is available in CareStudio in order to simplify rule development.

2. Calls to methods previously categorized as belonging to data access. Calls to
methods that were identified as belonging to the Data code category by the
previous rule can be themselves categorized also as Data:

main equation
CALLS{//FunctionOp[Name/@value=getMarkedNodes("Data_Methods")/Name/@value]
/parent::*};

With this kind of sequential dependencies, it is necessary to ensure that rules
will be attempted to execute in the correct order. For this purpose, it is possible
to make dependencies explicit in CareStudio.

6.2 Reverse Engineering

This step achieves a more abstract representation than the abstract syntax tree,
allowing us to describe transformations in a more intuitive way and for these
to be programming language independent. Additionally, given that, in these
graphs, we only represent the elements required according to the annotation,
the model to be transformed is simpler and the transformation process has a
better performance. Reducing the model size like this also allows addressing
scalability issues which are particularly relevant when migrating large legacy
systems.

Given that no tool existed that could take the output from CareStudio and
produce a result with the format we need for the next step, a new tool was built
specifically for this purpose. This was developed based in the above requirements
and, due to the choice of tool for the redesign step, the result is a graph model
represented in Eclipse Modeling Framework (EMF) [14]. An example of graph
generated by the reverse engineering tool can be seen in Fig. 5.

From the XML we can see some of the characteristics mentioned in subsection
3.2 regarding granularity and succinctness of representation. Class “Deposit-
Money” has members that belong to several code categories so it is categorized
with the “*” concern. One of its methods, “actionPerformed”, was fully cate-
gorized as “UI” hence only one node is used to represent it. Another method,
“populateArray” consists of code blocks of two categories (“UI” and “Data”) so
these are represented as well.



www.manaraa.com

Legacy Transformations for Extracting Service Components 615

Fig. 5. XML representation of graph obtained through the reverse engineering step

6.3 Redesign

Like in the reverse engineering step, redesign transformations are based on a
graph metamodel. The prototype is thus using a type graph that can repre-
sent object-oriented applications. Fig. 6 presents this type graph that includes
both structural information about the code (bottom) but also its categorization
and organization in architectural components/connectors(top-right and top-left,
respectively).

The graph transformation rules were designed in the Tiger EMF Transformer
tool [15]. This is an Eclipse plugin application that allows the definition of rules
and generates Java code that is capable of executing them over a graph repre-
sented in EMF and that complies to the specified type graph. The rule manage-
ment features of this tool are graphical based, facilitating the rule development.

An example of graph transformation rule can be seen in Fig. 7. The top
indicates the left-hand side of the rule and the bottom refers to the right-hand
side. Negative application conditions are not shown for simplicity. This consists
of the Move Method UI rule whose purpose is to move methods identified in the
code annotation step as belonging to the UI code category from generic classes to
UI ones. This rule performs one of the necessary activities of the technological
dimension to achieve the SOA property of separating UI code from business
logic.

The execution of the Java code generated by the tool produces a new graph,
after application of the previously specified rules. In order to facilitate the next
step, a logging aspect was also added to the generated code (with AspectJ),
reporting every transformation made in the model, in order to guide the final
step.



www.manaraa.com

616 C. Matos and R. Heckel

Fig. 6. Type graph for the OO paradigm

6.4 Forward Engineering

The log created by the redesign step includes information on the graph trans-
formation rules that were applied as well as their order and the nodes of the
graph that were affected. The way the forward engineering step works is to map
this log to a sequence of code refactorings that, after applied to the source code,
produce the final, transformed, target code.

The Java application that was built for this purpose uses Eclipse’s built-in
refactorings so the work is mainly focused in mapping graph transformation rules
to the right refactorings and dealing with their parametrization. In short, the tool
parses the log from the redesign step, for each executed graph transformation rule
identifies the refactoring, or group of refactorings, to be applied, and executes
the transformation.

The optimal result for this step is code that complies to the service-orientation
principles discussed in the beginning of this chapter. However, in situations in
which not all necessary code annotation rules or graph transformation rules were
specified the result may be incomplete. By analysing this and then reviewing the
prior steps, it is possible to improve on the implementation.



www.manaraa.com

Legacy Transformations for Extracting Service Components 617

Fig. 7. Move Method UI transformation rule

All the tools used for the prototype were implemented in Eclipse and can
be used as plugins to this IDE. The prototype is under development and the
main objective is to provide means to evaluate our approach to fully address
reengineering projects. Details about future work are given in Section 8.

6.5 Application to Case Study

To validate the implementation of the prototype during its development, we used
a Java application that is part of the financial case study in Sensoria . This
consists of a small banking application in Java with 21 classes. This has an UI
written in Swing and this code is mixed both with the application logic and data
access.

In order to determine the kind of performance an implementation of our
methodology can have, we applied the prototype to this application and recorded
the time spent for each of its steps:



www.manaraa.com

618 C. Matos and R. Heckel

1. Code annotation: 24 seconds
2. Reverse engineering: 53 seconds
3. Redesign: under 1 second (921 ms)
4. Forward engineering: 35 seconds

Thus, and even though most of the tools involved did not go through an opti-
mization procedure yet, the total time for this process was still under 2 minutes.
The redesign step was particularly fast which means that the contribution from
the reverse engineering step in producing the smallest graph model possible may
prove very valuable in larger scenarios. It is worth noting that the code anno-
tation had around 90% of coverage for this application, which means that after
more annotation rules are added to complete the prototype these times may vary
slightly.

7 Related Work

Given its wide scope, the work presented here falls into several research areas.
Next we describe related work in: source code analysis, architectural transfor-
mation and reengineering to SOA.

Source code analysis, in particular feature/concept location, is related to the
first step of the methodology described here. There are several techniques for
this purpose including the work of Marcus et al [10] in applying LSI to concept
location, the scenario-based (SBP) feature identification approach of Antoniol
and Gueheneuc [11] and the work of Eisenbarth et al [16] involving both static
and dynamic feature location. These techniques are all candidates to be applied
in the context of an SOA migration project, considering the first step of the
methodology presented in this chapter for the functional dimension. The ARTI-
SAn framework, described by Jakobac, Egyed and Medvidovic in [17], categorizes
code using an iterative user-guided method. The categories used are: “process-
ing”, “data” and “communication”. The approach differs from ours in several
aspects. Firstly, the goal of the framework is program understanding and not
the creation of a representation that is aimed to be used as input for the trans-
formation part of a reengineering methodology. Another important difference is
that in ARTISAn the annotation/categorization process (called “labeling”) is
based on clues that result in the categorization of classes only. In our approach
we need, and support, the method and code block granularity levels.

Work in the area of architecture transformation is diverse and includes exam-
ples closely related to our work. Use of graph transformation for reengineering
has been suggested previously [18] in a different context (migrating mainframe
COBOL to client/server) with similarities to our technological dimension. A
model-based technique based on graph transformation for a-posteriori integra-
tion of legacy applications into SOA is proposed in [19]. This focuses on generat-
ing wrappers and glue code, rather than transforming directly the source code.
Ivkovic and Kontogiannis [20] proposed a framework for quality-driven software
architecture refactoring using model transformations and semantic annotations.



www.manaraa.com

Legacy Transformations for Extracting Service Components 619

Fahmy et al [21] use graph rewriting to specify architectural transformations at
the description level. In our case, we build a graph that models the software but
also maps the code to target architectural elements. It is this information that
guides the redesign process described in this paper.

Even before the advent of SOAs, approaches for reengineering business ap-
plications were proposed, based on the integration of legacy components after
separating application logic from presentation [22]. Work in reengineering to
SOA is new. It primarily focuses on identifying and extracting services from
legacy code and wrapping them for deployment. We name just two examples
in this section. Sneed [23] presents a method for wrapping PL/I, COBOL, and
C/C++ code behind an XML shell which allows functions within the programs
to be offered as web services. A lighter code-independent approach was devel-
oped by Canfora et al [24], which wraps only the presentation layer of legacy
form-based UI as services. Our work is different from other approaches, in that
our goal is not just to provide existing functionality as services but to do so
while complying to the service-orientation principles described in Section 2.

8 Conclusion

The main contribution of this work is the definition of a methodology and its
technological and functional dimensions, that can be used for multiple types
of reengineering projects, including migration towards service-oriented architec-
tures, while having a high level of automation. By making use of techniques such
as source code pattern matching and graph transformation, and applying those
in the technological and functional dimensions, the result is a concrete process
of addressing SOA migration projects in a systematic way. In order to achieve
that goal, one requirement that is addressed by the approach is of programming
language independence. Wherever possible, abstractions take place in order to
achieve this. A clear example is of performing transformations in the model level
and only when necessary applying them in the source code. Another very impor-
tant requirement that is taken into consideration is of scalability. By reducing
the model to the elements that are absolutely necessary, as was described in the
reverse engineering step, the redesign process is more easily applicable in large
scenarios, and it also facilitates the use of model analysis techniques.

A prototype is currently being developed to evaluate this approach at a larger
scale and an initial version is already being applied to a small case study. The
early tests show that this approach can be put into practice with good results.

Future work will consolidate of the code pattern matching rules for both the
technological and functional dimension to achieve a more complete coverage of
situations that can be found in legacy applications. This is already being done
in parallel with overall improvements in the techniques that will be found when
testing more situations and with an evaluation on a larger case study.



www.manaraa.com

620 C. Matos and R. Heckel

Acknowledgments

Thanks to Rui Correia (formerly at ATX II Tecnologias de Software S. A., Por-
tugal) and Dr. Mohammad El-Ramly (Cairo University, Egypt, previously at
the University of Leicester, U.K.) for their participation.

References

1. Abrams, C., Schulte, R.W.: Service-oriented architecture overview and guide to
SOA research. Technical Report G00154463, Gartner Research (January 2008)

2. Natis, Y.V., Pezzini, M., Schulte, R.W., Iijima, K.: Predicts 2007: SOA advances.
Technical Report G00144445, Gartner Research (November 2006)

3. Kazman, R., Woods, S., Carrière, J.: Requirements for integrating software archi-
tecture and reengineering models: CORUM II. In: Proceedings of Working Con-
ference on Reverse Engineering (WCRE), pp. 154–163. IEEE Computer Society,
Washington, DC (1998)

4. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

5. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program
transformations. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002)

6. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

7. Heckel, R., Correia, R., Matos, C., El-Ramly, M., Koutsoukos, G., Andrade, L.: Ar-
chitectural Transformations: From Legacy to Three-tier and Services. In: Software
Evolution, pp. 139–170. Springer, Heidelberg (2008)

8. Correia, R., Matos, C., Heckel, R., El-Ramly, M.: Architecture migration driven
by code categorization. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp.
115–122. Springer, Heidelberg (2007)

9. Koschke, R., Girard, J.F.: An intermediate representation for reverse engineering
analyses. In: Proceedings of Working Conference on Reverse Engineering (WCRE),
pp. 241–250 (1998)

10. Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.I.: An information retrieval ap-
proach to concept location in source code. In: Proceedings of Working Conference
on Reverse Engineering (WCRE), pp. 214–223. IEEE Computer Society, Washing-
ton (2004)

11. Antoniol, G., Gueheneuc, Y.G.: Feature identification: A novel approach and a case
study. In: Proceedings of International Conference Software Maintenance (ICSM),
pp. 357–366. IEEE Computer Society, Washington (2005)

12. W3C: XPath specification, http://www.w3.org/TR/xpath
13. Marin, M., van Deursen, A., Moonen, L.: Identifying aspects using fan-in analysis.

In: Proceedings of Working Conference on Reverse Engineering (WCRE), pp. 132–
141. IEEE Computer Society, Washington (2004)

14. Eclipse: Eclipse Modeling Framework, http://www.eclipse.org/emf/
15. Tiger EMF Transformer, http://tfs.cs.tu-berlin.de/emftrans/
16. Eisenbarth, T., Koschke, R., Simon, D.: Locating features in source code. IEEE

Transactions on Software Engineering 29(3), 210–224 (2003)
17. Jakobac, V., Egyed, A., Medvidov́ıc, N.: Improving system understanding via in-

teractive, tailorable, source code analysis. In: Cerioli, M. (ed.) FASE 2005. LNCS,
vol. 3442, pp. 253–268. Springer, Heidelberg (2005)

http://www.w3.org/TR/xpath
http://www.eclipse.org/emf/
http://tfs.cs.tu-berlin.de/emftrans/


www.manaraa.com

Legacy Transformations for Extracting Service Components 621

18. Cremer, K., Marburger, A., Westfechtel, B.: Graph-based tools for re-engineering.
Journal of Software Maintenance 14(4), 257–292 (2002)

19. Haase, T.: Model-driven service development for a-posteriori application integra-
tion. In: Proc. of International Conference on e-Business Engineering (ICEBE), pp.
649–656. IEEE Computer Society, Washington (2007)

20. Ivkovic, I., Kontogiannis, K.: A framework for software architecture refactoring us-
ing model transformations and semantic annotations. In: Proceedings of European
Conference on Software Maintenance and Reengineering (CSMR), pp. 135–144.
IEEE Computer Society, Washington (2006)

21. Fahmy, H., Holt, R.C., Cordy, J.R.: Wins and losses of algebraic transformations
of software architectures. In: Proceedings of International Conference on Auto-
mated Software Engineering (ASE), pp. 51–60. IEEE Computer Society, Washing-
ton (2001)

22. Kiesel, N., Klein, P., Nagl, M., Schmidt, V.: Verteilung in betriebswirtschaftlichen
anwendungen: Einige bemerkungen von seiten der softwarearchitektur. In: Jh-
nichen, S. (ed.) Online 1994 Congress VI, pp. C.620.01–C.620.29 (1994)

23. Sneed, H.: Integrating legacy software into a service oriented architecture. In:
Proceedings of European Conference on Software Maintenance and Reengineer-
ing (CSMR), pp. 3–14. IEEE Computer Society, Los Alamitos (2006)

24. Canfora, G., Fasolino, A.R., Frattolillo, G., Tramontana, P.: Migrating interactive
legacy systems to web services. In: Proceedings of European Conference on Soft-
ware Maintenance and Reengineering (CSMR), pp. 24–36. IEEE Computer Society,
Washington (2006)



www.manaraa.com

The Sensoria Development Environment�

Philip Mayer1 and István Ráth2

1 Ludwig-Maximilians-Universität München, Germany
2 Budapest University of Technology and Economics, Hungary

mayer@pst.ifi.lmu.de, rath@mit.bme.hu

Abstract. Developing service-oriented software involves dealing with
multiple languages, platforms, artefacts, and tools. The tasks carried
out during development are varied as well; ranging from modeling to
implementation, from analysis to testing. For many of these tasks, the
Sensoria project has provided tools aiding developers in their work –
with a specific focus on tools based on rigorous formal verification meth-
ods, but also including modeling, transformation, and runtime tools. To
enable developers to find, use, and combine these tools, we have created
a tool integration platform, the Sensoria Development Environment
(SDE), which a) gives an overview of available tools and their area of
application, b) allows developers to use tools in a homogeneous way,
re-arranging tool functionality as required, and c) enables users to stay
on a chosen level of abstraction, hiding formal details as much as possi-
ble. In this chapter, we give an in-depth review of the SDE, integrated
tools, and ways of using tools in combination for developing and verifying
service-oriented software systems.

1 Introduction

The success of the Service-Oriented Architecture (SOA) [3] in both industry
and research has resulted in a growing need for tool support for developers of
services and service-based systems. Specific support for developing SOA systems
is beneficial in all phases of the development process, ranging from modeling to
runtime, from analysis to implementation.

The Sensoria project [9] has provided tools and techniques for many of the
tasks developers are faced with during the development of SOA systems. A key
first result of Sensoria in this context is a set of languages for describing SOA
systems, like, for example, the UML profile for services (UML4SOA) [5] and
accompanying tool support. However, the main consideration in Sensoria was
rigorous engineering of service-oriented systems with a specific focus on formal
verification. As our verification and validation methods are often directly based
on a formal model, tool support had to be created for allowing developers to use
these methods while staying on their chosen level of abstraction – for example,
UML. To deal with this issue, Sensoria has investigated model transformations,
a concept taken from the model-driven architecture (MDA) community, to ease

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 622–639, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

The Sensoria Development Environment 623

the transition between developer-level models of a SOA system and the formal
languages required for verification, with the additional benefit of being able to
generate executable code as well. Finally, runtime support for services in the form
of dynamic discovery mechanisms requires a broker infrastructure and testing
tools which should be accessible during development as well.

Altogether, these considerations have led us to develop a tooling platform, the
Sensoria Development Environment (SDE) [4], which integrates the various
tools required in the service development process, including modeling, analysis,
code generation, and runtime functionality. The SDE:

1. gives an overview of available tools and their area of application,
2. allows developers to use tools in a homogeneous way, re-arranging tool func-

tionality as required, and
3. enables users to stay on a chosen level of abstraction, hiding formal details

as much as possible.

In this chapter, we give an in-depth review of the SDE, integrated tools, and
ways of using tools in combination for developing and verifying service-oriented
software systems. In section 2, we give a high-level overview of the SDE. Section 3
further details design and implementation of our integration platform. In section
4, we give an overview of tools integrated into the SDE. Section 5 shows examples
of how tools can be orchestrated to perform in collaboration. Finally, section 6
concludes the chapter.

2 High-Level Overview

The Sensoria project aims to support developers of service-oriented software
systems at various points in the development process. Specific focus is placed on
(formal) verification of service artefacts, which includes appropriate modeling
support for developers as well as code generation and runtime support. Through
various tools, we are thus able to offer functionality which covers the complete
model-driven process of service engineering, which is shown in Fig. 1.

After starting with requirements for a SOA-based system, developers advance
to the modeling phase. From this phase, various analyzes of the models may be
performed, many of them carried out with the help of automated model transfor-
mations. Finally, code is generated from the improved models; runtime support
is available for executing this code on various platforms. The figure shows the
phases which are covered by tools integrated into the SDE – Modeling, Transfor-
mation, Analysis, Code Generation, and Runtime. The following functionality is
available in each of these phases:

– Modeling. Graphical editors for familiar modeling languages such as UML,
which allow intuitive modeling at a high abstraction level, and also text- and
tree-based editors for formal languages like process calculi.



www.manaraa.com

624 P. Mayer and I. Ráth

Runtime
Runtime Support for SOA,
e.g. Service Discovery

SOA Architecture
Business Requirements, e.g.

Behaviour, Policies,...

Code Generation
Creating Executable Code,
e.g. BPEL/WSDL/XSD

Transformation
Prepare formal results for
improving the models

Transformation
Translating to formal
languages for analysis

Analysis
Verifying correctness of SOA

models

Modelling
Modelling SOA applications,
e.g. UML Profiles for SOA

Sensoria Development Environment

Fig. 1. Development approach

– Model Transformation Functionality, including Code Generation.
Automated model transformations from UML to process calculi and back to
bridge the gap between these worlds; also, generation of executable code (for
example, Web Service standards like BPEL).

– Formal Analysis Functionality. Model checking and numerical solvers
for stochastic methods based on process calculi code defined by the user or
generated by model transformation.

– Runtime Functionality. Integration of runtime platforms, for example
BPEL process engines or the Java runtime as well as runtime support for
services, for example dynamic service brokering.

The functionality indicated in the previous list is implemented in various tools,
some of which have been developed within Sensoria, some developed outside
of the project (for a full list of Sensoria tools, see section 4). The tools are
not only developed at different sites, but are also vastly different with regard to
user interface, functionality, required computing power, execution platform and
programming language. However, all of the tools contribute to the development
process and in many cases deliver artefacts which may serve as input to other
tools.

The Sensoria Development Environment (SDE) provides this functional-
ity through a carefully designed, lightweight integration architecture. This is
achieved through the following core features:

– A SOA-based platform. The SDE itself is based on a Service-Oriented
Architecture, allowing easy integration of tools and querying the platform
for available functionality. The tools hosted in the SDE are installed and
handled as services.

– A Composition Infrastructure. As development of services is a highly in-
dividual process and may require several steps and iterations, the SDE offers
a composition infrastructure which allows developers to automate commonly
used workflows as an orchestration of integrated tools.



www.manaraa.com

The Sensoria Development Environment 625

– Hidden Formal Methods. To allow developers to use formal tools with-
out requiring them to understand the underlying formal semantics, the SDE
encourages the use of automated model transformations which translate
between high-level models and formal specifications.

As with services in a SOA, tool composition in our integration tool is a lightweight
one, i.e., the connection between tools is not a priori fixed and adding additional
tools requires only minimal change to the integrated tools. Using the tool-as-a-
service metaphor, tools are services, each consisting of functions which can be in-
voked by the user or other services. Contrary to Web services [8], user interaction is
very important for some software development tools. For example, a modeling tool
requires a lot of user interaction – ideally, the modeling tool runs on the computer
of the user. A model checker, on the other hand, requires a lot of computing power
and thus will most likely run on a dedicated server to be accessed remotely with
none or only a minimal, generated UI available. Both use cases are supported in
the SDE.

SDE Platform

Local Tool
e.g. modelling ...

Local Tool
e.g. code generation

Orchestration Languages

Remote Tool
e.g. model checker...Transformations

SDE Platform

Fig. 2. SDE architecture

By using a SOA-based infrastructure, combining tools into more complex tool
chains is straightforward, i.e. possible via dedicated orchestration languages. A
typical scenario for tool composition can be found in the analysis and verification
of software; for example, model checkers require a certain input format into
which most source models first need to be transformed; the same applies to the
output. The SDE contains both a textual (JavaScript) and a graphical (UML-
based) orchestration language, allowing users to integrate various tools, thereby
handling the data flow between these tools. Having encapsulated the integrating
steps, they can be run over and over again for performing the same steps with
different input and output data.

Finally, the SDE aims at providing formal verification tools to pragmatic de-
velopers. This requires, as indicated above, the use of model transformations
to allow developers to stay on their chosen level of abstraction while still en-
joying the results available through rigorous verification methods. Through tool
chaining and the ability to install verification tools remotely, the SDE enables
an MDA-like approach to the analysis of service artefacts.

Fig. 2 shows the architecture of the SDE. As discussed previously, the in-
tegration platform hosts a number of tools as services. Through its dedicated



www.manaraa.com

626 P. Mayer and I. Ráth

orchestration infrastructure, the SDE allows developers to orchestrate tools to be
used in combination, which includes using model transformations and a remote
invocation functionality for invoking tools hosted on different machines.

The next section will introduce the technical details of the SDE implemen-
tation.

3 Design and Implementation

The aim of Sensoria is to support the creation of service-oriented software
by augmenting existing development processes and tools. A requirement for the
SDE was therefore to integrate with existing tools and platforms for the devel-
opment of SOA systems. For this reason, the SDE is based on the well-known
Eclipse platform [2] and its underlying, service-oriented OSGi [6] framework.
OSGI is based on so-called bundles, which are components grouping a set of
Java classes and meta-data providing among other things name, description,
version, exported and imported packages of the bundle. A bundle may provide
arbitrary services to the platform.

3.1 SDE Core and UI

The technical architecture of the SDE is depicted in Fig. 3, which shows the
SDE Platform as an OSGi bundle, its dependencies and dependent bundles.

Native (OS) Native Tool

Java

(R-)OSGi

Java Tool

Equinox Bundles

SDE Platform

SDE Tool SDE Tool SDE Tool

Eclipse UI UI UI UI

Fig. 3. SDE technical architecture

Fundamentally, all tools are integrated as OSGi bundles which offer certain
functions for invocation by the platform. As indicated above, the tools integrated
into the SDE are vastly different, ranging from user-driven graphical model-
ing tools to computationally intensive analysis tools with very basic interaction



www.manaraa.com

The Sensoria Development Environment 627

mechanisms. Thus, it is not possible to define a common API for all tools. In the
SDE, this problem is solved by using (declarative) OSGi services for each tool.
Furthermore, the SDE allows tools to provide their own UI, but also provides a
generic invocation mechanism which enables users to invoke arbitrary functions,
either directly or through an orchestration. Finally, tool integration requirements
should be kept low to ensure integration of as many tools as possible. The SDE
re-uses OSGi and Eclipse technology and declarative service descriptions which
are generated from Java annotations for a fast and straightforward integration
process.

As can be seen in Fig. 3, the SDE platform and the integrated tools are
based on (R-)OSGi only (or, more specifically, the Equinox implementation of
OSGi [1]). This means that fundamentally, tools must be implemented in Java,
although they may wrap native code or remote invocations as they wish. Being
only based on OSGi, they can be invoked completely independently from Eclipse.
If they additionally choose to provide a UI, this UI is integrated into and based
on the Eclipse platform, as is the UI for the SDE platform itself.

Fig. 4. SDE screenshot

Fig. 4 shows a screenshot of the SDE UI. On the left hand side, the tool
browser shows installed tools available for invocation and automation. Tools are
grouped by category, allowing quick access by application area. Double-clicking a
tool in the browser yields more information about the tool and its functionality.
This information is shown in the view in the middle: As an example, an integrated



www.manaraa.com

628 P. Mayer and I. Ráth

tool for qualitative analysis (WS-Engineer) is shown in more detail. Each tool
function displayed here can be invoked by clicking the link and providing the
parameters. Finally, on the right, the Sensoria Blackboard is shown, which is a
storage area where tools may place arbitrary objects for later use. Finally, at the
bottom, the Sensoria Shell is displayed, which is a live JavaScript execution
environment (see section 3.2).

As an example for a function invocation, clicking on the bpelToFSP() function
in the WS-Engineer tool yields the following dialogs, where the data for the single
parameter (bpel) can be selected from various sources (Fig. 5).

Fig. 5. SDE wizard

Finally, the SDE core integrates with R-OSGi [7] to provide the ability to host
tools for external invocation, and connect to remote SDE cores. The tools in the
tool view in Fig. 4 (left), for example, are listed under the local core. Further
(remote) cores may be added as required, and their tools are then listed and
used in the same way as described above. Furthermore, the blackboard (right)
also distinguishes between the various cores.

3.2 Composing Tools

The SDE provides the ability to compose new tools out of existing ones, a process
known as orchestration in the SOA world. Creating orchestrations is possible
using two mechanisms: A textual, JavaScript-based approach, and a graphical,
UML-activity-diagram-like workflow approach.



www.manaraa.com

The Sensoria Development Environment 629

Orchestrating with JavaScript. The ability to use tool APIs directly within
JavaScript enables developers to create a workflow by simply invoking tool func-
tions and passing data in-between those functions. To enable the newly created
workflow to be usable as a tool in its own right, two things are required: In-
stead of simply creating a workflow, a JavaScript function definition is required
which states a function name and parameters. As each tool, function, parame-
ters, and return types may have descriptions and additional meta-data attached,
this meta-data must be specified in some way in the JavaScript source files. Both
points have been addressed in the SDE. The first is simple; function definitions
are already part of the JavaScript specification. The second was solved by em-
ploying a JavaDoc-comment-style approach to meta-data specification. Tags like
@description are used to convey meta-data information.

Fig. 6. Orchestration with JavaScript

As an example, Fig. 6 (left) shows a script for converting UML2 activity
diagrams to BPEL, then analyzing them using the WS-Engineer tool, and finally
converting the result back to UML2 sequence diagrams showing the error trace.
Fig. 6 (right) shows the converted tool inside the SDE tool browser. Scripts
created like this can be used on any SDE installation which has the required
tools installed. No particular deployment is necessary save copying the script
and registering it with the core.

For testing purposes, the SDE also contains a JavaScript live execution envi-
ronment, the SDE Shell (Fig. 4), where JavaScript commands can be executed
without compiling a complete script.



www.manaraa.com

630 P. Mayer and I. Ráth

Graphical Orchestration. Besides the ability to use JavaScript for orchestra-
tion as indicated above, the SDE also contains the ability to orchestrate tools
graphically. The syntax used is that of UML2 activity diagrams, where the main
focus is on data flow, i.e. the flow of information from pin to pin. An activity in
the diagram represents one function in the tool to be generated which has input
pins (parameters) and one output pin (return type). Inside the activity, actions
represent function calls to arbitrary (installed) tools. These actions have pins
themselves; data flow edges model the data transfer.

Fig. 7. Graphical orchestration

As an example, consider the screenshot in Fig. 7, which shows the orches-
tration introduced in the previous paragraph as a graphical workflow, including
the editor which supports it. The function checkActivity(uml) is modeled as
an UML2 activity, and each call to a particular function of an installed tool is
modeled as an action. On the right-hand side, the toolbar shows all available
tools and the functions they provide. Once modeled, an orchestration such as
the one above is converted to a Java class, compiled in-memory and installed as
a tool in the SDE.



www.manaraa.com

The Sensoria Development Environment 631

3.3 Extending the Platform

The SOA-based architecture of the SDE makes it easy to add new tools – the SDE
publishes a core API and an extension point for registering tools. Basically, each
tool is an OSGi bundle with some published API and meta-data XML to register
the tool with the SDE core. Thus, creating a facade class and registering the
class with the SDE extension point enables tool functionality to be immediately
available within the SDE, both for manual invocation and automation. Tools
within the SDE are loosely coupled, as they are fundamentally independent
from each other and interact through their published service interfaces only.
They may, of course, require other tools to be installed for them to work. This
is defined in a declarative way through the Equinox extension mechanism and
checked by the platform prior to tool installation. The SDE core also contains
a set of Java 5 annotations, which enable tool developers to define their tools
and functions without writing any XML. As an example, consider Fig. 8: On the
left-hand side, a tool interface with SDE annotations is shown; on the right-hand
side, the corresponding tool view in the SDE.

Fig. 8. SDE tool registration

The API defined within the integration tool service bundle provides access to
all installed tools. A tool may use this API to verify installation of required tools;
search for tools based on meta-data, and invoke functionality as needed. There-
fore, it serves as a discovery service which moderates between the tools. Once
the connection has been made, communication between tools is done directly.



www.manaraa.com

632 P. Mayer and I. Ráth

4 Integrated Tools

This section lists all tools which have been integrated into the SDE platform,
sorted by integrated category.

4.1 Modeling

ArgoUML. ArgoUML is an open source UML modeling tool which includes
support for all standard UML 1.4 diagrams.

http://argouml.tigris.org/

Rational Software Architect. Rational Software Architect is a UML modeling
tool which supports UML2.0 profiles and is built on the Eclipse platform.

http://www.ibm.com/software/awdtools/architect/swarchitect/

MagicDraw. MagicDraw is a platform independent UML modeler with profile
support for UML2.

http://www.magicdraw.com/

4.2 Transformation and Deployment

Hugo/RT. Hugo/RT is a UML model translator for model checking, theorem
proving, and code generation: A UML model containing active classes with state
machines, collaborations, interactions, and OCL constraints can be translated
into the system languages of the real-time model checker UPPAAL, the on-the-
fly model checker SPIN, the system language of the theorem prover KIV, and
into Java and SystemC code.

http://www.pst.informatik.uni-muenchen.de/projekte/hugo/

VIATRA2. The main objective of the VIATRA2 (VIsual Automated model
TRAnsformations) framework is to provide a general-purpose support for the
entire life-cycle of engineering model transformations including the specification,
design, execution, validation and maintenance of transformations within and
between various modeling languages and domains.

http://wiki.eclipse.org/VIATRA2

SOA2WSDL-Transformation. The SOA2WSDL transformation, written in VI-
ATRA2, takes high level UML models and produces WSDL (Web Services De-
scription language) output.

http://viatra.inf.mit.bme.hu/

http://argouml.tigris.org/
http://www.ibm.com/software/awdtools/architect/swarchitect/
http://www.magicdraw.com/
http://www.pst.informatik.uni-muenchen.de/projekte/hugo/
http://wiki.eclipse.org/VIATRA2
http://viatra.inf.mit.bme.hu/


www.manaraa.com

The Sensoria Development Environment 633

SRMC/UML Bridge. The SRMC/UML bridge offers facilities for meta-model
transformation. It translates a subset of UML2 models (Interactions and State
Machines) into an SRMC description for performance evaluation. Results are
reflected back into the UML model.

http://groups.inf.ed.ac.uk/srmc/

UML2PEPA Transformation. The UML2PEPA transformation, written in VI-
ATRA2, takes high level UML models and produces PEPA models used for
analysis in the PEPA/SRMC tool.

http://viatra.inf.mit.bme.hu/

Modes Parser and Browser. The Modes Parser and Browser is a WS-Engineer
plug-in to parse and extract broker requirements from UML2 Modes Models.

http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer

4.3 Analysis

LTSA. LTSA is a verification tool for concurrent systems. It checks that the
specification of a concurrent system satisfies the properties required of its behav-
ior. In addition, LTSA supports specification animation to facilitate interactive
exploration of system behavior.

http://www.doc.ic.ac.uk/ltsa/

WS-Engineer. The LTSA WS-Engineer plug-in is an extension to the LTSA
Eclipse Plug-in which allows service models to be described by translation of the
service process descriptions, and can be used to perform model-based verification
of Web service compositions.

http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/

SRMC Core. SRMC (Sensoria Reference Markovian Calculus) Core provides
support for SRMC, an extension to PEPA. It covers steady-state analysis of the
underlying Markov chain of SRMC descriptions.

http://groups.inf.ed.ac.uk/srmc/

MDD4SOA Protocol Analysis. The MDD4SOA Protocol Analysis Tool verifies
protocol compliance of services modeled in UML4SOA given a protocol state
machine. The verification yields a violation graph in case of an error.

http://www.mdd4soa.eu/

http://groups.inf.ed.ac.uk/srmc/
http://viatra.inf.mit.bme.hu/
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer
http://www.doc.ic.ac.uk/ltsa/
http://www.doc.ic.ac.uk/ltsa/eclipse/wsengineer/
http://groups.inf.ed.ac.uk/srmc/
http://www.mdd4soa.eu/


www.manaraa.com

634 P. Mayer and I. Ráth

SPIN. Spin is a model checker that can be used for the formal verification of
distributed software systems.

http://spinroot.com/

UPPAAL. Uppaal is an integrated tool environment for modeling, validation
and verification of real-time systems modeled as networks of timed automata,
extended with data types (bounded integers, arrays, etc.).

http://www.uppaal.com/

CMC / UMC. CMC and UMC are model checkers and analyzers for systems
defined by interacting UML state charts. Both allow on-the-fly model checking
of abstract behavioral properties in the Socl branching-time state-action based,
parametric temporal logic.

http://fmt.isti.cnr.it/cmc/,http://fmt.isti.cnr.it/umc/

LySa tool. LySa is a static analyzer for security protocols defined in the LYSA
process calculus. The tool provides a LYSA editor and analyzer, the latter of
which will verify properties related to secrecy and authentication.

http://www2.imm.dtu.dk/cs_LySa/lysatool/

4.4 Deployment and Runtime

MDD4SOA Transformers. The MDD4SOA transformers are a set of EMF trans-
formers for converting UML4SOA models into target languages. Supported are
BPEL/WSDL, Java, and Jolie.

http://www.mdd4soa.eu/

UML2AXIS Transformation. The UML2AXIS transformation, written in VIA-
TRA2, takes high level UML models and produces Web service code based on
the Apache Axis Java library.

http://viatra.inf.mit.bme.hu/

Dino Broker. The Dino Broker provides dynamic runtime discovery of services
which are described in OWL and WSDL documents, thus enabling developers
to bind services which correspond to specific criteria.

http://www.cs.ucl.ac.uk/staff/a.mukhija/dino/

5 Tool Applications

The tools listed in the previous section can be combined in various ways to
achieve different transformations and analyzes. Fig. 9 lists, non-exhaustively,
the links between the tools.

http://spinroot.com/ 
http://www.uppaal.com/
http://fmt.isti.cnr.it/cmc/, http://fmt.isti.cnr.it/umc/
http://www2.imm.dtu.dk/cs_LySa/lysatool/
http://www.mdd4soa.eu/
http://viatra.inf.mit.bme.hu/
http://www.cs.ucl.ac.uk/staff/a.mukhija/dino/


www.manaraa.com

The Sensoria Development Environment 635

As examples, we provide three scenarios with different tools to give some
insights into how tools have been chained together within the Sensoria project.
In the following sections, we use four paragraphs to describe each scenario:

– Use Case describes when and why to use a certain tool chain.
– In Tools Involved, we list the tools required to perform the functionality

of the scenario.
– Data Flow shows the individual steps to be executed in the tool chain.
– Finally, Results describes the consequences and benefits of the scenario.

The tool chains may be realized manually, i.e. with the user performing one step
after another and storing the intermediate objects on disk or on the blackboard,
or automatically by employing the JavaScript orchestrator or the graphical
orchestration mechanism.

5.1 Checking and Deploying Dervice Orchestrations

Use Case. Using a model-driven approach for developing software has been ad-
vocated for some time. Sensoria addresses this area with a customized UML
profile for modeling services and service orchestrations. Besides modeling the
orchestration implementation itself, a behavioral protocol can help to assess the
external behavior of the orchestration and used to verify the actual implementa-
tion. Once a service orchestration has been verified, it needs to be transformed
to code in target languages like BPEL or Java to deploy it for execution.

Tools Involved. This tool chain includes a UML modeler with profile support,
like MagicDraw or Rational Software Architect. A protocol analysis tool (part of
MDD4SOA) is used to report on protocol violations. Finally, model transformers
(also part of MDD4SOA) are used to transform the UML specifications to code
in executable languages (for example, BPEL and WSDL) for deployment.

Data Flow. The chain starts with the user who employs a UML modeler to design
both the orchestration implementation and the service protocol. The resulting
diagrams are saved as documents in the XMI format. These files can then be
used by the MDD4SOA Protocol Analyzer, which either reports no protocol
violations or creates a violation trace. This process is repeated until the process
is error-free. Finally, the UML2 models are read by the MDD4SOA Transformers,
which generate the appropriate target code, depending on which language has
been selected by the user.

Results. Chaining tools together in this fashion enables the developer to quickly
react to changes in requirements, as the chain can be run automatically whenever
a change has occurred, either informing the user of newly introduced problems
in the protocol or, if the protocol is valid, with the new implementation in the
selected target language.



www.manaraa.com

636 P. Mayer and I. Ráth

M
ag
ic
D
ra
w

M
od
el
lin
g

H
ug
o/
R
T

Tr
an
sf
or
m
at
io
n

S
P
IN

M
od
el
C
he
ck
in
g

U
P
P
A
A
L

M
od
el
C
he
ck
in
g

Ti
m
ed
A
ut
om
at
a

LT
L

U
M
L
M
od
el

LT
S
A
/W
S
-E
ng
in
ee
r

M
od
el
C
he
ck
in
g

V
IA
TR
A
2

G
en
er
ic
M
od
el
Tr
an
sf
or
m
er

A
rb
itr
ar
y
m
od
el
s

R
at
io
na
lS
of
tw
ar
e
A
rc
hi
te
ct

M
od
el
lin
g

A
rg
oU
M
L

M
od
el
lin
g

M
D
D
4S
O
A

Tr
an
sf
or
m
at
io
n/
D
ep
lo
ym
en
t

S
O
A
2W
S
D
L

Tr
an
sf
or
m
at
io
n/
D
ep
lo
ym
en
t

S
R
M
C
/P
E
P
A

Q
ua
nt
ita
tiv
e
A
na
ly
si
s

B
P
E
L

W
S
D
L

M
S
C
s

U
M
L2
S
R
M
C
/U
M
L2
P
E
P
A

Tr
an
sf
or
m
at
io
n

S
R
M
C
/P
E
P
A

C
M
C
/U
M
C

M
od
el
C
he
ck
in
g

M
od
es
P
ar
se
ra
nd
B
ro
w
se
r

Tr
an
sf
or
m
at
io
n

M
od
es
S
pe
ci
fic
at
io
n D
in
o
B
ro
ke
r

R
un
tim
e
D
is
co
ve
ry

O
W
L-
S

U
M
L2
A
X
IS

Tr
an
sf
or
m
at
io
n

A
xi
s
C
od
e

M
D
D
4S
O
A
P
ro
to
co
lA
na
ly
se
r

A
na
ly
si
s

Fig. 9. Tool chaining in the SDE



www.manaraa.com

The Sensoria Development Environment 637

5.2 Qualitative and Quantitative Analysis

Use Case. Service-oriented software systems are commonly distributed – they
make use of a network to combine various individual software components to
work in coordination to reach a higher-level goal. In general, a SOA system
contains many different threads of execution, which run in parallel and interact
with one another in nontrivial ways. This poses a difficult problem to software
designers, as the interaction of such threads needs to be analyzed in order to
ensure that no undesirable effects (such as deadlocks) occur. Furthermore, it
is not always clear how the system time is spent during runtime. Therefore,
mechanical checkers are needed to verify whether a certain implementation is
free from conditions such as deadlocks, and secondly for assessing the runtime
characteristics of the overall system.

Tools Involved. Again, we employ UML modelers like Rational Software Ar-
chitect or MagicDraw for the modeling of a service-oriented system written in
UML. Based on these models, quantitative analysis as well as qualitative analy-
sis is then performed by the SRMC tool and the WS-Engineer tool, respectively.
While the former is able to deal with UML directly, the latter requires the BPEL
format as input, so we bring in another tool (one of the MDD4SOA transformers)
for converting between UML and BPEL.

Data Flow. The chain starts with the user who employs a UML modeler to
design a model of communicating systems in UML2. The resulting model, in the
format of an UML2 XMI file, can be read directly by the SRMC tool to report
on the distribution of time spent in the various states of the process. Using
the MDD4SOA transformers, the UML2 model is converted to BPEL to serve
as input for WS-Engineer, which is used to verify the required properties (for
example, freeness from dead-locks). Finally, the result of the analysis is shown
to the user: The quantitative analysis can be directly annotated to the original
UML model (or output as graphs), the qualitative analysis – if resulting in an
error trace – is shown as Message Sequence Charts (MSCs) or UML2 sequence
diagrams.

Results. This tool chain provides the user with a “one-click” verification of the
model – instead of requiring the user, as is common in many verification tools, to
activate a translation of service implementations, feed the translation through
a model parser, compile the model, and invoke a verify option on the model
checker. All these single steps are handled by the tool chain and the script used
to combine the two different analyzers. Thus, checking becomes less of a hassle
and will be executed more often, resulting in higher-quality systems.

5.3 Modes-Based Dynamic Runtime Discovery

Use Case. One of the promises of the Service-Oriented Architecture is the ability
to quickly react to changes, for example – on the business level – a change of



www.manaraa.com

638 P. Mayer and I. Ráth

a business partner, or – on a technical level – network connection problems or
server overload. To deal with these problems, the concept of dynamic service
discovery and binding has been introduced, which enables developers to specify,
on an abstract level, the properties and constraints required of certain services
needed by an orchestration. Specification of such properties, the criteria of when
to change the service to be used (specified by “modes”), and testing of the
resulting runtime behavior are non-trivial issues, and tool support is needed to
make such approaches practical.

Tools Involved. The main focus of this tool chain lies on testing of dynamic
service discovery, hence the most important tool is the Dino Broker used for
service discovery. Serving input to Dino is the Modes Parser and Browser Tool
which handles translation of modes from the UML2 models. Dino also requires
WSDL and OWL documents for service specification which can, in part, be
generated by the VIATRA2 SOA2WSDL transformation tool. Again, the initial
mode specification is done in UML2, for which a UML2 modeler is required.

Data Flow. The chain starts with the user who employs a UML modeler to
design a model of a SOA system enhanced with mode specifications and the
required constraints on services. The Modes Parser and Browser Tool is then
used to convert these specifications to input for the Dino Broker. In parallel,
the services to be discovered are deployed to the Dino runtime, either from pre-
existing OWL/WSDL specifications or from those generated by the SOA2WSDL
transformation. Finally, the developer can employ the Dino Broker front-end
which is available through the SDE to test-drive the service discovery, and once
satisfied, use the generated documents for the final implementation.

Results. The ability to generate input for Dino from UML2 and test-driving
the discovery right from within the development environment greatly speeds up
the process of finding the right mode and constraint specifications. Automation
allows writing test cases for the complete process, thus the user may change
the specifications at the beginning of the chain and verify the output stemming
from an actual discovery run with the Dino Broker, thus saving time and effort
in debugging.

6 Conclusion

In this chapter, we have discussed the need for, requirements of, implementation,
and usage of a tool integration platform for the development of service-oriented
software systems, the Sensoria Development Environment (SDE). Based on
a service-oriented architecture itself, the SDE contains tools for modeling and
analyzing service artefacts as well as generating code and supporting services at
runtime, allows remote invocation of tool functionality, and enables composition
of tools by a textual and graphical orchestration mechanism. Furthermore, we
have discussed integrated tools providing support for the development of SOA
software, and have outlined how to use tools in combination on top of the SDE.



www.manaraa.com

The Sensoria Development Environment 639

We believe that thinking of individual development tools as services and in-
cluding SOA features like self-describing services, remote invocation, and or-
chestration into our tooling environment greatly extends the applicability of the
integrated tools. By including transformation tools, we ensure that using analy-
sis tools is possible without understanding the details of the underlying formal
specifications, thus allowing more developers to profit from rigorous verification
of their systems.

The SDE, including the integrated tools, is available for download at our
dedicated tooling website, http://svn.pst.ifi.lmu.de/trac/sct. The web-
site also contains a tutorial for tool integration and videos demonstrating the
SDE in action.

References

1. Eclipse Foundation. Eclipse Equinox - Implementation of the OSGi R4 core frame-
work specification (2009), http://www.eclipse.org/

2. Eclipse Foundation. The Eclipse Open Source Community and Java IDE (2009),
http://eclipse.org/equinox/

3. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall International, Englewood Cliffs (2005)

4. Mayer, P., Ráth, I., Horváth, Á.: Report on the Sensoria Development Environment
- Second Version. Technical report, LMU München (2008)

5. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-Driven Service Orchestra-
tion. In: The 12th IEEE International EDOC Conference (EDOC 2008), Munich,
Germany, pp. 203–212. IEEE Computer Society Press, Los Alamitos (2008)

6. OSGi Alliance. Osgi specification release 4 (March 2008),
http://www.osgi.org/Specifications/

7. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: distributed applications through
software modularization. In: Cerqueira, R., Pasquale, F. (eds.) Middleware 2007.
LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

8. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Ser-
vices Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL,
WS-Reliable Messaging and More. Prentice Hall PTR, Upper Saddle River (2005)

9. Wirsing, M., Bocchi, L., Clark, A., Fiadeiro, J., Gilmore, S., Hölzl, M., Koch, N.,
Mayer, P., Pugliese, R., Schroeder, A.: Sensoria: Engineering for service-oriented
overlay computers. In: Nitto, E.D., Sassen, A.-M., Traverso, P., Zwegers, A. (eds.)
At Your Service: Service-Oriented Computing from an EU Perspective, pp. 159–182.
MIT Press, Cambridge (2009)

http://svn.pst.ifi.lmu.de/trac/sct
http://www.eclipse.org/
http://eclipse.org/equinox/
http://www.osgi.org/Specifications/


www.manaraa.com

Specification and Implementation of
Demonstrators for the Case Studies�

Jannis Elgner1, Stefania Gnesi2, Nora Koch3,4, and Philip Mayer3

1 S & N AG, Germany
jelgner@s-und-n.de

2 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
ISTI–CNR, Pisa, Italy
gnesi@isti.cnr.it

3 Ludwig-Maximilians-Universität München, Germany
{kochn,mayer}@pst.ifi.lmu.de

4 Cirquent GmbH, Germany

Abstract. A main challenge in Sensoria has been the inclusion of case
studies from different industrial and academic application areas, namely
finance, automotive, telecommunications, and university administration.
The case studies, along with a short description of available scenarios,
have already been introduced in Chapter 0-3. In this chapter, we go
into more detail, presenting the (graphical) specifications for selected
scenarios by using the modeling approaches introduced in Sensoria.
Furthermore, we detail the implementation of demonstrators for some of
the case studies.

1 Introduction

The partners of the Sensoria project have used realistic case studies for feeding
and steering the research process according to the expectations of society and
its economy, discussing and communicating ideas among partners and communi-
cating research results to and getting feedback from the research community at
large. These case studies have already been shortly introduced in Chapter 0-3.
Each of the scenarios presented has been employed by different partners with
different requirements, methods, and tools as a test bed for demonstrating the
feasibility and effectiveness of the use of the Sensoria results.

In this chapter, we present some of the scenarios in more detail. We select
three scenarios from the case studies which have been extensively used in the
project with the application of research results and tools. For two of the scenarios,
namely finance and eUniversity, we provide an extended description by using the
graphical modeling languages used or introduced in Sensoria, namely the UML
extensions UML4SOA [3] and the upcoming OMG standard SoaML [4]. For the
automotive case study, we present a demonstrator, i.e., the software resulting
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 640–654, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Specification and Implementation of Demonstrators for the Case Studies 641

from applying the Sensoria development approach to the development of a
SOA system.

The following three sections each present one of the scenarios; starting with
Finance, moving on to Automotive, and finally discussing eUniversity. We con-
clude in Sect. 5.

2 Finance Case Study: Credit Request Scenario

The CreditRequest scenario [1] from the finance domain models the loan approval
workflow of a bank: A customer intends to lend some money, i.e. request a credit.
During the process of approving or disapproving the credit request process, the
customer must provide some input (like balances and securities), and the bank
must either automatically or via human intervention approve or decline the
request. A risk rating determines most of the decisions during this process, for
example, whether a credit request is approved at all, and whether it can be
approved automatically.

This scenario has been modeled in Sensoria with a combination of SoaML
and UML4SOA elements, and has been implemented using model transforma-
tions to BPEL and WSDL code. In this section, we introduce parts of the model
for the CreditRequest scenario.

Fig. 1 shows the static system structure of the scenario. The main process,
shown in the middle and implemented as an orchestration, is the CreditRequest,
which provides its services through the CreditManagementService port. Rating
is another orchestration which the CreditRequest participant uses to calculate
the rating. The services of Rating itself are provided through the RatingService
port (left of the Rating participant).

The other participants are atomic services performing tasks like calculating
ratings, storing data, and interacting with the user.

– The Portal services, both provider and consumer, are services concerned
with user interaction. They are implemented as a set of web pages which
handle communication with the customer and the bank employees through
different frontends.

– The CustomerManagement service provides an interface to the customer
database for identifying customers.

– For analysing input data from the customer, the two services SecurityAnal-
ysis and BalanceAnalysis are used.

– Finally, the RatingCalculator service is used to calculate the actual risk
rating.

The entire workflow implemented in the CreditRequest and Rating orchestrations
has been defined with the help of the UML4SOA UML extension, and used as
input to verification tools and for generating code. Due to the size of the process
it is not possible to show every part here; we therefore have to content ourself
with the overview of the behavior of the CreditRequest process as shown in Fig. 2.



www.manaraa.com

642 J. Elgner et al.

Fig. 1. The Static Structure of the CreditRequestScenario



www.manaraa.com

Specification and Implementation of Demonstrators for the Case Studies 643

Fig. 2. The behavioral specification of the CreditRequest scenario



www.manaraa.com

644 J. Elgner et al.

The process is further subdivided into individual service activities which we
shall describe now.

– The Initialize service activity is used to bootstrap the service. A customer
logs into the website, which leads to a call from the portal to the CreditRe-
quest orchestration. The credentials of the customer are verified and, in the
positive case, he is logged in to the system.

– We are then entering a loop in which a credit may be requested more than
once by the same user with a changing amount of money or different secu-
rities and balances. The loop contains four activities: Creation, HandleBal-
ance&SecurityData, RatingCalculation, and Decision. During the execution,
an event may occur (Cancel), which aborts the process. Also, an exception
might be thrown which is handled in MainFault and also leads to termination
of the process.

– The Creation scope deals with initializing the workflow: A request for a new
credit is received and the data initialized.

– HandleBalance&SecurityData handles the upload and storage of the balances
and securities of the user. The balances are stored in the BalanceService
and the securities are stored in the SecurityService for later retrieval by the
Rating orchestration.

– In RatingCalculation, the second orchestration Rating is invoked to provide
the main workflow with a risk rating, identifying the risk involved with the
requested credit. This rating implies whether the request can be accepted
automatically. If not, the rating implies whether the decision can be made
by a clerk or has to be escalated to a supervisor.

– The Decision activity handles the process of deciding first whether the bank
accepts the credit request, and second allows the customer to review, accept,
or reject the offer. The first part, if not done automatically, involves a call
to the portal which enables the corresponding bank employee to review the
credit request and give his input. The second also involves the portal; this
time the customer is notified and can review an offer on the website.

– If the customer has accepted an offer, or is no longer interested, the Finalize
activity cleans up and ends the process.

The CreditRequest scenario has been used as input for the formal verification
tools in Sensoria. This is described in detail in Chapter 7-4.

3 Automotive Case Study: On Road Assistance

In the OnRoadAssistance scenario from the automotive case study [2,5] the ve-
hicle reacts to a failure in the car engine. Such an event triggers the in-vehicle
diagnostic system to perform an analysis of the sensor values. The diagnostic
system reports e.g. a problem with the pressure in one cylinder head, indicating
that the driver will not be able to reach the planned destination. The necessary
reactions to this report are handled in a service-oriented way by means of an
orchestration.



www.manaraa.com

Specification and Implementation of Demonstrators for the Case Studies 645

Like the finance scenario from the last section, the OnRoadAssistance scenario
has been modeled with a combination of the SoaML and UML4SOA extensions
to the UML. Fig. 3 shows the orchestration of services for the OnRoadAssistance
participant. See Chapter 1-1 for further details of both the static structure and
the dynamic behavior of this scenario, which we will not repeat here. Instead,
we discuss the implementation of a demonstrator for the scenario on the tech-
nical basis of web services, which is achieved by means of automated model
transformations based on other results of the Sensoria project.

The main goal of the automotive demonstrator [5] is to show the power of the
Sensoria development approach based on the application of model-driven ar-
chitecture (MDA) principles in the area of service-oriented computing. Following
the model-driven approach, an implementation is created by the construction of
models and model transformations. The demonstrator shows how this model-
driven development process which automatically generates and deploys a service
based on a model of the composition of services works in practice.

The automotive demonstrator for the OnRoadAssistance scenario is built as a
web application: On the client side, only a fully JavaScript enabled web browser
is needed. The business logic, specified as a service orchestration, is deployed
on the server side. On the server, the application uses the following three tier
architecture (see also Fig. 4).

Presentation Layer. The ViewManager in the presentation layer is a compo-
nent developed to parse the client request, to call the service orchestration and
generate web pages for the client.

Business Logic Layer. The business logic is located in the second layer. The main
component is a BPEL process which is in charge of the service orchestration.
Several local or remote web services can be called by the BPEL process. A special
service is used for the invocation of a broker for dynamically identifying partner
services (we use the broker Dino, which has been developed within Sensoria).

Database Layer. A database lies in the third layer, i.e., the persistence layer.
The database contains all data needed by the services.

The Automotive Demonstrator implements the OnRoadAssistance scenario [2].
In order to keep the scenario simple, the demonstrator is limited to localizing
garage and rental car station services, but this can be easily extended e.g. to
identify as well a towing service, providing the GPS data of the stranded vehicle
in case the vehicle is no longer drivable.

The services involved in the implementation of the OnRoadAssistance are the
following:

– A Position Service providing the GPS data of the stranded vehicle
– A Bank Service for charging a credit card
– Garage Services for localizing and selecting garages
– Rental Car Services for localizing and selecting car rental stations



www.manaraa.com

646 J. Elgner et al.

<<serviceActivity>>
Main

<<serviceActivity>>
findAssistance

<<send&receive>>
selectBestRentCarStation

rentalCarList

rentalCarStationselectRentalCarService

<<send&receive>>
findGarages

carLocation

garageList

f indGaragesService <<send&receive>>
findRentalCarStations

carLocation

rentalCarListf indRentalCarStationsService

<<send&receive>>
selectBestGarage

garageList
garage

selectGarageService

<<raiseException>>
noAssistancecancel

<<serviceActivity>>
cancelation

<<send>>
cancelCreditCharge

creditChargeData

creditChargeService

<<serviceActivity>>

<<send&receive>>
chargeCredit

creditChargeData

userData creditChargeService

<<send&receive>>
getPosition

carLocation

userData

locationService

<<serviceActivity>>
 : NoAssistance

cancel

<<receive>>
startAssistant() client

 [else]

 [garageList.size == 0 or rentalCarList.size == 0]

<<compensation>>

Fig. 3. UML4SOA activity diagram showing the OnRoadAssistance participant



www.manaraa.com

Specification and Implementation of Demonstrators for the Case Studies 647

Fig. 4. Architecture of the automotive demonstrator

For demonstration purposes, two models of the same process are built, showing
the benefits of the model-driven approach by later switching between them.

The first model is built as the sequential orchestration of the required services
for a) determining the car position, b) finding garages in the vicinity of the car
and selecting the most convenient garage, and c) finding rental car stations
nearby and selecting one. The orchestration process finishes with the credit card
charge service. Using a chain of model transformations, the model is transformed
to an executable service implemented in BPEL and deployed to an appropriate
application server. Model transformations and deployment are performed in a
fully automatic way.

The automotive demonstrator is designed in such a way that the invocation of
each service is visualized in a web browser and expects a user interaction, almost
all just a click on a continue button. In fact, the position of the car, asset of
garages and car rentals nearby the car position, and then the selected garage and
car rental station are visualized using the Google maps API (see Fig. 5). For the
implementation of the interactions and the visualisation, dynamically generated
web pages are associated to each service, and the BPEL process is enriched with
additional interactive features by a complementary model transformation.



www.manaraa.com

648 J. Elgner et al.

Fig. 5. Screenshot of the Automotive Demonstrator

The power of the model-driven development approach is shown by a second
run of the generation that consists of changing the orchestration model shown
in Fig. 3. The changes are twofold: First, the credit charge service is invoked at
the beginning of the process instead of at the end, and second, the localisation
of garages and rental car stations as well as the selection of the most appropriate
garage and rental car station are parallelized (see Fig. 5).

The process of generating the automotive demonstrator was implemented us-
ing the Sensoria Development Environment (SDE), which is an Eclipse-based
framework for the integration and use of the tools developed in the project for
the analysis and development of service-oriented software. The model transfor-
mations and deployment are performed automatically with the same tool chain
that was implemented for this purpose in the SDE (see Fig. 6). For further details
on SDE the reader is referred to Chapter 6-5.

The basic transformation from SoaML and UML4SOA to BPEL and WSDL
is performed by using a first transformer from the MDD4SOA suite [3]. Addi-
tional model-to-model and model-to-code transformers of MDD4SOA have been
introduced to handle user interactions and automatic deployment of a web appli-
cation onto a web application server. The first additional model transformation
is needed to provide BPEL and WSDL code that is executable by a specific
BPEL engine (in our case, ActiveBPEL). The second model transformation is
needed to allow user interactions and to visualize results step by step during the



www.manaraa.com

Specification and Implementation of Demonstrators for the Case Studies 649

Fig. 6. SDE tool chain for the model-driven development

demonstration. The third one is used to deploy the resulting web application.
Note that the model transformations are independent of the scenario, even more
they are independent of the BPEL/WSDL application, i.e. they are generic and
reusable for other services modeled as orchestration of other services.

4 eUniversity Case Study: Student Application

In the StudentApplication scenario of the eUniversity case study, students may
apply for a certain course of studies at a university online, providing the nec-
essary documents and certificates via a website. The functionality for handling
applications is provided by service orchestrations which make use of a number
of atomic services like the student office service, an admission checking service,
and a service for the upload of documents to perform their task.

In the following, we detail the model of the StudentApplication scenario.
Again, we employ the UML modeling language with the additional profiles
SoaML [4] and UML4SOA [3] presented in Chapter 1-1. Like the other sce-
narios presented in the last sections, the student application scenario has been



www.manaraa.com

650 J. Elgner et al.

used as input for verification tools in Sensoria and has been implemented on
the basis of Web Service technology.

The components of the eUniversity case study which are relevant for the stu-
dent application scenario are shown in Fig. 7. The figure shows the overall com-
position of the SOA system modeled as a UML class diagram using SoaML model
elements. Each of our two orchestrations offers or requires multiple services: The
ApplicationCreator is invoked by the client for the creation of a new application,
but invokes several other services as well, such as the ValidationService and the
StatusService. The objective of the ApplicationValidator is to verify whether the
application follows the policies of the university. The actual implementation of
the two orchestrations further refines the behaviour of this scenario. The other
services, including the client service, are atomic and implemented in a standard
programming language (for example, in Java).

Overall, the scenario works as follows: A student uses the website to apply
for a certain course of studies. The website (not shown) contacts the Applica-
tionCreator through its creationService service port. The ApplicationCreator, in
turn, calls other entities through the uploadService, the officeService, and the
statusService ports. Last but not least, it also contacts the ApplicationValidator
through the validationService port for checking the student data and setting
the status of the application. Being implemented as an orchestration itself, the
ApplicationValidator works with other entities too – through the officeService
(again), the admissionService, and finally the decisionService ports – to carry
out the validation task. After a review of the application by the various services,
the student is notified whether he was accepted at the university.

The two processes ApplicationCreator and ApplicationValidator from Fig. 7
are modeled as UML4SOA orchestrations. The first one is shown in Fig. 8. It
illustrates how the creator interacts with its partners through ports. It starts with
a receipt of the call newApplication through the creationService service port,
receiving the application. After the receipt of this call, the StatusService and
the UploadService are initialized, and the initial call is returned. Completing the
initialisation phase, the startValidation call is sent to the ApplicationValidator
to request the start of the validation. After having done so, the process waits for
another call from the client. The student will either press the button to complete
the application, or another one to cancel it.

If a cancelApplication call is received, the validation service is instructed to
cancel the validation, and the status service is notified that the application has
been canceled. If, on the other hand, the student chose to complete the applica-
tion, the uploaded documents are retrieved from the uploadService and a final
validation is requested from the ApplicationValidator, using the completeValida-
tion call. If the result is okay, the student is registered at the StudentOffice with
registerStudent. In any case, the initial call is replied to.

Besides the normal flow of the activity, the diagram also shows a second
structured activity node – a compensation handler. The actions defined within
CompensationHandler are executed if the main activity has been completed suc-
cessfully, but needs to be undone. This functionality can be triggered externally



www.manaraa.com

Specification and Implementation of Demonstrators for the Case Studies 651

Fig. 7. The eUniversity StudentApplication scenario



www.manaraa.com

652 J. Elgner et al.

Fig. 8. UML4SOA activity diagram showing the ApplicationCreator



www.manaraa.com

Specification and Implementation of Demonstrators for the Case Studies 653

after the orchestration has been completed. If the application has been com-
pleted successfully before, the student is removed from the list of applicants by
using a deregisterStudent call on the OfficeService.

Fig. 9. UML4SOA activity diagram showing the ApplicationValidator

The second activity diagram, modeling the ApplicationValidator, is shown
in Fig. 9. This service acts as supplier to the creation service, starting with
the receipt of the startValidation call from the ApplicationCreator through the
validationService port. Afterwards, both the OfficeService and the Admission-
Service are contacted simultaneously to check admission of the student, and to
check the student data. Subsequently, the process waits for the completeValida-
tion call from the ApplicationCreator. After it is received, all the information
gathered so far is checked with the help of the DecisionService, and the result is
returned to the ApplicationCreator.



www.manaraa.com

654 J. Elgner et al.

5 Conclusions

This chapter has discussed three of the scenarios of the Sensoria case studies
in detail, presenting graphical models of structure and behavior as well as the
implementation of a demonstrator.

Firstly, the CreditRequest scenario of the Finance case study has been dis-
cussed. This scenario has been used as a test bed for demonstrating the feasibil-
ity and effectiveness of the use of the Sensoria process calculi and some of their
related analysis techniques and tools. Moreover, it has been used to provide an
effective implementation of (part of) the Sensoria approach, specifically mod-
eling and formal analysis of service-oriented software based on mathematically
founded techniques. Chapter 7-4 further details the use of formal analysis tools
on the credit request scenario.

The Automotive case study scenarios and in particular, the OnRoadAssis-
tance scenario, have been widely used by the project partners to illustrate the
approaches they implemented with easily understandable examples. The demon-
strator explained in this chapter has shown how the Sensoria techniques can
be employed for a reaching a fully automated, model-driven approach to SOA
development.

Finally, the eUniversity case study has taken concepts from familiar ground
for researchers, providing an ideal playground for testing new approaches, meth-
ods, and tools for the support of service-oriented architectures. The StudentAp-
plication scenario which has been presented in detail in the previous section
has been used for qualitative and quantitative analysis integrated with model-
driven development and the generation of a running system based on web service
technology.

All three case study scenarios are available for download from the Sensoria

web site (http://www.sensoria-ist.eu).

References

1. Alessandrini, M., Dost, D.: Finance Case Study: Requirements, Specification and
Modelling of Selected Scenarios (D8.3.a). Technical report, S&N AG (2007)

2. Koch, N., Berndl, D.: Requirements Modelling and Analysis of Selected Scenarios:
Automotive Case Study (D8.2.a). Technical report, FAST GmbH (2007)

3. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-Driven Service Orchestra-
tion. In: The 12th IEEE International EDOC Conference (EDOC 2008), Munich,
Germany, pp. 203–212. IEEE Computer Society Press, Los Alamitos (2008)

4. OMG. Service Oriented Architecture Modelling Language Beta 1 (2009),
http://www.soaml.org/

5. Xie, R., Koch, N.: Automotive CASE Study: Demonstrator. Technical report,
Cirquent GmbH (2009)

http://www.sensoria-ist.eu
http://www.soaml.org/


www.manaraa.com

Sensoria Results Applied to the Case Studies�

Maurice H. ter Beek

ISTI–CNR, Pisa, Italy
terbeek@isti.cnr.it

Abstract. In this chapter we provide an overview of the application
of the results obtained in Sensoria (i.e., techniques, methods and lan-
guages developed in the technical work packages WP1-WP7) to case stu-
dies from the Automotive, eUniversity, Finance and Telecommunication
domains (developed in work package WP8).

Introduction

We will not describe the case studies in this chapter, since they are introduced
in detail in Chapters 0-3 and 7-1. Likewise we will not describe all details of the
various techniques, methods and languages, which can be found in other chapters
of this book. The scope of this chapter is rather to emphasize the central role of
the case studies in feeding and steering the research in Sensoria. This is done
by providing a concise overview of the exploitation of Sensoria results in the
case studies. Chapter 7-4 moreover provides an in-depth view of the Sensoria

approach applied to the Finance case study.
This chapter is structured as follows. After this introduction, we summarize

a series of contributions that report on applications of techniques, methods and
languages of WP1-WP7 to the case studies.1 We describe the experience of
applying a particular technique, method or language to a case study scenario,
but not the technique, method or language itself, which are presented in the other
chapters. As such, the goal of this chapter is to answer the following questions:

Aim: besides validating the technique, method or language against require-
ments of the case study, was there a specific aim that triggered the use of
the case study?

Experience: which were the problems (if any) faced when applying the tech-
nique, method or language to the case study and what are the results that
have been obtained?

Benefits: what have been the advantages (from the engineering, scientific or
business point of view) of applying the technique, method or language to
the case study?

Feedback: did the application of the technique, method or language to the case
study lead to improvements of that technique, method or language?

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.
1 We include applications to the Bowling Robot demonstration described in Chapter 7-3.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 655–677, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

656 M.H. ter Beek

The contributions are organized according to the three themes of Sensoria.
The first theme deals with linguistic primitives for services, their interaction

and composition. These languages are developed on two levels of abstraction:
an architectural level (e.g., UML4SOA, SRML) and a programming level (e.g.,
COWS, SOCK/Jolie, CaSPiS). This theme constitutes the work packages WP1,
WP2 and WP5.

The second theme, constituting the work packages WP3 and WP4, deals with
type systems (e.g., λreq ), logics (e.g., SocL, SoSL/MoSL), and extensions of the
process calculi developed in Theme 1 (e.g., MarCaSPiS, sCOWS) in order to
develop verification techniques (e.g., CMC-UMC, PEPA software toolkit) for
the analysis of behavioral, performance and QoS properties of services.

The third theme, finally, deals with various engineering aspects of services:
model-driven development (e.g., MDD4SOA, SDE, VIATRA2), deployment (e.g.,
Modes, Dino, JCaSPiS, Model transformations for deployment) and reengineer-
ing (e.g., graph transformations). This theme constitutes the work packages
WP6 and WP7.

The chapter concludes with a synthetic overview of the case studies to which
the Sensoria techniques, methods and languages have been applied, followed
by more detailed analytic overviews of the specific experience/benefits of these
applications, organized by theme.

1 Linguistic Primitives

The research in Theme 1 focuses on the development of a generalized concept
of service for global computers through the introduction of novel semantically
well-founded modeling and programming primitives for services.

1.1 Architectural Level

The UML2 profile UML4SOA is an implementation- and platform independent
means of modeling service-oriented systems, in particular service interactions
and orchestrations . It is described in detail in Chapter 1-1. To test its useful-
ness in practice, all case studies have been described with UML4SOA, and the
resulting diagrams have often been used as the starting point for analyzing the
case studies with formal verification frameworks (see Sect. 2). This has led to
several improvements, among which shortcuts for SOC patterns and specific sup-
port for the soaML profile (created by an OMG task force), which allows the
modeling of services, provided and required ports, interfaces, and message types
in addition to the behavioral specifications in UML4SOA. Moreover, the need
for data handling within UML4SOA diagrams was identified, to allow creation,
manipulation, and sending/receiving of UML-typed data to and from partners.
Finally, the diagrams created for the case studies became quite large, which has
led to the inclusion of subscoping in UML4SOA as a means to swap out parts
of orchestration processes. The profile has been integrated in a model-driven
development process described in Sect. 3.



www.manaraa.com

Sensoria Results Applied to the Case Studies 657

The Sensoria Reference Modeling Language (SRML) offers primitives for
modeling business services and activities , in which interactions are supported
through interfaces. SRML supports a methodological approach that includes
the use of the UMC model checker for qualitative analysis and of the Markovian
process algebra PEPA for quantitative analysis of timing properties (see Sect. 2).
An advantage of SRML that modeling is done at a high level of abstraction,
where one can assume that the basic mechanisms of SOAs, like sessions and
service discovery/binding, are provided by the middleware and, therefore, need
not be part of the models. SRML is described in detail in Chapter 1-2. SRML’s
primitives and interaction protocols have been validated by modeling scenarios
from the Automotive, Finance and Telecommunications case studies [1,2,3,4]. Its
application to these case studies also served to validate SRML’s three-layered
approach (a service layer in between a top and a bottom layer) and the way to
define SLAs. The experience with modeling nontrivial interaction protocols has
resulted in the addition of key parameters to interactions. The application to
the Finance case study served to validate the extension of SRML with timing
aspects and the use of PEPA together with SRML to analyze timing properties.

The Service-Targeted Policy-Oriented WorkfLow Approach (StPowla) is a
workflow-based approach to business process modeling integrating a simple
graphical notation, the policy language Appel and the SOA. It is described in
detail in Chapter 1-3. To exemplify the approach, StPowla has been applied to
a scenario from the Finance case study [5], using UML4SOA to model the work-
flow. The details of the business process are expressed as compositions of policies
written in Appel. Conflicts can be avoided by the analysis techniques of [6,7] (see
Sect. 2). An improvement that is the result of specifying this scenario in StPowla
is that default templates for the policies are now automatically derived from the
workflow, ready to be filled in by the business analyst and converted by the
policy server. StPowla has also been applied to the Telecommunications case
study [8], in order to assess its impact on the design of business processes.

1.2 Programming Level

Among the core calculi developed in Sensoria and described in Part 2, COWS,
SOCK, (Mar)CaSPiS and λreq have been applied to the Automotive and Finance
case studies and CC has been applied to the Finance case study.

The Calculus for Orchestration of Web Services (COWS) is a modeling
notation for all relevant phases of the life cycle of service-oriented applications,
among which publication, discovery, SLA negotiation and orchestration. Besides
service interactions and compositions, important aspects like fault and compen-
sation handling can be modeled in COWS. Extensions moreover allow timed
activities, constraints and stochastic reasoning. Application to the case studies
has demonstrated the feasibility of modeling service-oriented applications with
the specific mechanisms and primitives of COWS [9,10,11]. It has moreover trig-
gered the development of an automatic translation from UML4SOA diagrams
into COWS and that of COWS-based verification tools (see Sect. 2). The credit
request scenario of the Finance case study has also been modeled in sCOWS (see



www.manaraa.com

658 M.H. ter Beek

Chapter 5-5), which is a stochastic extension of COWS [12], allowing quantita-
tive analyses with its related tools (see Sect. 2). In the tradition of stochastic
process calculi, the main syntactic difference from COWS is that in sCOWS ba-
sic actions are associated with a random variable expressing their rates. Other
differences (i.e., the use of service identifiers versus replication, and the adoption
of a labeled semantics versus a reduction semantics) are ascribed to meet some
technical requirements for the applicability of Markovian techniques.

The Service-Oriented Computing Kernel (SOCK) is a calculus that closely
follows recent technologies, with message routing based on correlation sets and
request-response service invocations in WSDL style as primitives. SOCK can
therefore easily be implemented on top of common service platforms. This is ex-
ploited in the Java Orchestration Language Interpreter Engine Jolie [13], whose
properly extended semantics coincide with SOCK. The Automotive case study
has been modeled with SOCK and implemented in Jolie [14], to validate SOCK’s
primitives and, in particular, its extension to model faults and compensations.
This was needed to verify in practice its innovative dynamic handler installation
and automatic fault notification, which has led to improved handlers [15].

The service-oriented architecture of the credit request scenario from the Fi-
nance case study has been fully implemented in Jolie [16], with the aim of show-
ing that Jolie is a mature technology for developing distributed applications
by using a fully implemented service-oriented programming paradigm. In Jolie
everything is a service. Services can be embedded and aggregated to obtain com-
plex services. Hence, designing a service-oriented architecture in Jolie is simple
because a programmer is forced to develop only services. The application to the
Finance case study has led to the discovery of a new service-oriented architectural
pattern, called SoS (Service of Services), in which a service can be considered
a proprietary resource of a client rather than of a session. New service-oriented
architectural patterns discovered in Jolie are described in detail in [17].

The Calculus of Services with Pipelines and Sessions (CaSPiS) is a calculus for
service-oriented applications based on the notions of sessions and of pipelines .
A session corresponds to a private channel, instantiated upon service invocation,
that binds the caller and the callee. Pipelines are used to manage dataflow among
sessions. CaSPiS also provides linguistic primitives for handling programmed
session closures. CaSPiS is described in detail in Chapter 2-1, which also contains
a CaSPiS model of a significant fragment of the credit request scenario from the
Finance case study that was used to test the effectiveness of the technique against
a concrete and nontrivial example. The credit request scenario and the Bowling
Robot case study have also been modeled with MarCaSPiS (see Chapters 5-5
and 7-3), which is a Markovian extension of CaSPiS (see Chapter 2-1), allowing
the automatic analysis with its related stochastic logic (see Sect. 2).

The Conversation Calculus (CC) is a minimal typed model for expressing and
analyzing interaction in service-oriented systems. It is based on a novel notion of
conversation which extends the notion of session in a novel direction, allowing,
in particular, the specification and analysis of dynamically established service
collaborations between multiple parties, which is important to support features



www.manaraa.com

Sensoria Results Applied to the Case Studies 659

such as dynamic discovery of services. CC is described in [18] and in Chapter 2-1.
Extensions to CC considering exception handling techniques have been studied,
showing CC is able to embed compensable transactions (see Chapter 3-3). The
credit request scenario from the Finance case study has been modeled and typed
in CC, thus allowing to verify key properties of the system such as conversation
fidelity, progress and choreography conformance (see Sect. 2).

λreq is a core functional calculus for services and service orchestration. It is
described in detail in Chapter 2-4. λreq features primitives for selecting and in-
voking services that respect given behavioral requirements (call-by-contract).
Services are modeled as functions with side effects representing the action of
accessing security-critical resources. Security policies are arbitrary safety prop-
erties on program executions. A key point is that security policies are applied
within a given scope, so-called local policies. The design methodology has been
applied to the on road assistance scenario from the Automotive case study and
to the Finance case study [19,20,21], focusing, respectively, on the design of the
workflow of the service orchestration and taking into account the specific driver
policies and security service contracts and on policies for resource usage.

CaPiTo is a process calculus for modeling service-oriented applications at both
the abstract and the concrete level, thus achieving a certain level of abstrac-
tion without being overwhelmed by the underlying implementation details, but
respecting the concrete industrial standards used for implementing the service-
oriented applications. It is described in detail in Chapter 4-1. A scenario from
the Finance case study has been modeled by CaPiTo [22], showing that CaPiTo
is powerful enough to model service-oriented applications, in particular when
cryptographic protocols are used to ensure security. It moreover allows the ap-
plication of the protocol analysis tool LySa to verify the case study (see Sect. 2).

The Sensoria Reference Markovian Calculus (SRMC) is a stochastic process
calculus which explicitly represents uncertainties about system configuration in
addition to the controlled randomness of an underlying stochastic process [23].
Uncertainty in SOC is understood as different service instances having differ-
ent performance characteristics due to the inherent heterogeneity of large-scale
distributed systems. The expressivity of SRMC was tested by modeling the e-
University case study [24] and a novel analysis approach was created to allow
precise quantitative statements about such models (see Sect. 2).

The cc-pi calculus is a constraint-based language that supports dynamic selec-
tion of services by allowing to specify QoS negotiations among service providers
and requesters. It combines basic operations of concurrent constraint program-
ming with a symmetric, synchronous mechanism of interaction à la pi-calculus.
Chapter 3-1 presents its key features. The cc-pi calculus has been applied to
the Telecommunication case study for specifying QoS policies and for enforcing
them at execution time [25]. In Chapter 3-1, a variant of the cc-pi calculus that
features a choice operator whose branches have a priority is proposed, and the
credit request scenario from the Finance case study has been modeled in cc-pi,
thus allowing for a model of QoS negotiations in which the partners involved
have a given order of preference between their possible alternatives.



www.manaraa.com

660 M.H. ter Beek

Architectural Design Rewriting (ADR) is a term-rewriting and graph-based
approach to style-consistent design and reconfiguration of software architectures.
It is described in detail in Chapters 1-4 and 3-5. ADR has been applied to sce-
narios from the Automotive case study [26], to disambiguate the informal spec-
ifications of architectural issues by formally modeling architectural constraints
and reconfigurations. This has led to an extension of the approach, separating
term-rewriting techniques for reconfiguration from those for ordinary behavior,
and to specific mechanisms to deal with certain architectural constraints.

A logical specification framework based on institutions allows for declarative
specifications and modeling of service-oriented architectures. These logics have
been applied to the course selection scenario from the eUniversity case study
to validate the approach [27]. This has shown that it is useful to separate the
description of the behavior of individual services from that of their choreography,
which has led to two different logical systems (a local and a global one) formalized
as institutions.

2 Qualitative and Quantitative Analysis

The research in Theme 2 focuses on the development of mathematical analysis
and verification techniques and tools for system behavior and QoS properties.

2.1 Qualitative Analysis

StPowla’s policy language Appel has been applied to the Automotive and Fi-
nance case studies. In [6], policies for the on road assistance scenario from the
Automotive case study have been defined by liveness formulae in a distributed
temporal logic and conflicts detected by (semi-) automatic theorem proving.
This application has required an extension of the semantics of Appel, which was
originally defined only for the non-distributed fragment. In [7], it is shown how
to use UMC for the conflict detection of policies in a scenario from the Finance
case study expressed in UML. This application has required the definition of a
correspondence between Appel policies and UML state machines.

CMC and UMC are two prototypical instantiations of a common logical ver-
ification framework for the analysis of functional properties of service-oriented
systems, as described in detail in Chapters 4-2 and 4-3. They only differ with
respect to the underlying computational models, which are built from COWS
specifications in the case of CMC and from UML statecharts in the case of UMC.
The CMC-UMC framework has been used to analyse scenarios from the Automo-
tive, Finance and Telecommunications case studies [9,10,11,28,29,30,31,32] and
to the Bowling Robot case study (see Chapter 7-3). This was done by model
checking behavioral properties expressed in either the action- and state-based
branching-time temporal logic UCTL or its service-oriented specialization SocL,
for which a set of patterns of service properties was defined. These applications
to the case studies have led to a fine-tuning of both the logics and the model-
checking approach.



www.manaraa.com

Sensoria Results Applied to the Case Studies 661

UMC has been integrated in the SRML methodology (see Sect. 1), allowing the
model checking of SRML specifications of service compositions based on typical
service interaction patterns encoded with UML statecharts [33]. Furthermore,
confidentiality properties have been verified for the systems modeled in COWS
(see Sect. 1) by using its type system, thus showing the feasibility also of type
checking. The obtained feedback has steered the development of frameworks
allowing service designers to specify service-oriented applications in UML4SOA
diagrams and, through an automated translation into either COWS or UML
statecharts, to analyse them by means of the CMC-UMC verification framework.

The Verification ENvironment for UML models of Services (VENUS) tool
automatically translates UML4SOA models of services and natural language
statements of service properties into COWS terms and SocL formulae and then
checks them using CMC, possibly providing counterexamples. VENUS is de-
scribed in detail in Chapter 7-4. It has been explicitly developed to shepherd
the (non-expert) users in writing the behavioral service properties they want to
verify. It has been applied to the credit request scenario from the Finance case
study in Chapter 7-4.

Both the type system for CaSPiS, developed in [34], and the Control Flow
Analysis for CaSPiS, developed in [35], have been applied to the credit request
scenario from the Finance case study. The type system aims at statically checking
the client progress property. This property states that a client-service interac-
tion will not deadlock until the client completes its protocol. The Control Flow
Analysis aims instead at detecting and preventing certain misuses at the service
application logic level. A CaSPiS model of the credit request scenario is reported
in Chapter 2-1. Both static techniques and their applications to the scenario are
described in Chapter 2-3.

The static analysis techniques developed for CC, described in [18] and in
Chapter 2-3, single out systems where multiple parties interacting in a conversa-
tion follow the prescribed protocols of interaction, even when some of them have
dynamically joined the conversation, and systems that are free from deadlocks,
even when participants are simultaneously involved in several (even dynamically
acquired) conversations. Using the credit request scenario from the Finance case
study modeled and typed in CC (see Sect. 1), it has been proven that the multi-
party interaction in the credit request system follows well-defined protocols of
interaction and is free from deadlocks (see Chapters 2-1 and 2-3).

The chorSLMC tool has been developed to support the verification of choreog-
raphy conformance by translating CC specifications in a dialect of the π-Calculus
and WS-CDL-like choreography descriptions in dynamic spatial logic formulae,
which then allows the use of the Spatial Logic Model Checker SLMC [36] to check
a system’s conformance to the given choreography, among other properties. This
is described in detail in Chapter 4-3. The credit request system from the Finance
case study has been checked to conform to the prescribed choreography using
the chorSLMC tool, based on the CC implementation presented in Chapter 2-1
and on the Conversation Types shown in Chapter 2-3 (see Sect. 1).



www.manaraa.com

662 M.H. ter Beek

The protocol analysis tool LySa [37] has been applied to the CaPiTo model
of a scenario from the Finance case study [22] (see Sect. 1 and Chapter 4-1).
This analysis suggests that the authentication property holds: Once the decision
has been made as to whether the request has to be validated by the service, it
cannot be tricked into being processed by the wrong one. The analysis moreover
suggests that no sensitive data is leaked to the attacker, hence confidentiality
holds as well. A number of further static analyses have been applied to process-
algebraic models of the Automotive case study [38,39,40], with the aim of val-
idating privacy-related properties, correct service delivery and proper message
correlation, respectively.

Event-based Service Coordination (ESC) is a middleware supporting the de-
sign and implementation of service coordination policies (both orchestration and
choreography). A distinguishing feature of ESC is the facility to manage long-
running transactions . At the abstract level, the middleware takes the form of
the Signal Calculus (SC), an asynchronous process calculus where service inter-
actions are managed by issuing and reacting to suitable (multicast) events. The
SC-ESC framework provides a variety of techniques that are mathematically rig-
orous and pragmatically useful, and which enable the implementation of SOC
systems. The framework is described in detail in Chapter 3-4. Scenarios from
the Automotive and Finance case studies have been specified and implemented
in the SC-ESC framework [41,42,43,44,45]. The management of the case studies
has allowed to experiment, evaluate and reason about long-running transactions.

Open Consume-Produce-Read (OCPR) nets are a type of Petri nets that can
model the behavior of OWL-S web services through a direct mapping [46]. A
compositional notion of equivalence between web services represented as OCPR
nets has been applied to several scenarios from the Automotive and Finance
case studies [46,47]. It has been employed for checking whether or not a service
specification is equivalent to a service implementation, and whether or not one
(sub)service may replace another (sub)service without altering the behavior of
the whole application. The need to address the asymmetry of the matching of
services (i.e., to check whether a (composition of) service(s) matches a query that
specifies the behavior of the desired service (composition) to be found) triggered
the introduction of simulation, thus taking into account the chance of satisfying
a query with an overspecified service.

The LTSA WS-Engineer tool provides support for a model-based approach to
verifying compositions of service architectures, behavior and deployment config-
urations. The tool supports verification of properties created from design spec-
ifications and implementation models to analyze correctness and consistency of
service compositions. LTSA WS-Engineer supports verification of service com-
positions with design (in the form of MSCs), interactions (between multiple
services), choreography (in the form of WS-CDL) and deployment models (in
the form of xADL2 or UML2). It has been applied to scenarios from the Auto-
motive, Finance and eUniversity case studies [48,49,50] as well as to the Bowling
Robot case study (see Chapter 7-3), which has helped greatly to further develop
the tool.



www.manaraa.com

Sensoria Results Applied to the Case Studies 663

2.2 Quantitative Analysis

The Mobile Stochastic Logic (MoSL) has been applied to the accident assis-
tance scenario from the Automotive case study [51,52], with the aim of vali-
dating the expression of non-functional, performance and dependability-oriented
properties/requirements of/on services. In particular, a complex responsiveness
property is developed in detail. The major benefit of using MoSL is the pos-
sibility of using arbitrarily nested logical operators: This allows the expression
of properties whose formulation would be very difficult and error-prone in nat-
ural language. Furthermore, MoSL allows both functional and non-functional
requirements to be expressed in an integrated way.

The Service-oriented Stochastic Logic (SoSL), a variant of MoSL, was de-
signed for dealing with specific SOC features. It has been applied to the Mar-
CaSPiS model of the credit request scenario from the Finance case study (see
Sect. 1), as described in Chapter 5-1. Three specific aspects have been addressed:
system performance, supervisor and employee workload , and system reactivity.
The probability for clients to get served as a function of (waiting) time has
been studied and such a probability dramatically decreases when the number of
clients increases. Supervisor and employee workload has been found rather low,
showing that the service is under-used. On the down side, only scenarios with
few clients active at the same time could be analyzed due to the size of the state
space, a problem that could be tackled with the use of MarCaSPiS discrete simu-
lation or Ordinary Differential Equations semantics. SoSL has also been applied
to the MarCaSPiS model of the Bowling Robot case study (see Sect. 1), as de-
scribed in Chapter 7-3. This latter analysis has focused on the probability of the
set of computations that lead to a state satisfying a generic property, showing
that the methodology using MarCaSPiS provides both “intuitive” and effective
estimations of the robot’s behavior (with respect to variations of the model’s
parameters) as well as a formal basis for reasoning about functional properties
of the robot.

λreq is equipped with a formal methodology that makes secure orchestration
feasible. An abstraction of the program behavior is first extracted, through a type
and effect system. This abstract behavior over-approximates the possible runtime
histories of all services involved in an orchestration. The abstract behavior is
then model checked to construct the skeleton structure of the orchestrator that
securely coordinates the running services. Starting from λreq models of scenarios
from the Automotive and Finance case studies (see Sect. 1), it has been shown
that the awareness of security from the early stages of development will foster
security through all the following phases of software production. In particular,
the output of the model checker has been exploited to highlight design flaws,
suggesting how to revise the orchestration and the security policies.

Software tools for the well-known stochastic process algebra PEPA have been
applied to almost all case studies: safety, response-time and passage-end analy-
ses have been performed on scenarios from the Automotive case study [53,54,55],
which has led to a more user-friendly PEPA development environment and to
integration with the SDE (see Sect. 3). Passage-end analysis was also applied to



www.manaraa.com

664 M.H. ter Beek

the Bowling Robot case study (see Chapters 5-4 and 7-3). Moreover, response-
time and sensitivity analyses have been applied to the credit request scenario
from the Finance case study (see Chapter 5-5), with the intention of identify-
ing the bottleneck activity: sensitivity analysis was used to generate a family of
cumulative distribution functions detailing the response-time distribution of the
credit request process, which identified decision making as the bottleneck activ-
ity. Such investigations allow one to decide where effort would be best spent in
improving functions within the entire business process. This quantitative anal-
ysis was technically particularly challenging because it is a multi-scale problem
where rates are separated by several orders of magnitude and the attendant
numerical problem is stiff (i.e., computationally expensive). Finally, the eUni-
versity case study has been used to illustrate the main theoretical developments
of PEPA with respect to its deterministic interpretation. One of these is de-
scribed in detail in Chapter 5-3: A modeling strategy which may be applied to a
variety of distributed applications, including service-oriented ones. This has re-
vealed as one of PEPA’s key benefits, its capability of targeting both a stochastic
and a deterministic semantics, and it has prompted further work in the area of
software tool development.

SRMC can be seen as an extension of PEPA (formally, a superset). The kinds
of analysis that can be performed on SRMC models are supported by a suite
of software tools that provides tight integration with the PEPA modeling and
analysis tools [56]. A number of qualitative analyses have been performed on
the SRMC model of the eUniversity case study (see Sect. 1), among which the
scalability of the eUniversity system in the presence of increasing numbers of
student users and uncertainty about system configuration [24].

Two distinct tools have been developed to assist the quantitative analyses of
sCOWS specifications. One of them, called sCOWS LTS, allows sCOWS proba-
bilistic model checking through the generation of the LTS (Labeled Transition
System) corresponding to the specification, and its subsequent translation to
a CTMC (Continuous Time Markov Chain) that can be used as input for the
PRISM model checker of CSL (Continuous Stochastic Logic) formulae. The sec-
ond tool, named sCOWS AMC, implements approximate statistical model check-
ing of sCOWS terms against CSL. It is a stand-alone tool running a Monte Carlo
algorithm and hence based on the generation of simulation traces of the compu-
tation rather than on the generation of the global LTS of the specification. Both
tools have been used to analyze the system performance of the COWS model of
the Finance case study’s credit request scenario (see Chapter 5-5).

3 Deployment and Development

The research in Theme 3 focuses on model-based development techniques for re-
fining and transforming service specifications, novel techniques for deploying ser-
vice descriptions, methods for reengineering legacy systems into service-oriented
ones, and a software development process for service-oriented systems.



www.manaraa.com

Sensoria Results Applied to the Case Studies 665

3.1 Deployment and Reengineering

The notion of software architecture Modes in the context of SOC abstracts a set
of services, and their states, collaborating towards a common goal. A Mode can
be used to identify the services required in a service composition, and assist in
specifying orchestration and choreography requirements through service compo-
nent state changes. Modes are described in detail in Chapter 4-4. The concept of
Modes complements that of ADR (see Sect. 1): A Mode is an architectural style
whose productions focus on architectural change and behavioral correctness.
Modes have been applied to the route planning scenario from the Automotive
case study [57,50], which has led to the development of a UML2 Modes pro-
file. Moreover, the approach has been extended to Service Mode analysis (see
Chapter 4-4), including extensions to the WS-Engineer tool (see Sect. 2).

The Dino approach provides runtime support for dynamic and adaptive ser-
vice composition. It does so for all stages of a service composition life cycle:
service discovery, selection, binding, delivery, monitoring and adaptation. Dino
is described in detail in Chapter 6-3. Dino has been applied to the several scenar-
ios from the Automotive case study [58], in order to provide the requirements,
guide the design, and help validate the work done in the Dino project (see Chap-
ter 6-3). This has allowed the design to be validated and improved. The Dino
runtime was extended by S&N with an “intelligent” mode, allowing operators to
select their priority of matching services, and integrated into the credit request
scenario from the Finance case study [59].

JCaSPiS is a Java framework that permits implementing service-oriented ap-
plications based on the CaSPiS paradigm [60]. Indeed, JCaSPiS provides a set of
classes that implements primitives for publishing and invoking services, for defin-
ing protocols used to control the service interactions, and mechanisms for the
handling of unexpected behaviors (session closures). Starting from the CaSPiS
specification of the credit request scenario from the Finance case study (see
Sect. 1), a real-world scenario was implemented with JCaSPiS. This allows pro-
grammers to use a formal language to model system components and their in-
teractions and, moreover, analyses performed at the level of specification are
preserved at the level of implementation. The application to the case study has
led to the development of new functionalities.

The Model-Driven Development Approach for SOA (MDD4SOA) is a tool to
transform UML4SOA orchestration models to abstract code in executable lan-
guages (BPEL/WSDL, Java and Jolie). It is described in detail in Chapter 1-1
(see also the section on model-driven development below). The model trans-
formers have been applied to scenarios from all case studies [61,62,63], with
the exception of the Bowling Robot case study. The aim was to validate the
practicability of the UML4SOA profile and, in particular, the usefulness of the
MDD4SOA transformers in practice (by means of a complete transformation
from an UML4SOA model down to actual code and its execution on a target
platform). Obviously, the development of MDD4SOA has gone hand in hand
with that of UML4SOA. The transformers have shown their use in Sensoria

for converting UML models to input languages for analysis and for using the



www.manaraa.com

666 M.H. ter Beek

converted models as the basis for the implementation of the case studies. These
uses have themselves led to improvements of the transformers, among which
more readable and precise error reporting.

A general methodology for architectural migration based on Graph Transfor-
mations (GT) takes a graph model of the source code, after categorizing blocks
of source code according to the target architecture, and transforms these into a
graph model of the target architecture, through the creation of a metamodel-
based representation of the code, and, finally, into the target code. It is described
in detail in Chapter 6-4. The methodology has been applied to a scenario from the
Finance case study [64]. This scenario has a two-tier architecture (client/server)
but presentation, business logic and data access code elements are all mixed in
both tiers. By applying the GT rules it was possible to untangle these concerns
and obtain a well-organized model, following the service-orientation requirement
of separation between business and presentation logic. This has led to an im-
provement of the existing GT rule set and to new GT rules, thus increasing the
number of supported situations. The resulting rule set can be used to automate
part of the process in projects that involve architecture migration.

The VIATRA2 model transformation framework forms the basis of a model-
driven method for facilitating the development and deployment of services with
security and reliable communication requirements. It is described in detail in
Chapters 6-1 and 6-2. Deployment transformations, extended with some Java-
based template generation, take UML4SOA models as input and produce stan-
dards-compliant service descriptors (WSDL files) and configuration descriptors
to reliable and secure service middleware of the Apache platform. This method
has been tested on scenarios from the Automotive, Finance and eUniversity case
studies. This has shown that while the size of these models does not necessar-
ily require a sophisticated model-driven approach, incremental development of
services and reusability of components is strongly supported by this method,
which is a clear benefit for such projects. Moreover, the time consuming and
error-prone task of creating XML descriptors is done automatically.

3.2 Model-Driven Development

The model-driven engineering approach MDD4SOA (described above) is based
on model-to-model and model-to-code transformations for model refinement and
code generation, in particular PIM-to-PIM and PIM-to-PSM transformations
(where PIM stands for Platform Independent Model and PSM for Platform Spe-
cific Model). The particular PIM that is used to transform a UML4SOA model to
a PSM is called the Intermediate Orchestration Model (IOM). The transforma-
tions have been applied to the thesis management scenario from the eUniversity
case study and to the on road assistance scenario from the Automotive case study
for testing purposes [62,63]. In particular, the Automotive Demonstrator focuses
on the development process of service-oriented software [63], demonstrating how



www.manaraa.com

Sensoria Results Applied to the Case Studies 667

a model-driven process can work. The feedback has led to improvements of the
UML4SOA metamodel and profile as well as of MDD4SOA.

Model Transformation By Example (MTBE) is a model-driven software engi-
neering approach to derive model transformation rules from an initial prototyp-
ical set of interrelated source and target models, which describe critical cases of
the transformation in a purely declarative way [65,66]. Its applicability was as-
sessed by trying to reproduce the model transformation rules for the UML2SOA
transformation as part of VIATRA (see above). As sample input model the UML
component model of the credit request scenario from the Finance case study was
used. The sample output model was generated by the original VIATRA transfor-
mation (previously developed by hand). Using MTBE, it was possible to derive
most transformation rules in the form of graph transformation rules in the VIA-
TRA framework directly from the UML models of the scenario. This has steered
research for better guiding the users when an MTBE run does not provide mean-
ingful results so that the training models can be changed appropriately. The VI-
ATRA2 transformation framework was also extended with incremental pattern
matching mechanisms, helping fast execution of model transformations.

The BPEL2SAL transformation chain, which has been implemented in VI-
ATRA2 (see above), facilitates model-driven analysis of service orchestrations.
Symbolic Analysis Laboratory (SAL) is a verification framework that is directed
at analyzing properties of transition systems by combining tools for program
analysis, model checking, and theorem proving [67]. BPEL2SAL is described in
detail in Chapter 6-1. As a distinctive feature, the transformations are extended
with enhanced traceability techniques which facilitate the visualization of model-
checking results directly on the Eclipse BPEL designer tool. The method has
been applied on scenarios from the Finance and eUniversity case studies.

The Sensoria Pattern language describes which problems are addressed by
Sensoria techniques and tools, how they solve the problems they address, and
which forces determine whether or not a technique or tool is appropriate for a
given situation. It moreover does so in a manner accessible to software developers
not involved in Sensoria. The language is described in detail in Chapter 7-5.
Each pattern is accompanied by examples taken from the case study application
in which the pattern was identified [68], and which have been used to validate the
pattern. The pattern catalogue serves to document the advantages and disadvan-
tages of different approaches and to enhance the discussion between Sensoria

partners. Finally, since the patterns are derived from the case studies develop-
ment, they are strongly influenced by feedback from these case studies.

The Sensoria Development Environment (SDE) is a tool integration plat-
form for the tools developed in Sensoria, which allows developers to find , use
and combine them. To integrate with existing tools and platforms for the de-
velopment of SOA systems, the SDE is based on the industry-standard Eclipse
platform and its underlying, service-oriented OSGi framework. It is described in
detail in Chapter 6-5. The orchestration features within the SDE have been em-
ployed for combining several integrated tools for the development and analysis of



www.manaraa.com

668 M.H. ter Beek

the case studies. The main benefit of the SDE is its integrative nature: all Sen-

soria tools are available within the SDE with a uniform API description and the
ability to take part in larger orchestrations. Creating orchestrations is possible
using either a textual, JavaScript-based approach or a graphical, UML-activity-
diagram-like workflow approach. The opportunity to integrate tools into the
SDE has prompted Sensoria tool developers to spend time on thinking about
the collaboration of individual tools, which benefits the end user. Feedback from
applying tools to the case studies, with the SDE as underlying platform for tool
invocation, has led to improved SDE interfaces. The resulting wizard-based ser-
vice call infrastructure has the advantage of always presenting the same interface
to developers regardless of the tool or orchestration. The graphical orchestration
mechanism is also a direct result of these applications. In [63], a detailed doc-
umentation of the implemented Automotive Demonstrator illustrates the use
of a set of techniques, methods and tools from the SDE developed within the
scope of Sensoria (e.g. UML4SOA, MDD4SOA, Dino). The use of the SDE
for analyzing orchestrations in the eUniversity case study with the help of three
integrated tools (WS-Engineer, PEPA, and MDD4SOA) is described in detail
in [49].

4 Concluding Overview

In Table 1, we provide a synthetic overview of the case studies to which the
Sensoria techniques, methods and languages have been applied. This table,
organized by theme, clearly illustrates the central role of the industrial case stu-
dies from the Automotive and—in particular—Finance domains, as well as the
more specific role of the academic eUniversity case study. Note that only few
Sensoria techniques, methods and languages have been applied to the Bowling
Robot and Telecommunications case studies. This is due to the following reasons.
First, the industrial Telecommunications case study has suffered from the fact
that Telecom Italia has considerably reduced its effort in Sensoria rather early
on in the project. Second, the Bowling Robot demonstration has been intro-
duced rather late in the project, initially as a game scenario to show Sensoria’s
software engineering approach at hands-on demonstrations, after which it has
evolved into a case study.

In Tables 2-4 we provide more detailed analytic overviews of the specific ex-
perience/benefits of having applied the Sensoria techniques, methods and lan-
guages to the case studies, organized in the format of one table per theme. These
tables thus contain very brief summaries of the answers to the four questions
(aim, experience, benefits, feedback) that we presented in the Introduction as the
goal of this chapter. We have compiled these summaries based on the answers
provided by the partners that have developed and used the various Sensoria

techniques, methods and languages.



www.manaraa.com

Sensoria Results Applied to the Case Studies 669

Table 1. Validation of Sensoria techniques, methods and languages

Automotive | Finance | eUniversity | Bowling Robot | Telco

T UML4SOA
√ √ √ √ √

SRML
√ √ √

H
StPowla

√ √ √

(s)COWS
√ √

E
SOCK/Jolie

√ √

(Mar)CaSPiS
√ √ √

M CC
√

λreq √ √

E
CaPiTo

√

SRMC
√

1
cc-pi

√ √

ADR
√

Institutions
√

T SocL
√ √

H
CMC-UMC

√ √ √ √

VENUS
√

E
chorSLMC

√

LySa
√

M SC-ESC
√ √

OCPR
√ √

E
WS-Engineer

√ √ √ √

SoSL/MoSL
√ √ √

2 PEPA toolkit
√ √ √ √

Modes
√

T Dino
√ √

H JCaSPiS
√

E MDD4SOA
√ √ √ √

M GT
√

E VIATRA2
√ √ √

MTBE
√

3 Patterns
√ √ √

SDE
√ √ √



www.manaraa.com

670 M.H. ter Beek

Table 2. Theme 1: experience/benefits of Sensoria techniques, methods & languages

Theme 1 Automotive Finance eUniversity Bowling Robot Telco

UML4SOA
Test usefulness in practice; Provide models for verification; Now short-
cuts SOC patterns, support soaML profile, data handling & subscoping

SRML
Validate primitives, 3-layer
approach & definition SLAs;
Validate timing extension

Test interact-
ions: add key
parameters

StPowla

Validate app-
roach; Now
derives policy
templates

Assess im-
pact on busi-
ness process
design

COWS
sCOWS

Feasibility mechanism + pri-
mitives tomodel SOA&pro-
vide stochastic description

SOCK

Validate primitives & faults
+ compensations modeling;
Verify dynamic handler &
automatic fault notification;
Now improved handlers

Jolie Test programming a SOA;
Found new SOA patterns

CaSPiS
MarCaSPiS

Test its effectiveness & its
Markovian extension

Feasibility of
methodology

CC Type to verify
key properties

λreq Call-by-contract invocation

CaPiTo

Model SOA
especially if
cryptoprotoc-
ols for security

SRMC
Test expressi-
vity;Newana-
lysis approach

cc-pi
Validate prio-
ritized variant

Validate bas-
ic primitives

ADR

Disambiguate
informal SOA
specifications
by formal mo-
del of recon-
figurations &
constraints

Institutions

Validate app-
roach; Useful
to separate
behavioral
description of
services from
choreography



www.manaraa.com

Sensoria Results Applied to the Case Studies 671

Table 3. Theme 2: experience/benefits of Sensoria techniques, methods & languages

Theme 2 Automotive Finance eUniversity Bowling Robot Telco

StPowla

Detection of
conflicts by
theorem pro-
ving; Needed
extension Ap-
pel semantics

Detection of
conflicts by
UMC;Needed
definition cor-
respondence
Appel -UML

SocL
Test expressivity for SOA
properties; Definedpatterns
of service properties

CMC-UMC

Test & fine-tune model che-
cker; Verify properties; Fea-
sibility type checking with
CMC; Now automatic tran-
slations from UML4SOA to
COWS (VENUS) & UMC

Test & fine-tune model
checker; Verify properties;
Now automatic transla-
tions from UML4SOA to
UMC

VENUS
Assist user to
write proper-
ties to verify

CaSPiS

Type system
to check prog-
ress property;
Control flow
analysis to de-
tect &prevent
misuses

chorSLMC

Verify multi-
party interac-
tion; Proved
protocols of
interaction
well-defined+
deadlock-free

SC-ESC
Experiment, evaluate &
reason about long-running
transactions

LySa
Proved auth-
enticity+con-
fidentiality

OCPR

Defined compositional no-
tion of service equivalence;
Verified service equivalence
& replaceability

WS-Engineer

Analyzed correctness &
consistency of service com-
positions; Helped to further
develop the tool

Check interac-
tions between
orchestrations
for deadlocks

Test & further
develop the
tool

continued on next page...



www.manaraa.com

672 M.H. ter Beek

Table 3. (continued)

Theme 2 Automotive Finance eUniversity Bowling Robot Telco

SoSL/MoSL

Test expressivity for SOC
features; Verify dependabil-
ity (workload, reactivity) &
performance properties of
services: difficult & error-
prone in natural language

Show method-
ology provides
intuitive & ef-
fective estima-
tions of robot
behavior

λreq

Exploit output of model
checker to highlight design
flaws, suggesting how to re-
vise the orchestration & se-
curity policies

PEPA toolkit

Passage-end,
response-time
& safety ana-
lysis; Deve-
lopment envi-
ronment now
more user-
friendly

Sensitivity &
response-time
analysis to id-
entify bottle-
neck activity;
technically
particularly
challenging

Show main
developments
PEPAwrt de-
terministic se-
mantics; Key
benefitPEPA:
target both a
deterministic
& a stochastic
semantics

Passage-end
analysis: preci-
sely quantified
probability of
expected out-
come

SRMC

Test software
tool suite; Ve-
rify scalabili-
ty in presence
uncertainties

sCOWS LTS
sCOWS AMC

Analysis of
system per-
formance



www.manaraa.com

Sensoria Results Applied to the Case Studies 673

Table 4. Theme 3: experience/benefits of Sensoria techniques, methods & languages

Theme 3 Automotive Finance eUniversity Bowling Robot Telco

Modes

Test modeling
orchestration+
choreography
requirements;
Created UML2
profile; Exten-
ded analysis &
WS-Engineer

Dino
Provide requirements, guide
design & validate Dino; Now
improved & extended design

JCaSPiS

Implement a
real scenario;
Preserve ana-
lysis from mo-
deling to im-
plementation
level; Nownew
functionalities

MDD4SOA

Validate practicability UML4SOA&useful-
ness MDD4SOA transformers in practice
(by full transformation from UML4SOA to
actual code & execution);Transformers now
more readable & precise error reporting

Validate app-
roach; Deve-
loped hand
in hand with
UML4SOA

GT

Untangle busi-
ness & presen-
tation logic;
New rule set;
Architecture
migration now
automated

VIATRA2

Test method; Support incremental service
development& reusability; XML descrip-
tors created automatically; NowBPEL2-
SAL orchestration analysis back-annotated

MTBE
Test method;
Steered better
user guiding

Patterns

Accompanied by examples from the case
study application that identified patterns;
Created pattern catalogue documenting
(dis)advantages & feedback of approaches

SDE

Orchestration features employed to com-
bine integrated tools for development &
analysis of case studies; Now contains all
Sensoria tools; Now improved SDE inter-
faces & graphical orchestration mechanism



www.manaraa.com

674 M.H. ter Beek

Acknowledgments. We thank our partners in the Sensoria project for their
contributions to this chapter.

References

1. Abreu, J., Bocchi, L., Fiadeiro, J.L., Lopes, A.: Specifying and composing interac-
tion protocols for service-oriented system modelling. In: Derrick, J., Vain, J. (eds.)
FORTE 2007. LNCS, vol. 4574, pp. 358–373. Springer, Heidelberg (2007)

2. Bocchi, L., Fiadeiro, J.L., Lopes, A.: Service-oriented modelling of automotive
systems. In: COMPSAC, pp. 1059–1064. IEEE, Los Alamitos (2008)

3. Bocchi, L., Fiadeiro, J.L., Lopes, A.: A use-case driven approach to formal service-
oriented modelling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17,
pp. 155–169. Springer, Heidelberg (2008)

4. Bocchi, L., Fiadeiro, J.L., Gilmore, S., Abreu, J., Solanki, M., Vankayala, V.: A
formal approach to modelling time properties of service-oriented systems (submit-
ted)

5. Gorton, S., Montangero, C., Reiff-Marganiec, S., Semini, L.: StPowla: SOA, policies
and workflows. In: Di Nitto, E., Ripeanu, M. (eds.) ICSOC 2007. LNCS, vol. 4907,
pp. 351–362. Springer, Heidelberg (2009)

6. Montangero, C., Reiff-Marganiec, S., Semini, L.: Logic-based detection of conflicts
in Appel policies. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767,
pp. 257–271. Springer, Heidelberg (2007)

7. ter Beek, M.H., Gnesi, S., Montangero, C., Semini, L.: Detecting policy conflicts
by model checking UML state machines. In: ICFI 2009, pp. 59–74. IOS (2009)

8. Fantini, P., Montangero, C., Palasciano, C., Reiff-Marganiec, S., Semini, L.: Sup-
porting user-friendly design of flexible business processes in StPowla. Technical
Report PISATR0825, Dipartimento di Informatica, Università di Pisa (2008)

9. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
model checking approach for verifying COWS specifications. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg
(2008)

10. Lapadula, A., Pugliese, R., Tiezzi, F.: Specifying and analysing SOC applications
with COWS. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 701–720. Springer, Heidelberg (2008)

11. Gnesi, S., Pugliese, R., Tiezzi, F.: The Sensoria pattern-based approach applied
to the finance case study. Sensoria Deliverable Th05 (2010)

12. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J.,
Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Hei-
delberg (2007)

13. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: ECOWS
2007, pp. 13–22. IEEE, Los Alamitos (2007)

14. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault
handling and request-response service invocations. In: ACSD 2008, pp. 190–199.
IEEE, Los Alamitos (2008)

15. Montesi, F., Guidi, C., Lanese, I., Zavattaro, G.: Dynamic fault handling mecha-
nisms for service-oriented applications. In: ECOWS 2008, pp. 225–234. IEEE, Los
Alamitos (2008)

16. Guidi, C., Montesi, F.: Implementation of the finance case study in Jolie (2009),
http://www.jolie-lang.org/

http://www.jolie-lang.org/


www.manaraa.com

Sensoria Results Applied to the Case Studies 675

17. Guidi, C., Montesi, F.: Reasoning about a service-oriented programming paradigm.
In: ter Beek, M.H. (ed.) YR-SOC 2009. EPTCS, vol. 2, pp. 67–81 (2009)

18. Vieira, H.T.: A Calculus for Modeling and Analyzing Conversations in Service-
Oriented Computing. PhD thesis, Universidade Nova de Lisboa (2010)

19. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Secure service orchestration. In:
Aldini, A., Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 4677, pp. 24–74. Springer,
Heidelberg (2007)

20. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Semantics-based design for
secure web services. IEEE Transactions on Software Engineering 34, 33–49 (2008)

21. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Local policies for resource usage
analysis. ACM Transactions on Programming Languages and Systems 31 (2009)

22. Gao, H., Nielson, F., Nielson, H.R.: Protocol stacks for services. In: FCS (2009)
23. Clark, A., Gilmore, S., Tribastone, M.: Service-level agreements for service-oriented

computing. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486,
pp. 21–36. Springer, Heidelberg (2009)

24. Clark, A., Gilmore, S., Tribastone, M.: Scalable analysis of scalable systems. In:
Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 1–17. Springer,
Heidelberg (2009)

25. Buscemi, M.G., Ferrari, L., Moiso, C., Montanari, U.: Constraint-based policy ne-
gotiation and enforcement for telco services. In: TASE 2007, pp. 463–472. IEEE,
Los Alamitos (2007)

26. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style-based architectural
reconfigurations. Bulletin of the EATCS 94, 161–180 (2008)

27. Knapp, A., Marczyński, G., Wirsing, M., Zaw�locki, A.: A heterogeneous approach
to service-oriented systems specification. In: SOAP track at SAC 2010. ACM, New
York (2010)

28. ter Beek, M.H., Gnesi, S., Mazzanti, F., Moiso, C.: Formal modelling and verifica-
tion of an asynchronous extension of SOAP. In: ECOWS 2006, pp. 287–296. IEEE,
Los Alamitos (2006)

29. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

30. ter Beek, M.H., Gnesi, S., Koch, N., Mazzanti, F.: Formal verification of an auto-
motive scenario in service-oriented computing. In: ICSE 2008, pp. 613–622. ACM,
New York (2008)

31. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Dynamic software architecture devel-
opment: Towards an automated process. In: SEAA 2009, pp. 105–108. IEEE, Los
Alamitos (2009)

32. ter Beek, M.H., Mazzanti, F.: Modelling and analysing the finance case study in
UMC. Technical Report 2010-TR-007, ISTI-CNR (2010)

33. Abreu, J., Mazzanti, F., Fiadeiro, J.L., Gnesi, S.: A model-checking approach for
service component architectures. In: Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.)
FMOODS 2009. LNCS, vol. 5522, pp. 219–224. Springer, Heidelberg (2009)

34. Acciai, L., Boreale, M.: A type system for client progress in a service-oriented
calculus. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs
and Models. LNCS, vol. 5065, pp. 642–658. Springer, Heidelberg (2008)

35. Bodei, C., Brodo, L., Bruni, R.: Static detection of logic flaws in service-oriented ap-
plications. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511,
pp. 70–87. Springer, Heidelberg (2009)



www.manaraa.com

676 M.H. ter Beek

36. Vieira, H.T., Caires, L., Viegas, R.: The Spatial Logic Model Checker v2.01
(November 2009), http://www-ctp.di.fct.unl.pt/SLMC/

37. Buchholtz, M., Nielson, H.R.: LySa tool v2.02 (October 2006),
http://www.imm.dtu.dk/English/Research/Language-Based_Technology/

Software/LySaTool.aspx

38. Nielson, H.R., Nielson, F.: A flow-sensitive analysis of privacy properties. In: CSF
2007, pp. 249–264. IEEE, Los Alamitos (2007)

39. Nielson, F., Nielson, H.R., Bauer, J., Nielsen, C.R., Pilegaard, H.: Relational anal-
ysis for delivery of services. In: Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS,
vol. 4912, pp. 73–89. Springer, Heidelberg (2008)

40. Bauer, J., Nielson, F., Nielson, H.R., Pilegaard, H.: Relational analysis of corre-
lation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 32–46.
Springer, Heidelberg (2008)

41. Ciancia, V., Ferrari, G., Guanciale, R., Strollo, D.: Checking correctness of trans-
actional behaviors. In: Suzuki, K., Higashino, T., Yasumoto, K., El-Fakih, K. (eds.)
FORTE 2008. LNCS, vol. 5048, pp. 134–148. Springer, Heidelberg (2008)

42. Ferrari, G., Guanciale, R., Strollo, D., Tuosto, E.: Event-based service coordination.
In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models.
LNCS, vol. 5065, pp. 312–329. Springer, Heidelberg (2008)

43. Ferrari, G., Guanciale, R., Strollo, D., Tuosto, E.: Refactoring long running trans-
actions. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387, pp. 127–142.
Springer, Heidelberg (2009)

44. Strollo, D.: Designing and Experimenting Coordination Primitives for Service Or-
iented Computing. PhD thesis, IMT Institute for Advanced Studies, Lucca (2009)

45. Guanciale, R.: The Signal Calculus: Beyond Message-based Coordination for Ser-
vices. PhD thesis, IMT Institute for Advanced Studies, Lucca (2009)

46. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: On the use of behavioural equiva-
lences for web services’ development. Fundamenta Informaticae 89, 479–510 (2008)

47. Bonchi, F., Brogi, A., Corfini, S., Gadducci, F.: A net-based approach to web ser-
vices publication and replaceability. Fundamental Informaticae 94, 305–330 (2009)

48. Foster, H., Uchitel, S., Magee, J., Kramer, J.: Tool support for model-based en-
gineering of web service compositions. In: ICWS 2005, pp. 95–102. IEEE, Los
Alamitos (2005)

49. Mayer, P., Junker, M., Foster, H., Tribastone, M.: The SDE closeup: Analyzing
service-oriented software with the help of formal tools. Technical report, Lehrstuhl
PST, Institut für Informatik, Ludwig-Maximilians-Universität München (2008)

50. Foster, H.: Architecture and behaviour analysis for engineering Service Modes. In:
PESOS 2009, pp. 1–8. IEEE, Los Alamitos (2009)

51. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking
mobile stochastic logic. Theoretical Computer Science 382, 42–70 (2007)

52. De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Stochastic logics.
Sensoria Deliverable 4.2a (February 2007)

53. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and
PDMC 2006. LNCS, vol. 4346, pp. 181–194. Springer, Heidelberg (2007)

54. Argent-Katwala, A., Clark, A., Foster, H., Gilmore, S., Mayer, P., Tribastone, M.:
Safety and response-time analysis of an automotive accident assistance service. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 191–205. Springer,
Heidelberg (2008)

55. Clark, A., Duguid, A., Gilmore, S.: Passage-end analysis. In: Bradley, J.T. (ed.)
EPEW 2009. LNCS, vol. 5652, pp. 110–115. Springer, Heidelberg (2009)

http://www-ctp.di.fct.unl.pt/SLMC/
http://www.imm.dtu.dk/English/Research/Language-Based_Technology/Software/LySaTool.aspx
http://www.imm.dtu.dk/English/Research/Language-Based_Technology/Software/LySaTool.aspx


www.manaraa.com

Sensoria Results Applied to the Case Studies 677

56. Clark, A., Gilmore, S., Tribastone, M.: Quantitative analysis of web services using
SRMC. In: Bernardo, M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS,
vol. 5569, pp. 296–339. Springer, Heidelberg (2009)

57. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software architectures.
In: Gruhn, V., Oquendo, F. (eds.) EWSA 2006. LNCS, vol. 4344, pp. 113–126.
Springer, Heidelberg (2006)

58. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.S.: QoS-aware service composition
in Dino. In: ECOWS 2007, pp. 3–12. IEEE, Los Alamitos (2007)

59. Alessandrini, M.: Intelligent Service System. PhD thesis, Westfälische Wilhelms-
Universität Münster (2009)

60. Bettini, L., De Nicola, R., Loreti, M.: Implementing session centered calculi. In:
Wang, A.H., Tennenholtz, M. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp.
17–32. Springer, Heidelberg (2008)

61. Foster, H., Mayer, P.: Leveraging integrated tools for model-based analysis of ser-
vice compositions. In: ICIW 2008, pp. 72–77. IEEE, Los Alamitos (2008)

62. Mayer, P., Schroeder, A., Koch, N.: MDD4SOA: Model-driven service orchestra-
tion. In: EDOC 2008, pp. 203–212. IEEE, Los Alamitos (2008)

63. Xie, R., Koch, N.: Automotive case study: Demonstrator. Report. Cirquent (2009)
64. Heckel, R., Correia, R., Matos, C.M.P., El-Ramly, M., Koutsoukos, G., Andrade,

L.F.: Architectural transformations: From legacy to three-tier and services. In:
Software Evolution, pp. 139–170. Springer, Heidelberg (2008)

65. Varró, D.: Model transformation by example. In: Wang, J., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 410–424. Springer,
Heidelberg (2006)

66. Balogh, Z., Varró, D.: Model transformation by example using inductive logic pro-
gramming. Software and System Modeling 8, 347–364 (2009)

67. Shankar, N.: Symbolic analysis of transition systems. In: Gurevich, Y., Kutter,
P.W., Vetta, A., Thiele, L. (eds.) ASM 2000. LNCS, vol. 1912, pp. 287–302.
Springer, Heidelberg (2000)

68. Wirsing, M., Hölzl, M.M., Acciai, L., Banti, F., Clark, A., Fantechi, A., Gilmore, S.,
Gnesi, S., Gönczy, L., Koch, N., Lapadula, A., Mayer, P., Mazzanti, F., Pugliese, R.,
Schroeder, A., Tiezzi, F., Tribastone, M., Varró, D.: Sensoria patterns: Augment-
ing service engineering with formal analysis, transformation and dynamicity. In:
Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp. 170–190. Springer,
Heidelberg (2008)



www.manaraa.com

Analysing Robot Movement Using the
Sensoria Methods�

Maurice H. ter Beek1, Alessandro Lapadula2,
Michele Loreti2, and Claudio Palasciano3

1 ISTI–CNR, Pisa, Italy
terbeek@isti.cnr.it

2 DSI, Università di Firenze, Italy
{lapadula,loreti}@dsi.unifi.it
3 MIP Politecnico di Milano, Italy

palasciano@mip.polimi.it

Abstract. In this paper, we give a recount of the application of Sen-

soria approaches, languages, and tools to the modeling of movement of
the robot that has taken the lead role in Sensoria demonstrations at
the exhibitions ICT 2008 in Lyon and FET 2009 in Prague. The demos
were centred around a robot-bowling game that actively involved the vis-
itors in programming a robot that plays bowling, using some of the tech-
niques developed in Sensoria in order to predict the outcomes of the
game according to their design choices. Specifically, the Sensoria tech-
niques have been used for the analysis of functional and non-functional
properties of the system, both in the ex-post analysis of the robot move-
ment during the demo and in the ex-ante analysis of the possible robot
configurations during the design of the robot and of the demo itself. This
paper presents how the techniques have been applied and to what extent
the results of the application match the real robot behavior. The Senso-

ria modeling and analysis techniques used are the UML4SOA graphical
modeling language, the Performance Evaluation Process Algebra PEPA,
the UMC model checker and the Markovian process algebra MarCaSPiS.

1 Introduction to the Bowling Robot Case Study

The Bowling Robot case study was at first developed as a robot-bowling game
scenario for demonstrating Sensoria’s software engineering approach and tools
in a practical way during hands-on demonstration, after which it evolved into a
case study, apt to show Sensoria results applied to the design and development
of a real system, the robot that plays bowling itself. Specifically, the Bowling
Robot has been used as a showcase for the modeling techniques and tools, in par-
ticular qualitative and quantitative modeling, and was not intended to address
service composition/orchestration issues.

In fact, initially, the Bowling Robot scenario was developed in order to show
in advance to the demo participants, who were asked to make some choices dur-
ing the programming of the Robot Player, how different control policies and
� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 678–697, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 679

parameter choices may affect the robot’s performance. This was aimed at allow-
ing the demo participants to reason on the robot’s parameters and environment
and make sensible choices in order to try to win the robot-bowling game. In this
phase, the Robot Player development was meant to be conducted in a traditional
spiral approach including design, construction of the robot, program writing, and
testing ‘on the field’. We would have designed the Robot Player first and then
applied Sensoria results in order to be able to show how Sensoria would
support the visitor in programming the robot during the demo.

During the design of the robot, some complex and interleaved choices were
needed concerning the mechanical features, control policies, and possible param-
eter sets. During testing experiments on the field, unexpected properties of the
system under development came out and the necessity to analyze the scenario
in more detail appeared clear, in order to ensure proper behavior of the robot
while allowing a visitor at the same time to enjoy a nice choice among different
control policies and parameter values. Some ‘hidden’ needs were identified, such
as ‘the robot must always complete the proper actions and arrive at the end
of the lane’. We therefore expressed as design questions desirable properties of
the system. During the development of the robot very soon the testing of the
overall behavior of the robot program was substituted by experiments planned
for the determination of the environment and the robot’s ‘internal’ parameters
such as the robot speed. This led us to focus on the usage of different Sensoria

languages and tools, not only during the demo sessions but during the design
of the demo itself and, finally, to further analysis after the demo development
ended. This process may also be considered as a hint of how a traditional system
development approach may change with the availability of Sensoria.

This paper is organized as follows. In Sect. 2 we describe the context of the
robot-bowling game scenario, after which we describe the Bowling Robot case
study and its relevance to Sensoria in Sect. 3. The results of the application of
four Sensoria techniques to the case study are presented in Sect. 4, while we
report our conclusions and the lessons learned in Sect. 5.

2 Context Description

The Bowling Robot case study context is a game scenario developed for demon-
strating Sensoria’s potential impacts on the software systems development pro-
cess in a SOA context presented at the ICT exhibit in Lyon, November 2008,
and at the FET exhibit in Prague, April 2009.

The Bowling Robot demo scenario is focused on people who want to play
bowling on the Internet by means of a so-called ‘Virtual Bowling’ service. The
Virtual Bowling service provides an actual competition performed by a robot,
called “Player”. The game is personalized according to each virtual player’s pro-
file (e.g. her/his gender, depending on whether a red or blue ball is used). This
information is provided to the Player by a second robot, called “Coach”, that
receives from the Virtual Bowling service the gamers’ requests including infor-
mation about the virtual player and communicates them to the Robot Player.



www.manaraa.com

680 M.H. ter Beek et al.

In the Bowling Robot scenario, we imagine that a human player, i.e. one of
the exhibit visitors, is to specify the program that determines the behavior of
the Robot Player during the game. The Bowling Robot case study is centred
around this concept: the visitor, in order to optimize the robot’s performance,
has to reach the maximum score in the game taking into account the physical
characteristics of the robot and of the environment, and in this process s/he
is supported by the Sensoria tools and languages. In particular, Sensoria

modeling approaches facilitate the prediction of robot behavior at design time.
The Bowling Robot demo presented at ICT’08 and FET’09 has four phases:

phase 1 The visitor programs the robot using the standard Lego GUI.
phase 2 The visitor is able to make choices in order to improve her/his Lego

program with the support of Sensoria analysis techniques.
phase 3 The visitor has access to the Virtual Bowling service that activates the

bowling-robot game.
phase 4 After the game, a score is computed for each visitor in order to award

a daily Sensoria robot-bowling champion cup.

3 Case Study Description

In the robot-bowling game, the main characteristic of the environment is the floor
of the bowling alley, that presents a pattern with a radial geometry, darkening
from white to black (see Fig. 1): the maximum black point is in the optimal
launching position (2), right in front of the first pin.

Fig. 1. Bowling Robot scenario

In this context, the Robot Player begins from loading position (1) at the start
of the bowling lane (80 cm) and aims to reach the optimal launching position (2).
The Robot Player detects the color of the floor by means of two light sensors.
The Player, aiming to follow the maximum value of the gradient towards the
black, at fixed time intervals T measures the level of white/black on the floor
and decides to go forward or turn to correct its path. Finally, due to possible
imperfect path finding, the Player may reach the end of the lane in position (3)
and launch the ball (actually, drop it on a ramp towards the pins). The Player



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 681

recognizes the end of the lane as it is marked by a silver ribbon giving the
maximum white value on the floor MAX. The computed game score depends on:

1. the number of pins knocked down,
2. the time to arrive at the launching position and drop the ball (Tr), and
3. the distance from the optimal launching position, i.e. error e.

Accordingly, the visitor is asked to program the Robot Player to pull down as
many pins as possible in the shortest possible time with the maximum precision
(minimize e). For the sake of simplicity, we define as ‘precise launches’ those
with error e < 10 cm, evidenced by a green zone 20 cm wide at the end of the
lane, centered w.r.t. the optimal launching position. The programming choices
available to the visitor are taken from a limited set, in order to allow each visitor
to complete the demo in a few minutes.

Having fixed the path dimensions and geometry we decided the mechanical
structure of the Player that includes two sensors to measure the color of the path
on the floor, two wheels, two motors, and, in front, a simple mechanical hand
(served by a third motor) that allows to get and release the ball. Concerning
movements, a Player can go forward or turn approximately on its place. In
particular, each of the two wheels of the Player is connected to a motor that is
powered with a fixed power level during the game. The Player can go forward
or turn by switching on and off only one of the two motors (e.g. in order to turn
right, the Player switches off the right motor while the left motor is on). In Fig. 2
the Robot Player of ICT’08, based on standard Lego NXT robot kit, is shown.

Fig. 2. The Robot Player

In order to assess its position on the path, the robot has two light sensors
aimed at the floor, one on each side near each wheel. The sensor readings are
numerical values that are higher as the color of the path goes from white to
black. The measured radial gradient is 2.66 sensor units/cm.



www.manaraa.com

682 M.H. ter Beek et al.

At fixed time intervals the Robot Player stops, reads the sensors and then,
by comparing the readings with a threshold value S, decides to go forward or
turn (right or left) for that time interval T . The time interval can be imagined
as a sampling period or alternatively its reciprocal is the frequency at which
the system is controlled. Finally, when the Player reads maximum value of light
reading (MAX), s/he decides that the end of the alley is reached and launches the
ball. The overall workflow includes, after reading the sensor values, computing a
specific value D depending on the sensors readings, which is to be used afterwards
to decide whether the robot is on the correct path (and has to go forward) or
not (and has to turn), and in the latter case, in which direction to turn.

During the Lego programming phase of the demo, the visitor builds up the
Lego program by completing a pre-defined program flow:

1. choose blocks (tagged with self-explicating titles) from a predefined set and
2. set some program parameters within the program blocks.

During this phase the visitor is asked to choose between two different “Follow the
Gradient” strategies, represented by two specific personalized program blocks,
and to specify how long is the light sensors’ sampling period T , among the set
0.2, 0.5, 0.7 and 1.0 seconds.

The two possible “Follow the Gradient” strategies available to the programmer
of the Player are described in Figs. 3 and 4. The first (Strategy #1, Fig. 3) takes
into account that, given the geometry on the floor path and the position of the
two light sensors (symmetrically positioned with reference to the longitudinal
axis of the Player), the difference between the left and right sensor readings
should be approximately zero if the robot points towards the optimal launching
position (2). Accordingly, at each step, the robot computes the difference D
and the sign SIGN between the readings of the right and the left sensor. If the
difference D is lower than a specified threshold value S, then the Player goes
forward, i.e. the robot is ‘following the gradient’. Otherwise, the robot turns
right or left depending on the sign of the computed difference D, in order to
correct the path.

The second strategy (Strategy #2, Fig. 4) stems from the following consid-
eration: if the robot is correctly ‘following the gradient’ towards the maximum
black point (2), the difference of the reading of one sensor with the reading of
the same sensor at the previous time interval should be positive and greater
than the threshold value S. In this case we imagine that each of the sensors
is controlled by one concurrent task in the program and checks this difference
to decide whether or not to turn. Each of the tasks, consequently, as in Fig. 4,
executes the main loop that includes stop, reading, compute, decide, and go
forward/turn depending on the decision for that interval.

In detail, refering to the task that reads the left sensor, after having read
the sensors and computed the difference leftDelta(t) between the current sensor
reading leftData(t) and the previous one leftData(t − 1), the robot decides to
turn if the difference is below the threshold value S and to go forward other-
wise. In particular, it can be shown that if the robot aims to the left of the
optimal launching position (2), then the rightDelta(t) difference is higher than



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 683

Fig. 3. “Follow the gradient” – Strategy #1



www.manaraa.com

684 M.H. ter Beek et al.

Fig. 4. “Follow the gradient” – Strategy #2, left task

the leftDelta(t) difference and therefore the robot has to turn to the right; vice
versa if the robot aims to the right of the optimal launching position (2). Conse-
quently, to achieve this behavior, as explained in Sect. 2, with Strategy #2, if the
leftDelta(t) difference is below the threshold S the robot has to turn right, i.e. it
has to turn off the right motor, otherwise the robot switches on both motors. As



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 685

we will show later, Strategy #2 as presented so far is flawed: it has been devised
on purpose in order to allow a positive search for programming errors.

To summarize, sampling period T and threshold value S are the main pa-
rameters that can be chosen to determine the robot’s behavior and affect its
performance, i.e. the time to launch the ball (Tr), the error in reaching the op-
timal position (e) and, ultimately, the number of knocked down pins. According
to that, during the design of the Robot Player, concerning most of all design
decisions and in particular the definition of the possible “Follow the Gradient”
strategies and of the possible set of parameters T and S, the following ‘design
questions’ arose, more or less explicitly:

DQ1 Does the robot always arrive at the end of the lane, and launch the ball?
DQ2 Does the robot mostly launch the ball within approximately one minute?
DQ3 What is the robot’s performance according to different parameter choices?

Are there interesting/unexpected situations that Sensoria might evidence?

4 Use of Sensoria Tools and Results

As shown in the previous sections, Sensoria has been used both during the
Robot Player design and development and during the demo. The Bowling Robot
scenario has allowed the use of the following Sensoria tools and languages:

– For qualitative analysis, error identification: WS-Engineer/LTSA (see Chap-
ter 4-4) and the UML profile UML4SOA (see Chapter 1-1).

– For qualitative analysis, system properties verification: UML model checker
UMC and its logic UCTL (see Chapters 4-2 and 4-3).

– For quantitative analysis, non-functional properties: Performance Evaluation
Process Algebra PEPA with IPC compiler (see Chapter 5-4 and references).

– For qualitative/quantitative analysis: both functional and non-functional
properties: MarCaSPiS, Markovian extension of the process calculus CaSPiS
(see Chapters 2-1 and 5-1).

The first two analyses, performed with UML4SOA and UMC models, allowed
us to reply to DQ1. The quantitative analysis with PEPA allowed us to ensure
robot behavior during the design and to show the visitor during the demo both
the answer to DQ2 and the robot’s possible performance depending on different
choices of design parameters, specifically parameter T (DQ3). Finally, analysis
with MarCaSPiS allowed us to reply to DQ1–3 using a more detailed model of
the Robot Player behavior. The Sensoria models have been developed in each
specific language as a mirror of the Lego program deployed on the robot.

4.1 Qualitative Analysis, Error Identification (UML4SOA Model)

During the first design activities of the robot we used the WS-Engineer tool to
check the Lego programs under development for errors. We used it to perform
a qualitative analysis since, being based on LTSA, it allows model checking to



www.manaraa.com

686 M.H. ter Beek et al.

be carried out on the UML4SOA model of the robot and to detect deadlocks
and verify arbitrary properties stated in the process calculus FSP (see Chap-
ter 4-4 for details). Specifically, the model was written in UML4SOA, which
was transformed by means of the Sensoria MDD4SOA transformation tool
(see Chapter 1-1) to generate BPEL code, which was then used as input for
WS-Engineer that, in turn, internally converted the BPEL code into FSP.

The following property has been analyzed: if a task starts interacting with
motors, both calls to each motor are executed without interruption. This allowed
us to tell that Strategy #1 has no error, while Strategy #2 does have one. This
error, specifically, is related to an undetermined behavior: as both the left and
right task at the same time switch on and off the same robot motor (see Fig. 5),
the resulting behavior is that the Player is not able even to move. This allowed
the visitors to avoid using the flawed Strategy #2. It was possible to show
to the demo visitors that the Player under Strategy #2 would go back and forth
on her/his place without moving properly, but only one of them asked to do so.

Fig. 5. Violation trace for Strategy #2

4.2 Qualitative Analysis, System Properties Verification
(UMC/UCTL Model)

An alternative technique for qualitative analysis is offered by model checking
with UMC, which allows the formal verification of the dynamic behavior of
UML models. A UMC model of the robot’s behavior consists of a description
in UML state machines. The robot’s desirable properties are then expressed us-
ing the UCTL logic, which is essentially the full modal/propositional μ-calculus
extended with higher-level CTL/ACTL-like operators and structured action ex-
pressions (see Chapters 4-2 and 4-3 for details), and verified with UMC.

UMC enables modeling a Robot Player as a composition of evolving and
communicating objects, where objects are class instances (Coach, Light Sensor,
Robot Player, etc.), which together perform the desired action sequence. The set
of objects and classes which constitute a system can be described in UML by a



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 687

structure diagram, while the dynamic behavior of the objects can be described
by associating a UML statechart diagram to their classes. Each object of the
system will therefore behave like a state machine. An excerpt (class Robot) of
the UMC model of the Player under Strategy #1 is as follows.

Class Robot is
Signals:
//signals received from DecisionStrategy component
start;
getBall;
moveToAlley;
getMeasurements;
doComputation;
turn;
goForward;
launch;
//Signals to/from other components
ballColor(bc:Token); //reception of ball color
receiveBall(b); //reception of ball
moveDone; //effected movement signal
lightVal(rl_val: Token, ll_val: Token); //reception of light values

Vars:
ball_color: Token := null;
ball: Token := null;
RL: Token := null;
LL: Token := null;
sign:Token := null;
coachObj: Coach;
ballHolderObj: BallHolder;
motorControlObj: MotorControl;
lightSensorObj: LightSensor;
ballControlObj: BallControl;
decisionStrategyObj: DecisionStrategy;

State top = r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13
Transitions:
r0 -> r1 {- / decisionStrategyObj.nextAction(self)} //start request
r1 -> r2 {start / coachObj.requestBallColor(self)} //receives decision strategy and
r2 -> r3 {ballColor(bc) / ball_color := bc; //then asks coach for ball color

decisionStrategyObj.nextAction(self)} //receives ball color
r3 -> r4 {getBall / ballHolderObj.requestBall(self,ball_color)} //asks ball holder for ball
r4 -> r5 {receiveBall(b) / ball := b; decisionStrategyObj.nextAction(self)} //receives ball
r5 -> r6 {moveToAlley / motorControlObj.requestMoveToAlley(self)} //motors to move on alley
r6 -> r7 {moveDone / decisionStrategyObj.nextAction(self)} //receives movement done signal
r7 -> r8 {getMeasurements / lightSensorObj.requestLightVal(self)} //asks for light values
r8 -> r9 {lightVal(rl_val,ll_val) / RL := rl_val; LL := ll_val;

decisionStrategyObj.nextAction(self)} //receives light values //computes:
r9 -> r10 {doComputation / decisionStrategyObj.calcDeltaAndSign(self,LL,RL)} //delta & sign
r10 -> r11 {goForward / motorControlObj.requestMoveForward(self)} //motor to move forward
r10 -> r11 {turn / motorControlObj.requestTurn(self)} //motor to turn //first get moveDone,
r11 -> r12 {moveDone / decisionStrategyObj.decideLaunch(self,LL,RL)} //then launch decision
r12 -> r8 {getMeasurements / lightSensorObj.requestLightVal(self)} //cycles to r8 for
r12 -> r13 {launch / ballControlObj.launch} //launches ball //new measurements

end Robot;

The analysis performed shows that the Robot Player under Strategy #1 is
able to complete the actions required for a bowling game, i.e. the sequence of
movements up to launching the ball while moving along the alley. Specifically, the
following properties (written in UCTL) have been verified true for Strategy #1.

1. The robot always eventually launches the ball: AF EX {launch} true
If this property holds, the system is not effected by deadlock in any possible
trace before reaching a state in which the launch action can be performed.



www.manaraa.com

688 M.H. ter Beek et al.

2. The next action after a movement request is notifying movement completion:

AF EX {requestMoveForward OR requestTurn OR requestMoveToAlley}
AX {moveDone} true

If this property holds, the robot performs no other actions after each move-
ment request, until the motor announcing the requested maneuver finished.

3. At least once, the proper action sequence for a bowling game is performed:

AF EX {start} AF EX {getBall} AF EX {moveToAlley}
AF EX {getMeasurements} AF (EX {goForward} true AND

EX {turn} true) AF EX {launch} true

The fact that this property holds guarantees that the robot’s behavior in-
cludes at least once the desired sequence of actions for a bowling game:
starting movement, getting the ball, moving to the alley, get measurements
and going forward (turning) and, finally, launching the ball.

During the demo we showed that the Robot Player’s behavior under Strategy #1
followed the proper sequence of movements up until launching the ball.

4.3 Quantitative Analysis, Non-functional Properties
(PEPA Model)

During the Player development a series of experiments had been performed in
order to ensure proper behavior of the robot during the demo over a possible set
of different design features, such as threshold value, distance between sensors,
sampling period. The robot showed satisfactory behavior under the following
parameters choices: distance between sensors d = 9 cm, threshold value S = 20
sensor units and sampling period in the interval from 0.2 to 1 sec. In particular,
rather counter-intuitively, the robot behavior experimentally showed that, as the
sampling period increases (e.g. from 0.2 sec to 1 sec) the time to roll the ball Tr
decreases, i.e. the robot becomes quicker to reach the end of the alley while the
frequency at which the system is controlled decreases (see Table 1).

Table 1. Experimental results

Sampling period Time to roll ball Distance from optimal Precise occurrence
T (sec) Tr (sec) launching position (percentage of

= error e (cm) precise events)
0.2 53 4.3 100%
0.5 24 3.9 100%
0.7 22 6.7 80%
1.0 21 10.7 50%

In fact, the set of experiments performed (approximately 20 samples for each
of the sampling period values) reported an overall average Tr of 53 sec for T = 0.2



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 689

and of 21 sec for T = 1 sec. The same experiments reported that the error e
(distance from the optimal position (1)) increases from 4 cm to approximately
11 cm on average if the sampling period goes from 0.2 to 1: from this point
of view, as it is most likely to be expected, the robot is more imprecise if the
frequency at which the system is controlled decreases. In particular, the robot
is most likely to be imprecise than precise if T is higher than 1 sec.

This was exactly what we needed for the sake of a game competition: the
visitor is asked to choose the value of a control parameter (T ) which is related
to the trade-off between two performance indicators, i.e. time to launch Tr and
precision (related to error e). This leaves her/him freedom to decide, as the
information available is not enough to precisely forecast the outcome of their
choice on the value of T (they were not allowed to know the rating calculation
formula). To show i) on the one hand to the visitors how Sensoria can predict
the outcome of programmer’s choices concerning the value of sampling period T
and ii) on the other hand give an answer to the aforementioned design question
DQ2 concerning the overall time to roll the ball Tr, and specifically to the above
mentioned unexpected behavior, we developed the following approximate model
of the Robot Player behavior using the PEPA modeling approach (see Fig. 6).

Fig. 6. State machine model of Robot Player

Concurrent systems can be modeled in PEPA as composition of components
which undertake actions. In PEPA actions have a duration. Thus, the expression
(α, r).P denotes a component which can undertake an action α at a rate r,
to evolve into component P . The rate r models a delay of variable duration.
Delays are samples from an exponential random variable with parameter r. See
Chapter 5-4 and its references for details on PEPA.

We intuitively describe the PEPA model using a state machine model (see
Fig. 6). The robot starts its run on the bowling alley in state P1 (we did not



www.manaraa.com

690 M.H. ter Beek et al.

model the straight line movement from starting position (1) to the beginning
of the bowling alley) and completes the run in two possible ways: it follows
the ‘precise’ path indicated by the states from P1 to Pn or the imprecise path,
related to the states from P err1 to P err n. Due to the geometry of the problem,
we imagine that after each step the robot is in one of two possible states: pointed
towards the position (2) or not. Accordingly, the first situation corresponds to a
state P on a precise path and the second to the robot on an imprecise path.

The robot completes its path to the end of the alley (80 cm long) in a total
number of n steps, each one corresponding to a single sampling cycle. At each
step i, with reference to Fig. 7, if the robot is on the precise path, it can de-
viate from the optimal path with probability e prob, going in state P err i, or,
with probability (1 − e prob), can assess that it has to go forward straight to
position (2) (optimal route) so it goes in state P i+1 on the precise path. The
probability e prob is related to the error that affects the readings of the light
sensors (and most likely to mechanical structure imperfection and differences
between motors as well). If the robot is on the imprecise path, it has three possi-
bilities: to remain onto the imprecise path without progressing towards the end
of the alley (with probability a prob), to remain onto the imprecise path while
anyway progressing towards the end of the lane (with probability fe prob, or,
finally, to go back to the precise path (i.e. to point to the maximum black point)
with probability 1− a prob− fe prob. We completed the model defining the rate
at which the system goes from state to state on the precise and imprecise paths,
forwardrate, related to the speed of the robot.

To perform the PEPA analysis, we observed the robot behavior to assess the
values of probabilities e prob and fe prob, and measured the robot movements
during a single sampling cycle to assess rate forwardrate. To estimate e prob, for
each value of sampling period T , we counted how many times the robot moved
from a precise to an imprecise path, i.e. if pointing to the optimal lauch position
the Player did not go straight. Likewise, for each T , to estimate the probability of
remaining on the imprecise path (fe prob) we counted how many times the Player
remained in the wrong direction if s/he headed in the wrong direction. According
to experiments and analysis done on Strategy #1 deadlock-free characteristics,
we decided to consider a prob null (i.e. the robot always progresses towards the
end of the alley). Concerning the rate forwardrate, we measured both the linear
and the angular speed of the robot, measuring respectively the distance (cm)
and the rotation (degrees) over several sampling cycles.

Table 2. Internal robot parameters

Sampling Distance covered Rotation during Rotation Sampling # sampling
period (DC) in a single sampling period (radians) rate cycles to cover
T (sec) sampling cycle (cm) (degrees) (1/T ) alley (80/DC)

0.2 0.4 2.9 0.05 5.0 200
0.5 2.4 16.6 0.29 2.0 36
0.7 3.4 24.5 0.43 1.43 23
1.0 5.5 46.7 0.81 1.0 14



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 691

Table 2 shows, for each sampling period T , the rectilinear distance covered
(DC) by the robot during a single sampling cycle, the rotation during sampling
period (radians), the corresponding rate at which sampling occurs (1/T ) and
the number of sampling cycles that are needed for the robot to cover the 80 cm
distance to the end of the alley. According to this measurement we defined the
parameters of the Player PEPA model (see the code that follows below).

Fig. 7. State machine model of Robot Player: action rates

// PEPA model of Robot Player for T = 1 (forwardrate = 1)
n = 14;
// 4 error paths taken if robot is on right path in 49 movements
e_prob = 0.082;
a_prob = 0.00;
// 48 error paths taken if robot is on error path in 49 samples
fe_prob = 0.98;
forwardrate = 1.0;

Step = (forward,infty).StepDone + (start,infty).Step;
StepDone = (stop1,infty).Step + (start, infty).Step;
Steps = Step[n][stop1,start];
Step_e = (forward_e,infty).StepDone_e + (start,infty).Step_e;
StepDone_e = (stop2,infty).Step_e + (start,infty).Step_e;
Steps_e = Step_e[n][stop2,start];
AllSteps = (Steps < > Steps_e);

PlayerStop1 = (start,1.0).Player;
PlayerStop2 = (start,1.0).Player;
Player = (forward,(1-e_prob) * forwardrate).Player // Precise path

+ (error,e_prob * forwardrate).PlayerError
+ (stop1,(1-e_prob) * forwardrate).PlayerStop1;

PlayerError = (adjust,(1-a_prob-fe_prob) * forwardrate).Player // Imprecise path
+ (forward_e,fe_prob*forwardrate).PlayerError
+ (stop2,fe_prob * forwardrate).PlayerStop2;

Player < forward,forward_e,start,stop1,stop2 > AllSteps // System equation



www.manaraa.com

692 M.H. ter Beek et al.

In particular, to take into account the effective robot speed, the PEPA calcu-
lations have been performed for each T value varying in accordance with the
number of steps n of the model. To simplify the modeling, we considered only
the linear speed: as one can see in Table 2, for T = 0.2 sec, first line of the table,
if the robot covers DC = 0.4 cm in each step, it needs n = 200 = 80/0.4 steps.

It must be said that as the robot deviates from the original straight line with
high probability, this approximation leads to computing a total time to launch
the ball Tr that is certainly underestimated. Anyway, we had also to take into
account the fact that the computation time is a polynomial function of the
number n of steps in the model1, therefore we had to take it as low as possible.
Moreover, specifically in the case of n = 200 steps, the available computing
resources have been not enough to perform the computations, even with that
approximation; in fact, we reduced the model to 20 steps, introducing further
approximations for the sake of the demo, that we will not discuss here.

We are mainly interested in an intuitive explanation of the results obtained
with Sensoria modeling techniques compared with the experimental findings.
The results of PEPA’s quantitative analysis are shown in Fig. 8: the cumulative
probability functions of the time to roll the ball Tr for the robot ending in
the precise path (line labeled stop 1) and for the robot ending out of the precise
‘zone’ along the imprecise path (line labeled stop 2). The left graph shows Tr for
sampling period equal to 0.5 sec; that on the right for sampling period T = 1 sec.

Fig. 8. Cumulative probability distributions of time to launch the ball (Tr)

The graphs show that with sampling period T = 0.5 sec the robot is precise in
approximately 84% of the cases and on average launches the ball in Tr = 18 sec,
while in 16% of the cases it is imprecise and launches in Tr = 26 sec. Our PEPA
model computes Tr = 20 sec to roll the ball on average on all launches (precise or
imprecise). If the sampling period is T = 1 sec the robot is precise in 37% of the
cases and on average launches in 12 sec, while it is imprecise in approximately
63% of the cases and launches in 21 sec. The total average Tr is 18 sec.
1 Computational resources increase with space state size, that, in this PEPA model,

is proportional to the number of steps n squared.



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 693

We can say that the results of the PEPA quantitative analysis intuitively agree
with the experiments performed with the real robot. As shown in Table 3, both
data series (computed and experimental) with increasing sampling period T ,
show that time to roll the ball Tr decreases, while the robot is less precise and
becomes most likely imprecise if T = 1.

Table 3. Comparison of results of PEPA analysis and experimental data

T PEPA average PEPA precision Experimental Experimental precision
(sec) time Tr (sec) (% precise launches) average Tr (sec) (% precise launches)
0.5 20 84% 24 100%
0.7 19 63% 22 80%
1.0 18 37% 21 50%

To summarize, the PEPA quantitative analysis, even if based on an approx-
imate model, has allowed us, while choosing a sensible set of parameter values
for the sampling period T according to all design choices made before, to explain
the reasons of an unexpected behavior of the system during the system design
and development. This led us to decide that the sampling period T , that was
related to the unexpected behavior, was the one to be chosen as a programming
parameter for the demo. Furthermore, the same analysis have been used to show
the demo participants how the robot behavior could be predicted.

Fig. 9. Some details of the Bowling Robot scenario in MarCaSPiS (left + table) and
results of experiments with T equal to 0.5, 0.7, and 1.0 sec (right)



www.manaraa.com

694 M.H. ter Beek et al.

4.4 Qualitative/Quantitative Analysis, Functional and
Non-functional Properties (MarCaSPiS Model)

Both qualitative and quantitative aspects of the Bowling Robot scenario are
analysed with MarCaSPiS, the stochastic extension of CaSPiS. The analysis
concerns the mathematical modeling of the robot behavior in accordance with
Strategy #1. The analysis was performed by taking into account the environ-
mental parameters (like the geometry of the path gradient), the internal robot
parameters (like robot speed and sensor reading errors) and the programming
parameters available in the design (sampling period T and threshold value S).

Figure 9 shows some details of the scenario modeled in MarCaSPiS. Its main
parameters are the Cartesian coordinates of the right-sensor R = (x, y) and
the angular coordinate of the robot’s direction α. These parameters univocally
identify the robot’s position. Angular and rectilinear movements, denoted by
T.angle and T.step respectively, can be defined as functions of the parameter T
(see, e.g., values in Fig. 9 for sampling periods 0.5, 0.7, and 1 sec). No MarCaSPiS
analysis was performed for T = 0.2 sec as the model’s state space size exceeded
the available computation resources. The Cartesian coordinates of the left-sensor
can be obtained from R and α by using the following trigonometric functions:

L = (xL, yL) = (x − d · sin(α), y + d · cos(α))

A robot decides upon the next action according to the floor gradient. An ap-
proximation of the floor gradient is modeled by means of function L(r) defined
as MAX + k · r, where MAX is the maximum light sensor value, constant k is
−2.66 unit/cm and r is one of the following right/left sensor radial coordinates:

rL =
√

(x2
L + y2

L) rR =
√

(x2 + y2)

The end of the bowling lane (along the x-axis) is partitioned into three zones
w.r.t. the outcomes of a launch: all pins are knocked down (strike), pins are
knocked down but some pins are missing (spare), and all pins are missing (miss).

The Robot Player is modeled in MarCaSPiS as a process that invokes a
light sensor service. The robot-side interaction protocol is modeled by means
of process “robotProcess” described in Fig. 10 (left column). This process sends
the robot position to process “lightSensorsProcess” to receive the light-intensity
measurements. Measurements permit deciding whether to move forward or turn
left or right, or whether or not to launch the ball. This last decision is made when
the robot reaches the end of the lane (see also process “lightSensorsProcess”).

After receiving measurements rl and ll, process “robotProcess” compares the
difference abs(rl − ll) with the value of the threshold parameter S to determine
the new robot position. After each movement, the new robot position (denoted
by R′ and α′) is calculated by using the following trigonometric functions:

turn right R′ = (x, y) and α′ = α − T.angle
turn left R′=(x+d·(sin(α′)−sin(α)), y+d·(cos(α)−cos(α′))) andα′=α+T.angle
go forward R′ = (x + T.step · cos(α), y + T.step · sin(α)) and α′ = α



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 695

Fig. 10. MarCaSPiS interaction protocol

Errors can occur in the interaction protocol during light sensors reading, as mod-
eled in Fig. 10 (right column); “lightSensorsProcess” introduces errors through
two measurement types: a correct one (evaluated by function L(r) defined above)
and an incorrect one (one for each sensor) characterized by error ERR.

After receiving a new robot position, “lightSensorsProcess” controls if the
launching line is reached by checking the y-coordinate of each sensor. The out-
come of a launch is determined in terms of the robot-midpoint position by check-
ing whether the x-coordinate x− (d/2) · sin(α) belongs to one of the zones strike,
spare, or miss (characterized by constants STRK and SPAR).

MarCaSPiS’ operational semantics permits characterizing the stochastic be-
havior of systems, whose properties can be specified with SOSL (Service-Oriented
Stochastic Logic, see Chapter 5-1) and automatically checked using SOSL–MC.

We are primarily interested in an intuitive explanation of the results by show-
ing the feasibility of our methodology with MarCaSPiS. We report an analysis
based on experiments performed using MarCaSPiS in comparison to experimen-
tal results. We focus on the probability of the set of computations that lead
to a state satisfying a generic property ϕ. This can be evaluated by means of
the SOSL formula true {∗} U ϕ. When specifying the formula, we use property
ϕ = “strike” to identify states of the model which correspond to an outcome
“strike”; we use properties ϕ = “spare” and ϕ = “miss” to identify states
corresponding to outcomes “spare” and “miss”, respectively. Figures 9 (right)
and 11 show graphics generated by SOSL–MC illustrating the results of three



www.manaraa.com

696 M.H. ter Beek et al.

sample experiments. We assume that the Robot Player is already on the alley
and ready to bowl. Initially, the robot position is given by R = (0cm, 80cm) and
α = π. The common parameters used in all experiments are: d = 9cm (distance
between sensors), MAX = 711unit (max-black intensity), STRK = 10cm and
SPAR = STRK + 12.5cm (strike and spare zones), and error ERR = 2unit. To
display the results, we simulate model computations in the time interval [0, 50].

The first graphic of Fig. 9 (right) permits answering a more general formula-
tion of DQ2 regarding whether the robot launches the ball within k time units
(for a given k occurring in [0, 50]) arriving at strike zones and spare or miss
zones. The former type of zone corresponds to precise launching, the latter to
imprecise launching. The used parameters are: sampling periods T = 0.5 sec and
T = 0.7 sec, and threshold parameter S = 20unit. This experiment also permits
answering a formulation of DQ1 regarding whether and how a robot arrives at
the end of the bowling lane. To comment on some of the results of Fig. 9 (right),
it shows that a robot with sampling period T = 0.5 sec is more precise (arriving
at strike zones) than one with parameter T = 0.7 sec (which reaches launching
zones more quickly, but can arrive at spare or miss zones) and much more than
one with parameter T = 1 sec. It furthermore shows that for T = 0.5 the robot
is most likely to be precise, according to experimental data.

We can say that the results of the MarCaSPiS analysis are intuitively in
agreement with the experiments performed with the real robot. As shown in
Table 4, both data series (computed and experimental) with increasing sampling
period T , show that time to roll the ball Tr decreases, while the robot is less
precise and becomes most likely imprecise if T = 1.

Table 4. Comparison of results of MarCaSPiS analysis and experimental data

T MarCaSPiS average MarCaSPiS precision Experimental Experimental precision
(sec) time Tr (sec) (% precise launches) average Tr (sec) (% precise launches)
0.5 23.34 100% 24 100%
0.7 20.74 95% 22 80%
1.0 20.67 85% 21 50%

The last experiments are designed to answer questions of type DQ3 on how
robot behaviors change depending on different model parameters. Properties
ϕ are specified to denote “strike” or “spare” outcomes separately. Figure 11
illustrates the evolving of the probability of a robot launching the ball with
parameters T = 0.5 sec w.r.t. variations of parameter S from 20unit to 17unit.
In particular, Fig. 11 (left) illustrates the decreasing probability of arriving at a
strike zone by reducing the value of S; conversely, Fig. 11 (right) illustrates the
increasing probability of arriving at a spare zone by reducing the value of S.

To conclude, our MarCaSPiS methodology provides both ‘intuitive’ and effec-
tive estimations of robot behaviors (w.r.t. variations of model parameters) and
a formal basis to reason on other functional properties of the Robot Player.



www.manaraa.com

Analysing Robot Movement Using the Sensoria Methods 697

Fig. 11. Results of experiments with ϕ = “strike” (left) and ϕ = “spare” (right)

5 Conclusions and Lessons Learned

Concerning the demo, the Bowling Robot scenario has been particularly effective
both in attracting visitors at the Sensoria booths and in fostering their interest
into the Sensoria project after first impression. Nearly 200 visitors came to the
Sensoria booths during each exhibit and approximately 30 visitors each day
participated in the robot-bowling game. Visitors judged particularly effective the
way Sensoria analysis (both qualitative and quantitative) helped making the
choices on the program parameter values and policies, so that each demo session
has been performed in a few minutes, as requested by the demo specifications,
and time remained for the visitor to ask questions about Sensoria.

During the development of the robot, on the one hand, very soon the testing
of the overall behavior of the robot program was substituted by experiments
planned for the determination of the environmental parameters, such as the
linear and angular speed of the robot or the probability distribution of the sensor
reading errors, showing a hint of how the Sensoria approach, especially in a
SOA concurrent environment, might lead to anticipate during the design phase
a more detailed specification of the functional and non-functional aspects of the
system and of its components. On the other hand, concerning the analysis with
PEPA and MarCaSPiS, we discovered that, depending on the choice of system
parameters, it is very easy to incur into a state-space explosion, i.e. the model
dimensions grow to the extent that calculations are not possible due to limitation
of the computing resources or take too much time for the project purposes or
resources. In order to avoid this, it is important to carefully plan the experiments
to be done and in particular the possible approximations that might be enacted.

Acknowledgments. This work benefited from discussions with P. Mayer (who
wrote the UML4SOA model and did the WS-Engineer analysis) and A. Clark
(who helped a lot in writing the PEPA model). Special thanks to A. Fantechi,
who reviewed the paper, for his useful suggestions.



www.manaraa.com

The Sensoria Approach
Applied to the Finance Case Study�

Stefania Gnesi1, Rosario Pugliese2, and Francesco Tiezzi2

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, ISTI - CNR, Pisa
stefania.gnesi@isti.cnr.it

2 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
rosario.pugliese@unifi.it, tiezzi@dsi.unifi.it

Abstract. This chapter provides an effective implementation of (part of) the Sen-
soria approach, specifically modelling and formal analysis of service-oriented
software based on mathematically founded techniques. The ‘Finance case study’
is used as a test bed for demonstrating the feasibility and effectiveness of the use
of the process calculus COWS and some of its related analysis techniques and
tools. In particular, we report the results of an application of a temporal logic and
its model checker for expressing and checking functional properties of services
and a type system for guaranteeing confidentiality properties of services.

1 Introduction

The Sensoria approach encompasses the whole development process of service-
oriented software, from systems specified in high-level languages to deployment and
re-engineering. In fact, as part of the project the partners have developed a large set of
languages, methods, techniques and tools that can be applied during the development
of service-oriented applications. Each of these project’s outcomes has been designed to
solve a certain type of problems and is applicable to some specific situations. It is thus
difficult to identify the ‘best’ technique or tool that solves a particular problem arising
in the development process.

To shepherd the prospective user through the selection procedure, as a result of a
collaboration among several people involved in the project, a catalogue of patterns
has recently started to be developed (see Chapter 7-5). Several patterns have been al-
ready catalogued that address a broad spectrum of SOA engineering aspects such as
modelling, specification, analysis, verification, orchestration, deployment. Besides as
an index to Sensoria outcomes, this catalogue serves as a guidance for using them and
for better understanding relative advantages and disadvantages.

Since we want to demonstrate the feasibility and effectiveness of the use of the pro-
cess calculus COWS [LPT07a] (see also Chapter 2-1), we consider relevant to this chap-
ter those patterns involving process calculi as specification formalisms and their related
techniques for qualitative and quantitative analysis, and present solutions to these pat-
terns in terms of COWS and its related analysis techniques and tools. As a test bed, we
use the ‘Finance case study’ (its UML4SOA modelling can be found in Chapter 7-1).

� This work has been partially sponsored by the project Sensoria, IST-2005-016004.

M. Wirsing and M. Hölzl (Eds.): Sensoria Project, LNCS 6582, pp. 698–718, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 699

This way the chapter provides an effective implementation of (part of) the Sensoria ap-
proach, specifically modelling and formal analysis of service-oriented software based
on mathematically founded techniques.

Hence, this chapter contains the following contributions. Section 2 presents a COWS
specification of the Finance case study. Section 3 illustrates a solution to the Functional
Service Verification pattern, where service behavioural properties are expressed using
the temporal logic SocL and verified using the model checker CMC [FGL+08] (see also
Chapters 4-3 and 4-2). Section 4 illustrates a solution to the Service Specification and
Analysis pattern, where confidentiality properties are checked using the type system of
[LPT07b]. Section 5 reports on an ongoing effort for devising an integrated approach
that can lead to verifiable implementations of service components from abstract archi-
tectural models of business activities. To this aim we are developing software tools that
can provide access to verification functionalities also to users not familiar with formal
methods. Section 6 briefly reviews some feedbacks from an application of COWS and
its related analysis techniques to the Finance case study.

2 A COWS Specification of the Finance Case Study

In this section, we present a relevant part of a COWS specification modelling the Fi-
nance case study (the whole specification is reported in [Tie09]). We will gently intro-
duce COWS’s syntax and semantics in a step-by-step fashion while commenting upon
the specification and refer the interested reader to Chapter 2-1 for a presentation of
COWS’s syntax and an informal explanation of its semantics.

We start with an informal specification of the scenario. The considered service pro-
vides a customer company with the possibility to ask for a loan to a bank and then
orchestrates the necessary steps for processing the credit request, which may involve
an evaluation by either a clerk or a supervisor before a contract proposal is sent to the
customer. Initially, the customer logins to the credit request service by providing his
username and password, then uploads the necessary data for his request. More specif-
ically, he firstly provides the credit data (e.g. the desired amount), then the securities
of the loan and his balance. When the request is completely filled by the customer, the
service calculates the rating of the customer request, by resorting on a (possibly) exter-
nal service, and takes a decision on it. The decision can be either to immediately accept
the request, if the rating value is “aaa”, or to accept or decline it according to a clerk
or a supervisor evaluation, if the rating value is “bbb” or “ccc”, respectively. In case of
a decline, the possibility to update the data and restart the request processing is given
to the customer. At any moment the customer may require to abort the process. If this
happens, the process terminates and, in case, the request data are deleted. As we will
see later on, this requires execution of compensation activities to semantically rollback
the action of storing the request data performed by the involved services. This prevents
such services from maintaining information of already aborted requests.

The COWS term representing the overall scenario is

CreditInstitute | RatingProvider | BalanceAnalysisProvider
| SecurityAnalysisProvider | Portal



www.manaraa.com

700 S. Gnesi, R. Pugliese, and F. Tiezzi

The services above are composed by using the parallel composition operator | that
allows the different components to be concurrently executed and to interact with each
other.

CreditInstitute is defined as follows.

[customerManagement, creditManagement] ( CreditRequest
| CustomerManagement
| CreditManagement )

The term is the parallel composition of the (considered) subservices of the
credit institute. The delimitation operator [ ] is used here to declare that
customerManagement and creditManagement are shared partner names known
to CreditRequest, CustomerManagement and CreditManagement, and only to
them. Basically, this ensures that external services cannot directly interact with
CustomerManagement and CreditManagement, which are indeed ‘internal’ subservices
of CreditInstitute. Service CreditRequest is publicly invocable and can interact with
Portal and other external services, other than with the two above internal services.

Hereafter we only focus on service CreditRequest, which is defined as follows.

∗ [k, raise, xId, xName, xPassword]
creditReq • initialize?〈xId, xName, xPassword〉.

( customerManagement • checkUser!〈xId, xName, xPassword〉
| [xUserOK] creditReq • checkUser?〈xId, xUserOK〉.

( {| portal • initialize!〈xId, xUserOK〉 |}
| [i f , then]
( if • then!〈xUserOK〉
| if • then?〈false〉. ( kill(k) | {| raise • abort!〈〉 |} )
+ if • then?〈true〉.

( customerManagement • getCustomerData!〈xId, xName, xPassword〉
| [xLoginName, xFirstName, xLastName]

creditReq • getCustomerData?〈xId, xLoginName, xFirstName, xLastName〉.
Main ) ) ) )

The replication operator ∗ , that spawns in parallel as many copies of its argument
term as necessary, is exploited to model the fact that, whenever prompted by a cus-
tomer request, CreditRequest creates an instance to serve that specific request and is
immediately ready to concurrently serve other requests. Each such instance has a pri-
vate name k, a reserved partner name raise to raise fault signals, and its own copies
of variables xId, xName and xPassword. Name k introduces a named scope that groups
together all the activities of the instance, making it possible to associate with such
scope suitable termination activities, as well as ad hoc fault and compensation handlers.
Each interaction with the service starts with a receive activity of the form creditReq •

initialize?〈xId, xName, xPassword〉 corresponding to reception of a request emitted by Portal
on behalf of a customer. The receive activity creates a new service instance and initial-
izes the variables xId, xName and xPassword, declared local to the instance by the delim-
itation operator, with data provided by a customer. In particular, variable xId is used
to store a fresh datum, generated by Portal, univocally identifying a session of the



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 701

process (which, in COWS, coincides with an instance of the service). The identifier
allows CreditRequest to safely communicate with the involved services. In fact, in each
interaction among them, the identifier is used as a correlation datum, i.e. it appears
within each message. Pattern-matching permits locating such datum in the messages
and, therefore, delivering the messages to the instances identified by the same datum.

Once created, a CreditRequest’s instance requires CustomerManagement to check
the customer login data, by invoking the operation checkUser provided by the ‘internal’
partner name customerManagement through the invoke activity customerManagement •
checkUser!〈xId, xName, xPassword〉, and waits for a reply. The answer is forwarded to the
customer by means of the invoke activity portal • initialize!〈xId, xUserOK〉. To guaran-
tee eventual execution of this invoke, it is protected by the protection operator {| |} that
prevents it to be cancelled due to an abrupt termination of its enclosing scope k. Con-
currently, by exploiting the receive-guarded choice operator + and the private names
if and then, the instance can make a conditional choice based on the answer. A neg-
ative answer forces the immediate termination of the instance, through the execution
of the activity kill(k), and the emission of an (internal) fault signal raise • abort!〈〉.
Notice that, in this specific case, the fault signal is not caught and dealt with by any
fault handler. In case of a positive answer, the service instance gets the customer data
from CustomerManagement, by means of a pair of invoke-receive activities over the
operation getCustomerData, and activates the term Main, which is defined as follows.

[raise, comp]
( [kMain]

( [repeat, until, update, desired]
( repeat • until!〈〉
| ∗ repeat • until?〈〉.

[kloop]
( Creation
| update • desired?〈true〉. ( kill(kloop) | {| repeat • until!〈〉 |} )
+ update • desired?〈false〉.Finalize ) )

| creditReq • cancel?〈xId〉. ( kill(kMain) | {| raise • abort!〈〉 |} ) )

| raise • abort?〈〉.
[end]

( comp • creation!〈creation, end〉
| comp • end?〈〉.
( comp • handleBalanceAndSecurityData!〈handleBalanceAndSecurityData, end〉
| comp • end?〈〉. portal • abortProcess!〈xId〉 ) ) )

| ∗ [x, y] comp • creation?〈x, y〉. comp • y!〈〉
| ∗ [x, y] comp • handleBalanceAndSecurityData?〈x, y〉. comp • y!〈〉 )

This term models a ‘scope’ activity named kMain which is equipped with an event and
a fault handler. When the scope starts, the handlers are enabled. The event handler
(highlighted by a dark gray background) is activated by an invocation of the operation
cancel; this forces the immediate termination of all (unprotected) activities representing
the normal behaviour of the scope, by means of activity kill(kMain), and the execution



www.manaraa.com

702 S. Gnesi, R. Pugliese, and F. Tiezzi

of activity raise • abort!〈〉, which activates the fault handler. Then, the fault handler
(highlighted by a light gray background) sends two compensation signals along end-
points of the form comp • scopeName, where scopeName is replaced by creation and
handleBalanceAndSecurityData, and terminates by sending a message notifying the
customer that the process has correctly aborted. The private name end permits sequen-
tializing the above activities. It is worth noticing that, if no compensation handler has yet
been installed, the compensation activities have to immediately terminate without do-
ing nothing. To this aim, the two (replicated) receive activities comp • scopeName?〈x, y〉
catch the compensation signals, only if no compensation handlers are ready to do so1,
and reply with the corresponding termination signals.

The normal behaviour of the scope consists of a repeat-until loop, implemented by
using the replication operator together with the private names repeat and until. At
each iterative step, the term Creation is executed which upon termination allows a
conditional choice to be taken: if the customer has requested an update (i.e. activity
update • desired?〈true〉 is executed), the remaining activities of the current iterative
step are stopped (by the activity kill(kloop)) and the loop is restarted (by the signal
repeat • until!〈〉); if no update has been requested (i.e. activity update • desired?〈false〉 is
executed), the term Finalize is activated.

Finalize is simply the invoke activity

portal • goodbye!〈xId〉
that informs the portal that the process is concluded.

Creation is defined as follows.

[xCustomerId, xCreditAmount, xCreditType, xMonthlyInstalment]
creditReq • createNewCreditRequest?〈xId, xCustomerId, xCreditAmount, xCreditType, xMonthlyInstalment〉.
( creditManagement • initCreditData!〈xId, xCustomerId, xCreditAmount, xCreditType, xMonthlyInstalment〉
| creditReq • initCreditData?〈xId〉.

( portal • createNewCreditRequest!〈xId,working〉
| HandleBalanceAndSecurityData
| [xEnd] {| comp • creation?〈creation, xEnd〉.

( creditManagement • removeData!〈xId〉
| creditReq • removeData?〈xId〉. comp • xEnd!〈〉 ) |} ) ) )

After the data for a new credit request have been received, the service forwards them
to the credit management service and waits for an acknowledgement. Then, it replies
to the portal to notify that the system is working on the request, activates the term
HandleBalanceAndSecurityData, and installs a compensation handler for undoing the
activities previously performed along the operation initCreditData. The compensation
handler (highlighted by a gray background) is a protected term waiting for a compen-
sation request, i.e. a signal along comp • creation. When this signal is received, the
compensation handler becomes active and invokes the operation removeData provided
by creditManagement.

1 Indeed, because of the semantics of parallel composition, the receives comp •

scopeName?〈x, y〉 are assigned a lower priority than that assigned to the receives comp •

scopeName?〈scopeName, xEnd〉 performed by the compensation handlers.



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 703

HandleBalanceAndSecurityData is defined as follows.

[flow, end]
( ( portal • enterBalanceData!〈xId〉
| [xBalancePackage]
creditReq • enterBalanceData?〈xId, xBalancePackage〉.
( balance • updateBalanceRating!〈xId, xLoginName, xFirstName, xLastName, xBalancePackage〉
| creditReq • updateBalanceRating?〈xId〉. flow • end!〈〉 ) )

| ( portal • enterSecurityData!〈xId〉
| [xSecurityPackage]

creditReq • enterSecurityData?〈xId, xSecurityPackage〉.
( security • updateSecurityRating!〈xId, xLoginName, xFirstName, xLastName, xSecurityPackage〉
| creditReq • updateSecurityRating?〈xId〉. flow • end!〈〉 ) )

| flow • end?〈〉.
flow • end?〈〉.
( RatingCalculation
| [xEnd]
{| comp • handleBalanceAndSecurityData?〈handleBalanceAndSecurityData, xEnd〉.
[completed]
( balance • clearData!〈xId〉 | creditReq • clearData?〈xId, b〉. comp • completed!〈〉
| security • clearData!〈xId〉 | creditReq • clearData?〈xId, s〉. comp • completed!〈〉
| comp • completed?〈〉. comp • completed?〈〉. comp • xEnd!〈〉 ) |} ) )

It requires the customer to enter (in parallel) balance and security data and, then, sends
them to the balance and security services that store such data and, when requested,
will compute the corresponding ratings. When the parallel computation ends, i.e. after
that two signals along flow • end have been consumed, the term RatingCalculation is
activated and a compensation handler (highlighted by a gray background) for undoing
the already executed activities is installed. Notably, since the compensation activities
share the same operation name clearData, names b and s are used in the receiving
activities to distinguish the responses.

RatingCalculation is defined as follows.

rating • calculateRating!〈xId, xLoginName, xFirstName, xLastName〉
| [xResult, xRatingData] creditReq • calculateRating?〈xId, xResult, xRatingData〉.Decision

It invokes the service rating for getting the rating of the customer request. When an
answer is returned, it activates the term Decision, which is defined as follows.

[if , then, end, xManualAcceptance, x]
( if • then!〈xResult〉
| ( if • then?〈aaa〉.

[var, set] ( var • set!〈undef 〉 | var • set?〈xManualAcceptance〉. approval • end!〈〉 )
+ if • then?〈x〉.Approval )

| approval • end?〈〉.
( if • then!〈xResult, xManualAcceptance〉



www.manaraa.com

704 S. Gnesi, R. Pugliese, and F. Tiezzi

| [x1, x2, x3, x4]
( if • then?〈aaa, x1〉.Accept
+ if • then?〈x2, true〉.Accept
+ if • then?〈x3, x4〉.Decline ) ) )

Firstly, it checks the rating result. If it is aaa, the service assigns the value undef
to xManualAcceptance and skips the approval phase; otherwise, the term Approval starts.
Then, if the rating result is aaa or xManualAcceptance has been set to true (i.e. either
if • then?〈aaa, x1〉 or if • then?〈x2, true〉 is executed), the term Accept is activated; other-
wise, Decline is executed.

Approval is defined as follows.

[i f , then, x]
( if • then!〈xResult〉
| ( if • then?〈bbb〉.

portal • requestClerkApproval!〈xId, xRatingData〉
+ if • then?〈x〉.

portal • requestSupervisorApproval!〈xId, xRatingData〉 )
| [xApprovalData]

creditReq • approvalResult?〈xId, xManualAcceptance, xApprovalData〉. approval • end!〈〉 )
It checks if the rating result is equal to bbb. In the positive case, it requests a clerk
approval, otherwise a supervisor approval. After a response from either a clerk or a
supervisor, it terminates the approval phase by sending the signal approval • end!〈〉.

Decline is defined as follows.
creditManagement • generateDecline!〈xId, xRatingData〉
| [xDeclineData] creditReq • generateDecline?〈xId, xDeclineData〉.

( portal • declineToClient!〈xId, xDeclineData〉
| [xUpdateDesired] creditReq • declineToClient?〈xId, xUpdateDesired〉.

update • desired!〈xUpdateDesired〉 )
It requires the credit management service to generate the decline data and forwards
them to the customer. The customer will reply by indicating if he desires or not a data
update, and such response will be sent to the main scope (see the definition of the term
Main) by means of the invoke activity update • desired!〈xUpdateDesired〉.

Finally, Accept is defined as follows.

creditManagement • generateOffer!〈xId, xRatingData〉
| [xAgreementData]

creditReq • generateOffer?〈xId, xAgreementData〉.
( portal • offerToClient!〈xId, xAgreementData〉
| [xAccepted]

creditReq • offerToClient?〈xId, xAccepted〉.
[if , then, end]
( if • then!〈xAccepted〉
| if • then?〈false〉. update • desired!〈false〉
+ if • then?〈true〉.

( creditManagement • acceptOffer!〈xId, xAccepted〉
| portal • acceptOffer?〈xId〉. update • desired!〈false〉 ) ) )



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 705

It behaves similarly to the previous term, except for the fact that an offer is generated
instead of a decline and, moreover, the acceptance of the offer by the customer is sent to
the credit management service. Notice that, whether the customer accepted or not, the
activity update • desired!〈false〉 is executed to indicate to the main scope that the data
update is not desired.

3 A Logical Methodology for Checking Functional Properties

In this section, we present a solution to the Functional Service Verification pattern
(see Chapter 7-5), where service behavioural properties are expressed using the action-
and state-based, branching-time, temporal logic SocL and verified using the on-the-fly
model checker CMC. Both SocL and CMC are part of a methodology for verifying func-
tional properties of services introduced in [FGL+08] and also described in Chapters 4-3
and 4-2; there, among many other Sensoria tools, the tool UMC is also described which
is based on the same CMC’s underlying computational model but uses UML statecharts,
rather than COWS, as an input specification language. Here we briefly report the main
ingredients of the logic and refer the interested reader to [FGL+08] (and Chapter 4-2)
for a formal account of the semantics of SocL formulae.

This approach takes an abstract point of view: services are thought of as software en-
tities which may have an internal state and can perform actions, by which they can also
interact with each other. A service is thus characterized in terms of states and atomic
propositions that are true over them, and of state changes and actions performed when
moving from one state to another. Atomic propositions express the potential capability
of the service to perform a specific action, i.e. that in a given state the action is enabled.

An action has a type, e.g. accept a request, provide a response, etc., and is part of
a possibly long-running interaction started when a client firstly invokes one of the op-
erations exposed by the service. Thus, according to this view, an interaction identifies
a collection of actions, each of them corresponding to a single invocation of a service
operation. Since service operations can be independently invoked by several clients,
multiple instances of a same interaction can be simultaneously active. To univocally
identify an action, correlation data are used as a third attribute of service actions.

Correspondingly, the actions of the logic are characterised by three attributes: type,
interaction name, and correlation data. They may also contain variables, called cor-
relation variables, to enable capturing correlation data used to link together actions
executed as part of the same interaction. For a given correlation variable var, its bind-
ing occurrence is denoted by var; all remaining occurrences, that are called free, are
denoted by var. Formally, SocL actions have the form t(i, c), where t is the type of
the action, i is the name of the interaction which the action is part of, and c is a tuple
of correlation values and variables identifying the interaction (i and c can be omitted
whenever do not play any role). We use α as a generic action (notation · emphasises
the fact that the action may contain variable binders), and α as a generic action without
variable binders. SocL atomic propositions have the form p(i, c), where p is the name,
while i and c are as above. We will use π as a generic atomic proposition.

For example, action request(cr, 1234, 1) could stand for a request action for start-
ing an (instance of the) interaction cr which will be identified through the correlation



www.manaraa.com

706 S. Gnesi, R. Pugliese, and F. Tiezzi

tuple 〈1234, 1〉. A response action corresponding to the request above could be writ-
ten as, e.g. response(cr, 1234, 1). If some correlation value is unknown at design time,
e.g. the identifier 1, a (binder for a) correlation variable id can be used instead, as in
the action request(cr, 1234, id). A corresponding response action could be written as
response(cr, 1234, id), where the (free) occurrence of the correlation variable id indi-
cates the connection with the action where the variable is bound. Similarly, actions like
cancel(cr, 1234, id), fail(cr, 1234, id) and undo(cr, 1234, id) could indicate cancellation,
failure and compensation notification for the same request. As regards atomic proposi-
tions, accepting request(login) indicates that a state can accept requests for interaction
login, while proposition accepting cancel(cr, 1234, id) indicates that a state permits to
cancel those requests for interaction cr identified by the correlation tuple 〈1234, id〉.

The syntax of SocL formulae is defined as follows:

(state formulae) φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

(path formulae) Ψ ::= Xγφ | φ χUγ φ′ | φ χWγ φ′
(action formulae) γ ::= α | χ χ ::= tt | α | τ | ¬χ | χ ∧ χ

where state formulae are the main syntactic category.
We comment on salient points. Action formulae are simply boolean compositions of

actions, where tt is the action formula always satisfied, τ denotes unobservable actions,
¬ and ∧ are the standard logical operators for negation and conjunction, respectively.
As usual, we will use ff to abbreviate ¬tt, χ∨χ′ to abbreviate ¬(¬χ∧¬χ′) and φ1 ⇒ φ2

to abbreviate ¬φ1 ∨ φ2. π denotes an atomic proposition, that is a property that can be
true over the states of services. Atomic propositions have the form p(i, c), where p is
the name, i is an interaction name, and c is a tuple of correlation values and variables
identifying i (as before, i and c can be omitted whenever do not play any role). E and
A are existential and universal (respectively) path quantifiers. X and U are the next
and (strong) until operators [DV90], while W is the weak until operator [MKB08].
Intuitively, the formula Xγφ says that in the next state of the path, reached by an action
satisfying γ, the formula φ holds. The formula φχUγ φ′ says that φ′ holds at some future
state of the path reached by a last action satisfying γ, while φ holds from the current
state until that state is reached and all the actions executed in the meanwhile along the
path satisfy χ. The formula φχWγ φ′ holds on a path either if the corresponding formula
with strong until operator holds or if for all the states of the path the formula φ holds
and all the actions of the path satisfy χ.

Other useful operators can be derived as usual; those that we use in the sequel are:

– [γ] φ stands for ¬ EXγ ¬ φ and means that no matter how a process performs an
action satisfying γ, the state it reaches in doing so will necessarily satisfy φ.

– EFφ stands for φ ∨ E(true tt Utt φ) and means that there is some path that leads to a
state at which φ holds; i.e., φ potentially holds.

– EFγ φ stands for E(true tt Uγ φ) and means that there is some path that leads to a
state at which φ holds reached by a last action satisfying γ; if φ is true, we say that
an action satisfying γ will eventually be performed.

– AFγ φ stands for A(true tt Uγ φ) and means that an action satisfying γ will be per-
formed in the future along every path and at the reached states φ holds; if φ is true,
we say that an action satisfying γ is inevitable.



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 707

– AGφ stands for ¬ EF ¬ φ and means that φ holds at every state on every path; i.e.,
φ holds globally.

Properties of the case study specified with SocL. In [FGL+08] we have singled out
many significant classes of desirable properties of the externally observable behaviour
of services. Over the COWS specification presented in Section 2, by using the model
checker CMC, we have checked the following properties:

Availability:
AG(accepting request(login))
This formula means that the service CreditRequest is available, i.e. it is always
capable to accept a login request.

Responsiveness:
AG [request(cr, id)] AFresponse(cr,id)∨cancel(cr,id) true
This formula means that CreditRequest is responsive, i.e. it always guarantees an
answer (i.e. an offer or a decline, sent by means of action response(cr, id) ) to each
received credit request, unless the customer cancels his own request (by means of
action cancel(cr, id) ). The answer from CreditRequest and the request of cancel-
lation from Portal belong to the same interaction cr of the credit request and are
properly correlated by variable id.

Interruptibility:
AG [request(cr, id)] A(accepting cancel(cr, id) tt Ucancel(cr,id)∨response(cr,id) true)
The system can accept a cancellation of a credit request, after that the customer has
sent his credit request and until he cancels the request or receives an answer.

Compensability:
AG [request(rating, id)] EFcancel(cr,id) AFundo(cr,id) AFundo(cr,id) AFundo(cr,id) true
We want to ensure that if a cancellation is requested after the rating calculation has
started, then all compensation activities of services balance, security and
creditManagement will be executed. Each such compensation corresponds to per-
forming action undo(cr, id). Thus, by exploiting the fact that any compensation ac-
tivity can be executed at most once (this can be easily checked separately for each
compensation activity), we require all computations after a cancellation to contain
three occurrences of undo(cr, id).

Fault handling:
AG (raising abort(cr) ⇒ AFfail(cr) true)
Whenever an abort exception is raised (atomic proposition raising abort(cr) ), the
failure is notified to the customer (by means of action fail(cr) ).

Model checking SocL formulae. The formulae presented in Section 3 are stated in terms
of abstract actions and atomic propositions, meaning that, e.g., a credit is requested or
the system is ready to accept a login. In other words, the properties we want to verify
are formalized as SocL formulae in a completely independent way of the service spec-
ification. This is a key feature of the verification methodology introduced in [FGL+08].
To perform the verification, these formulae must be tailored to the COWS specifica-
tion of Section 2 that is expressed in terms of concrete actions, i.e. communication of
data tuples along endpoints. This is done by defining an appropriate set of abstraction



www.manaraa.com

708 S. Gnesi, R. Pugliese, and F. Tiezzi

rules that relate the actions in the specification to the actions and atomic propositions
in the SocL formulae. These rules are provided as an input to CMC, together with the
COWS specification and the SocL formula to be checked, and are used by the tool to
transform the labels of the Doubly Labelled Transition System (L2TS) corresponding to
the COWS specification during its on-the-fly generation. It is worth noticing that in the
L2TS corresponding to a COWS term, each transition is labelled with the actions per-
formed when moving from the source state to the target one, while each state is labelled
with the actions enabled in that state. CMC supports the overall verification process.

The abstraction rules we have used for our analysis are

Action createNewCreditRequest〈$id, ∗, ∗, ∗, ∗〉 → request(cr, $id)
Action offerToClient〈$id, ∗〉 → response(cr, $id)

Action declineToClient〈$id, ∗〉 → response(cr, $id)
Action cancel〈$id〉 → cancel(cr, $id)

Action calculateRating〈$id, ∗, ∗, ∗〉 → request(rating, $id)
Action clearData〈$id〉 → undo(cr, $id)

Action removeData〈$id〉 → undo(cr, $id)
Action abortProcess→ fail(cr)

State abort!→ raising abort(cr)
State initialize?→ accepting request(login)

State cancel?〈$id〉 → accepting cancel(cr, $id)

The metavariable “$id” is used to capture the corresponding argument of the opera-
tion so that it can be used in the abstract action, while the wildcard “∗” is used as a
placeholder for any argument.

We comment on some of the rules, the remaining ones can be interpreted simi-
larly. The first rule prescribes that whenever a concrete action involving the operation
createNewCreditRequest (with any five arguments) occurs in the label of a transition,
then it is replaced by the abstract action request(cr, 1234) (where we suppose that 1234
is the value passed as the first argument to createNewCreditRequest). This way, while
the first datum exchanged when executing operation createNewCreditRequest is pre-
served (that is the session identifier), the other four data are discharged in the ‘abstrac-
tion process’. Similarly, the second rule prescribes that whenever an action involving
the operation offerToClient (with any pair of arguments) occurs in the label of a transi-
tion, then it is replaced by the abstract action response(cr, 1234). Again, the preserved
datum is the session identifier which is used to correlate responses from the contacted
CreditRequest service. To correlate cancellations to the corresponding credit requests,
the fourth rule permits replacing an action involving the operation cancel (with one ar-
gument) by the abstract action cancel(cr, 1234). The last three rules work similarly, but
they relate concrete actions labelling states (rather than transitions) to atomic proposi-
tions. The symbols “!” and “?” permit specifying if a rule applies to invoke actions or
to receive ones, respectively.

The verification process shows that all the abstract properties we presented in Section 3
do hold for the COWS specification of the Finance case study presented in Section 2, ex-
cept for the last property. Indeed, if during the login phase CustomerManagement replies
to CreditRequest that the customer username and password are not correct, CreditRequest
raises a fault that is not caught by any fault handler. Thus, no message is sent to the



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 709

customer to notify him that the process has been aborted. This can be remedied by associ-
ating a fault handler behaving as the Main’s fault handler to the activities for initialization
performed within the term CreditReq.

4 A Type System for Checking Confidentiality Properties

In this section, we present a solution to the Service Specification and Analysis (see
Chapter 7-5) through the type system for COWS introduced in [LPT07b]. This type
system permits expressing and forcing policies regulating the exchange of data among
interacting services and ensuring that, in that respect, services do not manifest unex-
pected behaviours. This enables us to check confidentiality properties, e.g., that critical
data such as personal information are shared only with authorized partners.

The types express the policies for data exchange in terms of regions, i.e. sets of
service partner names attachable to each single datum. Service programmers can thus
settle the partners usable to exchange any given datum (and, then, the services that can
share it), thus avoiding the datum being accessed (by unwanted services) through unau-
thorised partners. Then, a type inference system (statically) performs some coherence
checks (e.g. the service used in an invocation must belong to the regions of all data
occurring in the argument of the invocation) and annotates variable declarations with
the minimal regions that ensure consistency of services initial configuration. COWS
operational semantics uses these annotations in very efficient checks (i.e. subset inclu-
sions) to authorise or block transitions, in order to guarantee that computations proceed
according to them. This property, called soundness, can be stated as follows: a service
s is sound if, for any datum v in s associated to region r and for all evolutions of s, it
holds that v can be exchanged only by using services in r. As a consequence of the type
soundness of the language, it follows that well-typed services always comply with the
policies regulating the exchange of data among interacting services.

We illustrate now some relevant properties for the Finance case study. We first con-
sider the point of view of the customer, then that of the service.

From the customer point of view, the service programmer can specify policies stating
that the customer’s personal information and the credit request data cannot become avail-
able to unauthorised users. Thus, for example, the balance data balancePackage, commu-
nicated by Portal to CreditRequest and, then, forwarded to service
BalanceAnalysisProvider, gets annotated with the policy {creditReq, balance}, that al-
lows CreditRequest and BalanceAnalysisProvider to receive the datum but prevents them
from transmitting the datum to other services. Other non-critical data, e.g. customerId,
can be transmitted without an attached policy. The service invocations performed by
Portal get annotated as follows:

creditReq • createNewCreditRequest!〈id, customerId, {amount}{creditReq,xcreditMng},
{mortgage}{creditReq,xcreditMng},{instalment}{creditReq, xcreditMng}〉

creditReq • enterBalanceData!〈id, {balancePackage}{creditReq,balance}〉
creditReq • enterSecurityData!〈id, {securityPackage}{creditReq, security}〉

Notice that, while it is perfectly reasonable to assume that the partner names balance
and security are known a priori by Portal, the partner name of the credit management



www.manaraa.com

710 S. Gnesi, R. Pugliese, and F. Tiezzi

service, since it is private, must be communicated by CreditRequest to Portal at run-
time. Indeed, besides policies fixed at design time, the type system permits to ex-
press also policies that depend on values discovered at runtime. Thus, in our example,
to support communication of the partner name initially unknown, the invoke activity
portal • initialize!〈xId, xUserOK〉 performed by CreditRequest, which notifies the result of
the login check to the customer, has to be modified as follows

portal • initialize!〈xId, xUserOK , customerManagement〉
The annotations set by programmers are written as a subscript of the datum to which
they refer to. Instead, the annotations put by the type inference, to better distinguish
them from those put by the programmers, are written as a superscript of the variable
declaration to which they refer to. Thus, the syntax of variable delimitation becomes
[{x}r] s, which means that the datum that dynamically will replace x will be used in s at
most by the partners belonging to the region r. Hence, for example, once the type infer-
ence phase ends, the term HandleBalanceAndSecurityData (subterm of CreditRequest)
gets annotated as follows
[flow, end]
( ( portal • enterBalanceData!〈xId〉
| [{xBalancePackage}{creditReq,balance}]

creditReq • enterBalanceData?〈xId, xBalancePackage〉.
( balance • updateBalanceRating!〈xId, {xLoginName}{balance}, {xFirstName}{balance},

{xLastName}{balance}, {xBalancePackage}{balance}〉
| creditReq • updateBalanceRating?〈xId〉. flow • end!〈〉 ) )

| ( portal • enterSecurityData!〈xId〉
| [{xSecurityPackage}{creditReq,security}]
creditReq • enterSecurityData?〈xId, xSecurityPackage〉.

( security • updateSecurityRating!〈xId, {xLoginName}{security}, {xFirstName}{security},
{xLastName}{security}, {xSecurityPackage}{security}〉

| creditReq • updateSecurityRating?〈xId〉. flow • end!〈〉 ) )
| flow • end?〈〉. . . . )

Indeed, the annotations inferred for variables xBalancePackage and xSecurityPackage are de-
rived from the use of these variables made by HandleBalanceAndSecurityData. Thus,
they are assigned regions {creditReq, balance} and {creditReq, security}, respectively,
because they are only used in the receives along creditReq • enterBalanceData and
creditReq • enterSecurityData, and in the invokes along balance • updateBalanceRating
and security • updateSecurityRating. Hence, the partner name of such endpoints must
belong to the region of the corresponding variables.

Now, Portal can safely communicate balance data (respectively, security
data) to CreditRequest, since the region {creditReq, balance} (resprespectively
{creditReq, security}) of the data contains the region of the receiving variable (in fact,
they coincide). More in general, the typed version of the credit request service, respects
all above defined policies.

Suppose instead that service CreditRequest (accidentally or maliciously) attempts to
reveal the balance data through some internal operation such as int • o!〈{xBalancePackage}r〉,
for some region r. For CreditRequest to successfully complete the type inference phase,
we should have int ∈ r. Then, as result of the inference, we would get the



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 711

annotated variable declaration [{xBalancePackage}r′ ] , for some region r′ with r ⊆ r′.
Now, the interaction between the typed terms Portal and CreditRequest would be
blocked by the runtime checks because the datum sent by Portal would be
annotated as {balancePackage}{creditReq,balance} while the region r′ of the receiving vari-
able xBalancePackage is such that int ∈ r ⊆ r′ � {creditReq, balance}.

From the CreditRequest’s point of view, the service programmer can require the
customer not to pass to other services the offer that has been specifically computed
for the customer demands. Therefore, the corresponding invocation performed by
CreditRequest gets annotated as follows:

portal • offerToClient!〈xId, {xAgreementData}{portal}〉
For what concerns the type inference of the involved terms we can reason as before.

5 Automated Verification of UML4SOA Models of Services

Although the logical verification methodology described in Section 3 is effective and
automated, people willing to use it are required to be able to understand and deal with al-
gebraic and logical tools, i.e. the process calculus COWS and the temporal logic SocL.
Sometimes this may not be the case, especially within industrial contexts. To make
the verification of service properties more accessible, we then put forward the idea of
exploiting translations of languages at different abstraction levels, i.e. modelling lan-
guages and process calculi, as those defined in [BFL+09, BPT09]. Here, we report on
an ongoing effort for devising an approach that integrates our verification methodology
with language translations aiming at obtaining verifiable implementations of service
components from abstract architectural models of business activities. To this aim, we
are developing two software tools2: UStoC, that supports translation from UML4SOA
to COWS, and Venus, that, by closely integrating UStoC and CMC, provides access to
verification functionalities also to those users not familiar with formal methods.

In Section 2, the UML4SOA activity diagrams specifying the behaviour of the
services involved in the Finance case study (presented in Chapters 0-3 and 7-1) are
translated ‘by hand’ into COWS terms to enable a subsequent analysis phase. By ac-
complishing this task, we have experimented how the specific mechanisms and primi-
tives of COWS are particularly suitable for encoding services specified by UML4SOA
activity diagrams. This is not surprising if one considers that both UML4SOA and
COWS are inspired by WS-BPEL. To formalize those intuitions and support a more
systematic and mathematically well-founded approach to engineering of SOA systems,
we have defined a compositional encoding of UML4SOA activity diagrams into COWS
terms. This way, developers can concentrate on modelling the high-level behaviour of
the system and use the encoding for analysis purposes. Such encoding is implemented
by UStoC, a software tool that given a UML4SOA specification, consisting of a set
of XMI files [OMG] automatically generated by the UML editor MagicDraw [NMI],
returns a COWS term written in the syntax accepted by CMC. UStoC’s workflow is
graphically depicted in Fig. 1.

2 Both tools are freely downloadable from http://rap.dsi.unifi.it/cows/ and can be
redistributed and/or modified under the terms of the GNU General Public License.



www.manaraa.com

712 S. Gnesi, R. Pugliese, and F. Tiezzi

Fig. 1. Verification process of UML4SOA models of services

UStoC works properly with activity diagrams specified by using version 1.2 of the
UML4SOA profile. Therefore, to use the tool for translating the Finance case study,
we need to specify the case study using the profile mentioned above. For the sake of
simplicity, we consider here just an excerpt of the scenario, which is composed of three
services: creditRequest that performs the initialization activities and terminates upon
receiving the data for a new credit request, customerManagementService that, when
invoked, non-deterministically replies either yes or no to every request, and portalSer-
vice that, if the login succeeds, non-deterministically sends either a credit request or
a cancellation request. The UML4SOA diagram modelling service creditRequest is
shown in Fig. 2. To analyse this scenario, firstly we generate a file XMI (saved with
extension .uml) for each UML4SOA diagram by using MagicDraw. Then, we load the
three created files into UStoC (by pushing the ‘Add’ button on the right-hand side of the
graphical interface, a screenshot of which is shown in Fig. 3) and encode them into a
COWS term (by pushing the ‘Start encoding’ button). Finally, we can export the COWS
term from UStoC to CMC and start to analyse it exactly as described in Section 3.

The above example shows how UStoC simplifies the modelling phase of the ver-
ification process by enabling the use of the abstract modelling language UML4SOA.
However, the problem of making more accessible our verification methodology to peo-
ple without significative expertise on process calculi and logics is not resolved. To rem-
edy this, we are developing Venus, a software tool that integrates UStoC and CMC
in order to hide the use of COWS and SocL and, hence, make the verification process
as much transparent as possible for developers. The issue of tailoring and reflecting
the (low-level) results obtained by the verification of COWS terms to the correspond-
ing (high-level) UML4SOA specifications is tackled by exploiting abstraction rules that
permit specifying a ‘bridge’ between the two specification levels.

Let us see how Venus can be used to analyse the excerpt of the Finance case study
previously introduced. First of all, similarly to UStoC, Venus requires the user to pro-
vide the XMI files storing the UML4SOA diagrams (Fig. 4). Then, it requires the user
to select the properties that he wants to verify out of a list of predefined general prop-
erties written in natural language (Fig. 5). Notably, expert users can add in the text area
at the bottom of the window further properties directly expressed as SocL formulae.
Now, the user has to define the intuitive semantics of the relevant operations of the
loaded UML4SOA specification. This is done by specifying the operations represent-
ing initial requests, positive responses, negative responses, cancellations, . . . , and by



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 713

creditRequest creditRequestactivity [   ]

<<scope>>

initialization

<<scope>>

main

<<receive>>

createNewCreditRequestportalService

<id,customerId,creditAmount,creditType,monthlyInstalment>

<<scope>>

<<raise>>

processCanceled

<<receive>>

cancel
portalService id

<<scope>>

<<compensate all>>

<<send>>

abortProcess
portalService id

<<send>>

goodbyeportalService id

<<send&receive>>

getCustomerData
customerManagementService

<id,name,password>

<id,loginName,firstName,lastName>

<<receive>>

initializeportalService <id,name,password>

<<send&receive>>

checkUsercustomerManagementService
<id,name,password>

<id,userOk>

<<send>>

initialize <id,userOk>portalService

<<raise>>

abort

e9

e8

e10

e11

e13

e14

e12

e4 [userOk=no]

e6

e3 [userOk=yes]

e5

<<exception>><<event>>

e7

e0

e15

e1

e2

e16

Fig. 2. Excerpt of the Finance case study: creditRequest



www.manaraa.com

714 S. Gnesi, R. Pugliese, and F. Tiezzi

Fig. 3. A screenshot of UStoC interface

Fig. 4. Venus interface: loading of UML4SOA diagrams



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 715

Fig. 5. Venus interface: selection of service properties

possibly indicating the corresponding correlation data (Fig. 6). In our example, we spec-
ify that an invocation of operation initialize corresponds to sending an initial request to
the service and the value that will be assigned to variable id will be used to correlate
positive and negative responses to such request. Notice that Venus requires to spec-
ify such operations only for the categories that are needed for checking the properties
previously selected (in this case, e.g., initial request, positive response and negative
response). Moreover, for each category, more than one operation can be specified by
using the associated ‘Add’ button. The information provided at this step are used, on
the one hand, to express the selected general properties as SocL formulae and, on the
other hand, to generate the abstraction rules that will be applied to the COWS term
resulting from the translation of the UML4SOA diagrams provided at the initial step.
Expert users can also provide here custom abstraction rules. Finally, Venus properly ar-
ranges all data, loads them into CMC, and allows the user to check the validity of each
property and, possibly, to require an explanation in case of a negative result (Fig. 7).



www.manaraa.com

716 S. Gnesi, R. Pugliese, and F. Tiezzi

Fig. 6. Venus interface: definition of the intuitive semantics of the relevant operations

6 Concluding Remarks

We have presented a COWS specification of the Finance case study and two analysis
techniques, namely a temporal logic and its model checker for expressing and checking
functional properties and a type system for guaranteeing confidentiality properties.

The specification of the case study demonstrates that COWS’s distinctive features,
as e.g. the termination constructs and the correlation mechanism, are effective tools for
specifying service-oriented systems. In fact, kill activities are suitable for representing
ordinary and exceptional process terminations, while protection permits to naturally
represent exception and compensation handlers that are supposed to run after normal
computations terminate. Even more crucially, the correlation mechanism permits to au-
tomatically correlate messages belonging to the same long-running interaction, prevent-
ing to mix messages from different service instances. Also the encoding of UML4SOA
in COWS, which is at the basis of the tools UStoC and Venus, has greatly benefitted
from COWS’s distinctive features. The definition of such an encoding appears to be
problematic and less intuitive if one use a different, e.g. session-based, calculus.

There are several requirements and properties concerning to liveness, correctness,
and security that an implementation of the Finance case study is expected to fulfill.



www.manaraa.com

The Sensoria Approach Applied to the Finance Case Study 717

Fig. 7. Venus interface: verification of the service properties

The methodology reported in Section 3, and then exploited by the tools presented in
Section 5, has proven to be very effective to check a large spectrum of behavioural
properties. With respect to the many other temporal logics proposed in the literature,
one important advantage of SocL is that the service properties can be formulated in a
way which is independent from individual service domains and specifications. Security
properties regarding the exchange of data among service components can be instead
insured by means of the type system reported in Section 4. Since it is not realistic to
assume complete knowledge of the whole system and access to the internal implemen-
tation of all the involved services, a practical implementation of this approach would
require services to declare how they use the data they exchange and should rely on a
mechanism ensuring that service behaviours do comply with their declaration. The run-
time support should also take charge of performing the checks described in Section 4 to
authorise or block transitions.

Some other analysis techniques for COWS terms have been developed as a result of
the Sensoria project. In particular, a Flow Logic for checking information flow proper-
ties is presented in [BNNP08], a stochastic extension of COWS that enables verification
of quantitative properties is presented in [PQ07] (see also Chapter 5-5), and a few ob-
servational semantics for checking interchangeability of COWS terms and conformance



www.manaraa.com

718 S. Gnesi, R. Pugliese, and F. Tiezzi

against service specifications are presented in [PTY09] (see also Chapter 2-2). However,
we have not yet results on the application of these techniques to the COWS specification
of the Finance case study.

References

[BFL+09] Bocchi, L., Fiadeiro, J.L., Lapadula, A., Pugliese, R., Tiezzi, F.: From Architectural
to Behavioural Specification of Services. ENTCS 253, 3–21 (2009)

[BNNP08] Bauer, J., Nielson, F., Nielson, H.R., Pilegaard, H.: Relational Analysis of Corre-
lation. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 32–46.
Springer, Heidelberg (2008)

[BPT09] Banti, F., Pugliese, R., Tiezzi, F.: Automated Verification of UML Models of Ser-
vices, Tech.Rep., DSI, Univ. Firenze (2009), http://rap.dsi.unifi.it/cows

[DV90] De Nicola, R., Vaandrager, F.W.: Action versus State based Logics for Transi-
tion Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419.
Springer, Heidelberg (1990)

[FGL+08] Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A
model checking approach for verifying cows specifications. In: Fiadeiro, J.L., In-
verardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg
(2008)

[LPT07a] Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Ser-
vices. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer,
Heidelberg (2007), Full version available at
http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf

[LPT07b] Lapadula, A., Pugliese, R., Tiezzi, F.: Regulating data exchange in service oriented
applications. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp.
223–239. Springer, Heidelberg (2007)

[MKB08] Meolic, R., Kapus, T., Brezocnik, Z.: ACTLW - an Action-based Computation Tree
Logic With Unless Operator. Elsevier Information Sciences 178(6), 1542–1557
(2008)

[NMI] No Magic Inc. MagicDraw UML personal edition 16.5,
http://www.magicdraw.com/

[OMG] Object Management Group. XMI Mapping Specification, v2.1.1
[PQ07] Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J., Narasimhan,

P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Heidelberg (2007)
[PTY09] Pugliese, R., Tiezzi, F., Yoshida, N.: On observing dynamic prioritised actions

in SOC. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 701–720. Springer, Hei-
delberg (2009)

[Tie09] Tiezzi, F.: A COWS specification of the Finance case study (version 4.6.2). Tech-
nical report, DSI, Univ. Firenze (2009), http://rap.dsi.unifi.it/cows/



www.manaraa.com

SENSORIA Patterns

Matthias Hölzl, Nora Koch, Philip Mayer, and Martin Wirsing�

Ludwig-Maximilians-Universität, München, Germany
{hoelzl,koch,mayer,wirsing}@pst.ifi.lmu.de

Abstract. We describe the SENSORIA development approach using a pattern
language for augmenting service engineering with formal analysis, transforma-
tion and dynamicity. The pattern language is designed to help software develop-
ers choose appropriate tools and techniques to develop service-oriented systems
with support from formal methods; the full pattern catalog spans the whole de-
velopment process from the modeling stage to deployment activities. Some of the
patterns are specific to SENSORIA; other patterns are extensions or adaptations of
patterns presented by other authors.

1 Introduction

The SENSORIA project is investigating a broad range of issues related to engineering
service-oriented architectures, ranging from foundational research to practically usable
tools. SENSORIA proposes a model-driven approach in which services are first modeled
in a platform-independent notation such as UML4SOA [14]; these designs are then
transformed into formal models that can be analyzed using tools based on mathemati-
cal methods. Afterwards, the design models can be used to generate code for different
service platforms.

The research results of SENSORIA are widely disseminated and well known in the
broader scientific community. However, scientific publications generally contain little
guidance for the practical software developer who seeks to apply them. To make re-
search results available in a way that is useful beyond the scientific community we
have developed a pattern catalog that enables software engineers to quickly determine
whether SENSORIA tools and techniques exist to address a particular development prob-
lem and, in the case of a positive answer, the recommended approach for employing
them.

Pattern-based approaches to presenting guidance for software developers has a well-
established history in computer science; patterns have been used to describe problems
and possible solutions in areas ranging from business processes to software design and
low-level implementation methods. Given the wide scope of SENSORIA it is not sur-
prising that the full catalog of SENSORIA patterns also encompasses a wide range of
abstraction levels, from implementation-oriented patterns in the spirit of [10] to archi-
tectural or process patterns. The pattern language is inspired by the “Pattern Language
for Pattern Writing” presented in [15], the pattern language used in [8] and the guidance
in [5]. For readers familiar with the pattern community, it should be noted that we use

� This work has been partially sponsored by the EU project SENSORIA (IST-2005-016004).

M. Wirsing and M. Hölzl (Eds.): SENSORIA Project, LNCS 6582, pp. 719–736, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



www.manaraa.com

720 M. Hölzl et al.

the pattern format as an expository tool; our patterns are not necessarily obtained by
“mining” existing applications for patterns.

1.1 Overview of SENSORIA Patterns

The patterns presented in this section can be classified into three different categories:

– Patterns for new activities in the software development process that allow SENSO-
RIA methods to be introduced. For example, the pattern Functional Service Verifi-
cation presented in this chapter is of this kind: it introduces the formal verification
of services and details the benefits and costs of performing such analysis.

– Patterns that show how SENSORIA techniques change an activity that is commonly
performed when developing and deploying service-oriented architectures. The pat-
terns Service Modeling and Generate Implementation in this chapter are examples
of this type of pattern: while all model-driven approaches generate parts of the
implementation from models, the benefits and costs of doing so vary significantly
when tools based on formal models are employed in the course of software devel-
opment.

– Adaptations of patterns presented by other authors, in those cases where the tools
and techniques developed by SENSORIA contribute novel aspects to the proposed
solution or offer new solution possibilities. In these cases we include an extended
version of the existing pattern in the SENSORIA pattern language to document the
influence of our techniques on the proposed solution and to point developers to the
tools that can be employed when realizing the pattern. Tailoring patterns to specific
tools or circumstances has a long tradition in the pattern community, see, e.g., [1],
which shows how the patterns in [10] can be adapted to a particular programming
language.

1.2 The SENSORIA Pattern Language

The pattern language used in this chapter is a slight revision of the one first introduced
in [25]; it is based on principles described in [15,5] and similar to the one used in [8].

As usual, each pattern consists of mandatory and optional elements which are pre-
sented in a fairly rigid structure to simplify the process of selecting and applying suit-
able patterns. The elements that have to be present in each pattern are:

– A pattern name that provides a short and descriptive way to refer to the pattern.
– A context in which the pattern is applicable: most patterns are not “universal” so-

lutions but only apply in certain circumstances which are described by the context.
– A concise description of the problem solved by the pattern. This is different from

the context in that the problem is the design or implementation challenge that is
directly addressed by the pattern whereas the context describes conditions in which
the pattern is applicable but which are generally not influenced by an application of
the pattern.

– The forces that determine whether using the pattern is appropriate.



www.manaraa.com

SENSORIA Patterns 721

– The solution proposed and the consequences resulting from the use of the solu-
tion. The solution is the concrete description how the pattern is applied; the conse-
quences show how this influences the resulting system. There is a certain amount
of overlap between consequences and forces, but generally the forces are more ab-
stract, concise and less precise than the detailed consequences.

– Furthermore each pattern has to be accompanied by examples. In this chapter we
mostly refer the reader to other chapters that demonstrate the relevant pattern.

Several optional sections can be used to clarify the pattern, e.g., related patterns, exam-
ple code or models, or tools to support the pattern. For space reasons we have omitted
some elements appearing in the full pattern catalog from some of the patterns in this
chapter.

This chapter is structured as follows: the following section contains patterns that out-
line a development process that allows SENSORIA techniques to be used to maximum
effect. Afterwards, section 3 shows an example how patterns for developing service-
oriented architectures from Erl’s pattern catalog [8] can be enhanced by making use of
SENSORIA results. The final sections present related work and conclude.

2 SENSORIA Development Patterns

This section uses patterns to describe a development process that makes maximum use
of SENSORIA results: Service Modeling introduces a modeling process using SoaML
and UML4SOA; this pattern is a slight revision of the one presented in [25]. Having
models in UML is the basis for two more patterns presented in this chapter: Extract
Formal Models and Generate Implementation. Formal models are mainly useful as in-
put for analysis tools; this is described by pattern Analyze with Formal Methods. Most
development projects extend or replace existing legacy systems. The pattern Extract
Service Model enables the developer to use SENSORIA tools and techniques for these
systems as well.

2.1 Service Modeling

Systems built on SOAs add new layers of complexity to software engineering, as many
different artifacts must work together to create the sort of loosely coupled, adaptive,
fault-tolerant systems envisioned in the service domain. It is therefore important to ap-
ply best practices already in use for older programming paradigms to services as well;
in particular, modeling of systems on a higher level of abstraction should be used to get
a general idea of the solution space. Modeling services should be possible in a language
which is both familiar to software architects and thus easy to use, but also contains the
necessary elements for describing SOA systems in a straightforward way.

Context. You are designing a system which is based on a SOA. The system is intended
to offer services to multiple platforms and makes use of existing services and artifacts
on multiple hosts which must be integrated to work together in order to realize the
functionality of the system.



www.manaraa.com

722 M. Hölzl et al.

Problem. When designing SOA systems, it is easy to get lost in the detail of technical
specifications and implementations. Visualizing the planned service oriented architec-
ture is therefore crucial for effective task identification, separation, and communication.
Using a familiar, easy-to-understand, and descriptive language is a key success factor
in this context.

Forces.

– The amount of specifications and platforms in the SOA domain makes it difficult
to get a general idea of the solution space.

– Modeling the whole system in an abstract way gives a good overview of the tasks to
be done, but does not directly yield tangible results. For small systems and projects,
it is necessary to tailor this modeling task or even to skip it altogether.

– The model must be updated to reflect the architecture if it changes during imple-
mentation, or if new requirements appear.

– The model is platform independent, and may be used to generate significant parts
of the system. In case the system’s target platform is not fixed or may experience
changes, the workload involved in system re-implementation can be reduced con-
siderably.

– Having a global architectural view eases the task of understanding the SOA envi-
ronment. This fact is of major significance if the SOA environment is to be extended
by another team of software engineers or at a later date.

– The envisioned target platform(s) and language(s) should be supported by the mod-
eling approach such that code generation may be used.

Solution. Use a specialized (graphical) modeling language to model the system and
employ these models as far as possible for generating the system implementation. There
are several languages which might be employed for this kind of task. One of the most
widespread modeling languages in the software engineering domain is the Unified Mod-
eling Language (UML). As UML itself does not offer specific constructs for modeling
service-oriented artifacts, it needs to be extended using its built-in profile mechanism.
SoaML [18] and UML4SOA [14] are two such profiles, which together enable modeling
of both static and dynamic aspects of service-oriented systems. SoaML allows modeling
the static part of SOA systems and features specialized constructs for services, service
providers, and message types. UML4SOA complements SoaML with support for the
dynamic parts of SOA systems, featuring service interactions, long-running transac-
tions, and event handling. Models designed using SoaML and UML4SOA can be used
in a model driven development approach for SOA, MDD4SOA [14], which offers tools
for generating code.

Consequences. Pros: A positive result of modeling a service-oriented system in a high-
level way is that it gives a better idea of how the individual artifacts fit together. This is
of particular importance in larger projects and for communication between developers
and/or the customer. By using transformations, the models can also be employed for
generating skeletons to fill with the actual implementation. However, the effort involved
in creating readable models should not be underestimated. Also, care should be taken to



www.manaraa.com

SENSORIA Patterns 723

only model aspects relevant on the design level instead of implementing the complete
system on the modeling level.

Cons: Often the fully automated generation of implementations is not feasible; in-
stead only implementation fragments can be generated and their implementation has to
be completed manually. In this scenario model/implementation divergence may pose
a significant problem and special care has to be taken that models are kept consistent
with the implementation. This increases the cost of modeling and reduces the benefit of
model-driven development.

Tools. The use of a UML profile has the advantage that all UML CASE tools that
support the extension mechanisms of the UML can be used, i.e. there is no need for
the development of specific and proprietary tools. The SoaML and UML4SOA profiles
may be provided already for the UML tool of choice, or may be defined by the means
provided by the platform. In the SENSORIA project, the UML4SOA profile was defined
for the Rational Software Modeler (RSM) and MagicDraw; SoaML is available for
these platforms as well. MDD4SOA provides executable transformations for models
from both UML tools to code skeletons of various target platforms, including the Web
service platform and the Java platform. The transformers are integrated into the Eclipse
environment.

Examples. More detailed descriptions of languages for service modeling and their ap-
plications are given in Chapter 1-1 (UML Extensions for Service-Oriented Systems)
and Chapter 1-2 (The SENSORIA Reference Modelling Language); a model-driven ap-
proach to business processes is introduced in Chapter 1-3 (Model-Driven Development
of Adaptable Service-Oriented Business Processes). More detailed examples for models
can be found in the chapters on case studies, in particular Chapter 7-4 (The SENSORIA

Approach Applied to the Finance Case Study) and Chapter 7-2 (SENSORIA Results
Applied to the Case Studies).

Related Patterns. This pattern forms the basis for the approach described in this chap-
ter; it is a requirement for Extract Formal Models and Generate Implementation.

2.2 Extract Formal Models

Context. You have modeled a part of the system using UML4SOA and want to ensure
that the model satisfies certain properties.

Problem. Many properties of models in UML4SOA cannot be directly analyzed. Man-
ually building models for formal analysis has several disadvantages: (1) The manually
created models may not faithfully represent the UML4SOA model. (2) Manually build-
ing models is a time-intensive process. (3) The model has to be manually kept in sync
with changes made to the UML4SOA model.

Forces.

– Extraction of formal models allows the UML4SOA model to be analyzed without
manually creating additional models.



www.manaraa.com

724 M. Hölzl et al.

– The extracted model faithfully represents the UML4SOA model if the extractor is
correct.

– The extracted model may be more complicated than a manually created model and
contain details that are unnecessary for the desired analysis. This may significantly
increase the complexity of the analysis step.

– The UML4SOA model has to be elaborated in detail to contain enough information
for model extraction.

Solution. Use tools to automatically extract formal models from the UML4SOA mod-
els. The kind of models that should be extracted depend on the analysis that is to be
performed.

Consequences. Pros: Manually building formal models is expensive and not econom-
ically feasible for most large systems. Additionally, a manual extraction process may
introduce errors not present in the original model, or fail to correctly specify all sub-
tleties of the original model. If a tool that automatically extracts the required models
exists, analysis with formal methods becomes more reliable and significantly cheaper.
SENSORIA provides a number of model transformations from UML4SOA into pro-
cess calculi and orchestration languages – for example, the process calculi COWS and
PEPA, or the language BPEL. These tools can be integrated into the build process of
the system such that the availability of up-to-date formal models is ensured.

Cons: Automatically generated models often contain details that are not relevant to
the performed analyses. Since many tools based on formal methods suffer from “state
explosion” problems, the increased size of the extracted model can impede analysis
efforts.

Tools. SENSORIA provides various tools for transforming UML models (and in partic-
ular, SoaML and UML4SOA models). The model transformer Hugo/RT [12] translates
UML specifications into input languages for the well-known model checkers UPPAAL
and SPIN. The SRMC/UML bridge translates UML4SOA activities into the process
calculus PEPA [23]. The VENUS tool allows converting UML4SOA activities into the
process calculus COWS [13]. Furthermore, the MDD4SOA transformer suite [14] trans-
lates UML4SOA diagrams to Java, the orchestration language Jolie, and WS-BPEL; the
latter can be used as input for the verification tool WS-Engineer [9].

Examples. A detailed example of how the pattern Extract Formal Models can be used
in the software development process can be found in Chapter 6-1 (Methodologies for
Model-Driven Development and Deployment: an Overview); more details about trans-
formations is contained in Chapter 6-2 (Advances in Model Transformations by Graph
Transformation: Specification, Analysis and Execution).

Related Patterns. The pattern Extract Formal Models is closely related to Analyze with
Formal Methods since model extraction often precedes formal analysis. It is also related
to Generate Implementation since the additional modeling effort required for formal
analysis can better be recouped if the model also serves as input to code generation.



www.manaraa.com

SENSORIA Patterns 725

2.3 Analyze with Formal Methods

While models are often at a higher level of abstraction than code, they nevertheless are
susceptible to the same problems: they may not satisfy certain properties that the mod-
eler expects them to have; different models may specify the same part of the system in
contradictory ways, etc. Unless the models are executable and therefore relatively low-
level, these defects may remain undetected until the system is actually implemented.
This negates one of the main benefits that modeling is supposed to provide.

Context. You have either extracted or manually specified formal models of the system.

Problem. You want to verify that the formal models satisfy certain properties, e.g., a
given service should always be available to accept new requests or the overall system
should be free from deadlocks.

Forces.

– Formal models of the components under consideration exist or can be extracted.
– The desired properties can be formally specified.
– Developers have to be qualified to decide which analysis tools are adequate for the

given problem, be able to use the tools, and in some cases interpret their output.

Solution. Use tools based on formal methods such as model checkers or the perfor-
mance analysis tools for Pepa [6,11] to analyze whether the desired properties hold.

Consequences. Pros: Tools based on formal methods can verify that the system satis-
fies certain properties that are difficult to check otherwise, or that the system exhibits
certain performance characteristics. If the tools can be applied at an early stage of sys-
tem development it is possible to find design and modeling errors long before the system
is implemented and therefore reduce the development cost. Furthermore, certain kinds
of errors that are well-suited to formal analysis, such as deadlocks or unintended inter-
actions that divulge secret information to third parties, are notoriously difficult to find
using traditional approaches.

Cons: On the other hand the use of analysis tools based on formal methods requires
a lot of experience on the part of the users: even when using hidden formal methods
the user has to be able to determine which properties of the system are amenable to
formal analysis, which tools are appropriate, and how the desired properties can be en-
coded. This can, to a certain extent, be ameliorated by new developments such as Venus
[22], but it is unlikely that the use of formal methods will be completely transparent
to the developer in the foreseeable future. Furthermore, many tools based on formal
methods require a detailed specification of the complete system behavior and therefore
necessitate comprehensive models of all system components, even ones that are not di-
rectly involved in the behavior under consideration. Related to this last point is another
weakness of some formal methods: they cannot work on open systems and results can
therefore only be obtained for “closed approximations” of the specified system. This is,
in general, not problematic when the existence of undesirable behavior is demonstrated
by the formal analysis, e.g., when deadlocks or traces which validate system invariants
are found. But it is often not clear that positive results, e.g., the absence of invalid traces,
can be transferred from a closed approximation to the open system.



www.manaraa.com

726 M. Hölzl et al.

Tools. SENSORIA provides several tools for formal analysis and verification. WS-
Engineer [9] is a verification tool for performing model-based verification of web
service compositions. The SRMC/PEPA tool [23] covers steady-state analysis of the
underlying Markov chain of SRMC descriptions. CMC and UMC are model checkers
and analyzers for systems defined by interacting UML statecharts [21]. The sCOWS
Model Checker [20] allows to perform statistical model checking on sCOWS, a stochas-
tic extension of COWS. Finally, the LySA tool is a static analyzer for security protocols
defined in the LYSA process calculus [4].

Examples. Parts 2, 4 and 5 of this book contain many examples for formal analy-
sis methods; in particular, examples for qualitative analysis techniques can be found
in Chapter 2-3 (Static Analysis Techniques for Session-Oriented Calculi), Chapter
4-1 (Analysing the Protocol Stack for Services), Chapter 4-2 (An Abstract, On-
The-Fly Framework for the Verification of Service Oriented Systems), Chapter 4-3
(Tools and Verification), and Chapter 4-4 (Specification and Analysis of Dynamically-
Reconfigurable Service Architectures); examples for quantitative analysis techniques
are given in Chapter 5-1 (SoSL: Service Oriented Stochastic Logics), Chapter 5-2 (Eval-
uating Service Level Agreements using Observational Probes), Chapter 5-3 (Scaling
Performance Analysis using Fluid-Flow Approximation), Chapter 5-4 (Passage-End
Analysis for Analysing Robot Movement) and Chapter 5-5 (Quantitative Analysis of
Services).

Related Patterns. The formal models for analysis can often be extracted as described
in the pattern Extract Formal Models. The detailed system model needed for formal
analysis often contains many of the same model refinements that are needed to employ
the Generate Implementation pattern.

2.4 Generate Implementation

Generating implementations from models is the key characteristic of model-driven de-
velopment. The SENSORIA approach for formally supported software development sup-
ports such generation with multiple tools.

Context. You are deciding which development approach to apply to a software system,
or you have already developed (UML/UML4SOA) models for the system. You want to
implement the system on one or more platforms.

Problem. While UML models are a useful development tool, many models do not
specify executable behavior, and even for behavioral models there is no widely used
execution platform that can directly operate on UML models.

Forces.

– UML models can be specified at various levels of abstraction ranging from very
abstract structural views of a system to detailed behavioral descriptions.

– Even behavioral specifications are often not detailed enough to completely describe
the intended behavior of the system.



www.manaraa.com

SENSORIA Patterns 727

– The amount of work to fully specify all system behaviors is significant when com-
pared to the commonly used level of abstraction for models.

– Implementations can be obtained in various ways: manual implementation of the
model, partial code-generation by a CASE tool, or generation of the complete ap-
plication.

– Some parts of an application are not easily specified using UML, e.g., user inter-
faces.

Solution. Fully specify the important behavior of the system (that implements the
business process) in the model, generate code from this implementation, and manually
implement parts of the code that are difficult to model and verify.

Consequences. Pros: By generating the implementation from models, the correctness
of the implementation relative to the model depends only on the quality of the trans-
formation from models to code. Once a mature code generator has been developed, the
consistency of model and implementation can be assumed. Changes to the model can
immediately be reflected in the implementation without incurring additional implemen-
tation costs.

Generating implementations for different execution platforms is easy if model trans-
formations into all platforms exist. Only the manually written parts of the code have
to be rewritten when supporting an new platform or transitioning to a new platform.
Necessary deployment artifacts can automatically generated.

Neutral: By manually implementing those parts of the system which are difficult to
express in UML and for which no formal verification is necessary, the modeling effort
can be reduced, at the cost of an increase in platform dependencies and implementation
costs.

Cons: The required detail of the models increases significantly, thereby making the
modeling step more time consuming and increasing the difficulty of changes to the
models. If no model transformation into the desired target platform is available it has to
be developed, often at significant cost. In some cases, manually generated code can be
smaller and more efficient than automatically generated code; in particular if the code
generator is not sophisticated enough to perform static analysis and optimization. This
may be particularly significant when developing software for embedded or otherwise
resource-constrained systems. Furthermore, debugging of generated implementations
often has to be performed at the source-code level since no back-translation from code
to model elements is available in the debugger. This can make debugging of generated
implementations difficult.

Tools. SENSORIA provides both a generic model transformation tool for writing and
executing arbitrary transformations and specific tools tailored towards a single use
case. The former tool is Viatra2 [24], a framework which provides general-purpose
support for the entire life-cycle of engineering model transformations including the
specification, design, execution, validation and maintenance of transformations within
and between various modeling languages and domains. The latter are provided by
multiple tools. The first two are written in VIATRA2: The SOA2WSDL transforma-
tion takes high level UML4SOA models and produces WSDL output, whereas the



www.manaraa.com

728 M. Hölzl et al.

UML2Axis transformations take high level UML4OA models and produce WSDL,
WS-ReliableMessaging, WS-Security and Apache Axis-specific configuration files as
output. The tool suite MDD4SOA [14] already mentioned above transforms SoaML
and UML4SOA models to BPEL, WSDL, and XSD as well as Java and Jolie. Finally,
the Modes Parser and Browser [9] generates broker requirements for Dino from UML2
Modes models.

Examples. The chapters on the SENSORIA case studies contain examples for the gen-
eration of implementations, see in particular Chapter 7-4 (The SENSORIA Approach
Applied to the Finance Case Study) and Chapter 7-2 (SENSORIA Results Applied to
the Case Studies).

Related Patterns. This pattern enjoys a synergistic relationship with Extract Formal
Models, since a more detailed UML model can enable both extraction of formal models
and generating the implementation. This can significantly alter the cost/benefit balance
of detailed modeling.

2.5 Extract Service Model

Service-oriented architectures are generally not developed from scratch; in most cases
the functionality of existing business-critical legacy systems has to be integrated or re-
placed. A number of patterns for integrating legacy software into a service-oriented
architecture exist, with different trade-offs. For example, in [8] the Legacy Wrapper
pattern is introduced which wraps the legacy system with a service façade. While this
is a relatively quick and cheap solution it often poses difficulties for long-term main-
tenance and deployment. As SENSORIA has developed the powerful, model-based re-
engineering tool CareStudio the Extract Service Model pattern is a viable alternative
with higher up-front investments but better long-term maintainability.

Context. You have a legacy application that performs a vital business function, possibly
with complex business logic integrated into the code. You want to integrate the legacy
application into a service-oriented infrastructure.

Problem. Often service-oriented systems are introduced to supersede existing legacy
technologies. In these cases it is usually not feasible to re-implement the functionality
of the legacy system; therefore, its functionality is wrapped by a service binding. If
the legacy system is hidden behind a thin service layer, the interface of the wrapper is
largely pre-determined by the capabilities and interfaces of the existing solution which
are often at the wrong level of abstraction or granularity for a service-oriented archi-
tecture. This leads to non-standard service contracts that expose details of the legacy
system’s implementation and technology. Writing a thick wrapper that exposes a clean
service-oriented interface is often difficult as many legacy systems do not expose a clean
separation between user interface, domain logic and storage backend.



www.manaraa.com

SENSORIA Patterns 729

Forces.

– A legacy application performing vital functionality exists.
– It is not economically feasible or desirable to develop replacements for the legacy

systems from scratch. Therefore the legacy application should be integrated into a
service-oriented architecture.

– The resulting software is not only supposed to facilitate transition to another sys-
tem.

– The new system should exhibit clean service contracts between its components to
be maintainable and extensible for future requirements.

Solution. Use the SENSORIA re-engineering approach which consists in annotating the
original source code, extracting a service model from the annotated source code, and
generating a new, service-oriented implementation from the annotated code.

Consequences. Pros: By creating a service model and a truly service-oriented imple-
mentation the long-term maintainability and extensibility is ensured. Often integration
into a service-oriented architecture can be more seamless than wrapper-based solutions;
the extracted service-oriented implementation can make use of standard infrastructure
services provided by the environment and therefore profit from enhancements made to
the overall system.

Cons: For re-engineering purposes the source code of the legacy system has to be
available, which is often not the case. The legacy code has to be annotated which makes
it necessary that developers that understand the old code base are available or that de-
velopers familiarize themselves with the old code base.

Neutral: The up-front cost of re-engineering can be significantly higher than the cost
of wrapping a legacy system, although this will often be offset by reduced deployment
and operational costs and better future extensibility of the system.

Tools. This pattern is supported by a set of SENSORIA tools grouped around CareStudio
[2] which allow transformations to be applied to source code, with a focus on achieving
SOA-compliant code. The tool uses a model transformation approach to the migration
and includes emitters for source code.

Examples. A comprehensive description of the Extract Service Model pattern is con-
tained in Chapter 6-4 (Legacy Transformations for Extracting Service Components).

Related Patterns. When following this pattern, a service model is extracted and then
used for code generation. The pattern is therefore closely related to Service Modeling
and Generate Implementation. The extracted model can be used to formally validate
properties of the system using patterns Extract Formal Models and Analyze with Formal
Methods.

3 Enhancing SOA Patterns

This section describes how existing patterns for SOA development can be extended with
SENSORIA tools and methods, contributing novel aspects to the proposed solution and



www.manaraa.com

730 M. Hölzl et al.

offering new solution possibilities. We present extensions of two patterns from Thomas
Erl’s “SOA Design Patterns” [8], Concurrent Contracts and Trusted Subsystem.

3.1 Concurrent Contracts

Contracts between client and service and interfaces offered by services play an impor-
tant role in the development of service-oriented architectures. The following pattern
shows how techniques developed as part of SENSORIA can help service providers to
offer suitable interfaces for different classes of clients, and clients to find and utilize
the most appropriate contract offered by a provider. It is an extension of the Concur-
rent Contracts pattern from Thomas Erl’s “SOA Design Patterns” [8] with SENSORIA-
specific material. The pattern as originally described deals only with contracts; we have
extended the pattern to also take into account services that offer multiple interfaces
backed by the same implementation.

Context. Services often have to serve different customers which have slightly differ-
ent needs and permissions, and which may be of unknown provenience and therefore
trusted to different degrees. Exposing the same interface and service contract to all
clients may therefore not be feasible; on the other hand having different services for
closely related and largely overlapping functionality is not desirable.

Problem. Often services are described as exposing a single interface or contract that
the service fulfills. This simple view does not adequately reflect the situation encoun-
tered when building service-oriented architectures: often different clients have many
overlapping requirements but also significant differences. For example, several clients
may request personnel data from a company’s “personnel service,” but there may be
differences in that

– they may be trusted to different degrees, e.g., services operated by the company
itself may enjoy higher trust than services operated by clients or partners of the
company;

– some clients may be allowed to see protected data, e.g. services operated by the
accounting department may have access to salary information which is not available
to other services;

– some clients may be allowed to issue more powerful queries, e.g., the statistics de-
partment may be allowed to issue queries that aggregate data whereas other clients
may only be able to query individual employees.

To avoid undue multiplication of services it seems desirable to have a single service
that handles all clients; on the other hand the differences in the clients may make it
difficult or even impossible to define a single service interface or contract that satisfies
the needs of all clients. Furthermore such an interface will expose unneeded complexity
to clients that do not need advanced capabilities and the definition of a single policy that
covers all the different clients is often difficult and poses governance and administration
problems.



www.manaraa.com

SENSORIA Patterns 731

Forces.

– The service has to accommodate different types of consumers with important simi-
larities but significant differences. For example, some customers may be less trusted
than others.

– It is desirable to limit the number of deployed services and to avoid duplicated
functionality in several services.

– Defining a single interface and a single contract that satisfy the needs of all clients
is difficult or impossible.

– Exposing several contracts and interfaces for a service may increase the complexity
of the system and make it more difficult for clients to choose an appropriate service.

Solution. The same underlying service implementation may expose several different
interfaces or contracts. Each exposed interface or contract can be optimized for the
needs of one customer or several customers with similar needs and trustworthiness.
Each contract can be versioned and governed individually, thereby simplifying deploy-
ment and governance of individual contracts; interfaces are generally more closely tied
to the service implementation than contracts, but by using a model-driven approach
and carefully separating interfaces and implementation during design time a certain de-
gree of independent versioning and governance can be ensured for interfaces as well;
in particular it is often possible to maintain backward-compatible interfaces when the
implementation of a service is upgraded.

On the other hand, having to provide the functionality for several contracts places
additional burden on the implementation and evolution of the service itself. Care has
to be taken that changes to the implementation do not violate the guarantees of any
exposed interface or contract. This effect can be ameliorated by employing the formal
methods developed as part of the SENSORIA project to verify that the implementation
is faithful to the guarantees of each exposed interface or contract.

Similar situations exists for consumption and provisioning of the service: By provid-
ing multiple interfaces each client has to choose the most appropriate one; this increases
the time a developer needs to understand the system and diminishes the positive effect
of having specialized interfaces for the needs of several clients. For the service provider,
multiplying the number of contracts and interfaces may increase the governance effort
and deployment complexity of the whole system, even though they are reduced for each
individual service interface. In both cases techniques developed by SENSORIA, in par-
ticular “call-by-contract” as provided by λreq and the dynamic selection of available
service interfaces and contracts by Dino [16], can help ameliorate these problems.

Consequences. Pros: Introducing new interfaces and contracts that are closely matched
to the requirements of a group of clients can greatly simplify the development of clients
as well as governance and deployment. Providing several interfaces can reduce the need
for different services that provide closely related functionality.

Cons: Adding new interfaces to a service has similar governance and management
overhead to adding completely new services. Indeterminate application of the Con-
current Contracts Pattern can therefore lead to a overly large service inventory that is
difficult to use, maintain and develop.



www.manaraa.com

732 M. Hölzl et al.

Tools. By using UML4SOA in an early development stage, as for example with the
application of the Service Modeling pattern, you can simplify the application of Con-
current Contracts. Service providers can also use UML4SOA during deployment to
formulate the capabilities and potential consumers of each service contract.

When formal methods are used to verify the contracts with respect to their imple-
mentation, the model transformations and tools corresponding to the chosen verifica-
tion method can be used. Particularly applicable tools for this pattern are PEPA or
SMRC to analyze whether the performance characteristics of the provided contracts
match the needs of the clients, see Chapter 5-3 (Scaling Performance Analysis using
Fluid-Flow Approximation) and Chapter 5-5 (Quantitative Analysis of Services). Fur-
thermore, λreq enables requirements-based selection of service contracts, see Chapter
2-4 (Call-by-Contract for Service Discovery, Orchestration and Recovery). Dino can be
used to provide semantic matching of services and interfaces at run time, see Chapter 6-
3 (Runtime Support for Dynamic and Adaptive Service Composition). Process-calculus
based static analysis methods can be used to verify the correctness of the provided con-
tracts with respect to their implementation; see pattern Analyze with Formal Methods
for more details.

Examples. Examples for the application of the Concurrent Contracts pattern can be
found in Erl [8]; more detailed examples of the application of the SENSORIA meth-
ods are described in the chapters of this volume mentioned in the previous section. In
addition Chapter 3-2 (Advanced Mechanisms for Service Composition, Query and Dis-
covery) and Chapter 6-3 (Runtime Support for Dynamic and Adaptive Service Compo-
sition) provide information about dynamic discovery of appropriate service contracts.

Related Patterns. For Concurrent Contracts to be applied, the service contract itself
should ideally be fully decoupled from the underlying service implementation; often a
façade that supports multiple contracts without the need for redundant service logic can
be used to implement this. See the patterns Decoupled Contract and Service Façade
described in Erl [8] for further information about this topic. Other patterns that support
different clients for a service are Contract Denormalization and Validation Abstraction,
also described in Erl [8]. However, when using Concurrent Contracts the need for con-
tract denormalization may be reduced since the capabilities required by different clients
could be exposed by separate contracts.

Application of the Concurrent Contracts pattern can often be simplified by using the
Service Modeling pattern to model the contracts and the shared implementation arti-
facts. After the Concurrent Contracts pattern has been applied, the Analyze with Formal
Methods pattern can be used to ensure that the functional and non-functional properties
of the resulting service satisfy the requirements of the contracts and interfaces.

3.2 Trusted Subsystem

As more and more critical data is stored in and processed by service-oriented systems,
ensuring their availability while securing them against unauthorized access and mali-
cious attacks has become a priority. A large number of tools and techniques have been
developed to address these issues. Here we focus on one possible design pattern, the



www.manaraa.com

SENSORIA Patterns 733

Trusted Subsystem. Our description is an adaptation and extension of some important
points presented in Thomas Erl’s “SOA Design Patterns”; the full description of the
pattern with examples and discussion of useful technologies can be found there.

Context. You are designing a service-oriented system that processes critical or confi-
dential data. In this system, some services are exposed to clients that do not have access
rights. You want to protect the data and make it easy and transparent to grant and revoke
authorizations.

Problem. Granting clients direct access to services containing important data poses
many security problem and complicates the management of authorizations. Further-
more it poses problems of transitive trust: if service A calls service B on behalf of
client C, who is responsible for checking that the call is authorized?

Forces.

– Services should be protected from unauthorized access.
– Management of authorizations should be easy and transparent.

Solution. The services containing critical or confidential data can only be accessed via
another service that is responsible for verifying the client’s authorizations. This trusted
front-end service always uses its own credentials to access the protected resources.
Client authorizations are not passed on by the front-end to the protected resources, but
a client identifier may be included in the calls to the protected resources. The trusted
subsystem is responsible for verifying that all accesses to the resources are performed
only by authorized clients and that clients cannot pass counterfeit identifiers to services.
The front-end service thus establishes a trust boundary. When applying this pattern to
several front-end services acting on the same resources it is possible to establish nested
or overlapping trust boundaries.

Consequences. Pros: The front-end service is responsible for enforcing the trust
boundary for the protected subsystems. Therefore there is a single point where access
policy can be implemented, monitored and authored. Since credentials are established
by the client for complete transactions there is no problem with transitive trust relation-
ships. Services inside the trusted boundary can have very simple security mechanisms
since they only have to authenticate the trusted subsystem.

Cons: The trusted subsystem is a single point of failure and also a potential perfor-
mance bottleneck since it must process every interaction with the protected resources.
Security breaches of the front-end can have devastating consequences for the whole sys-
tem as a compromise of this subsystem can be used to exploit all downstream resources
in its trust boundaries. It is therefore a prime target for attackers.

Neutral: SENSORIA methods can achieve a particularly good relationship between
cost and effectiveness when they are applied to the trusted subsystem: by validating the
security properties of this service using qualitative methods a high degree of trust in
the security of the whole system inside the trust boundary can be established; by using
qualitative analysis to analyze the performance characteristics of the system bottlenecks
can be discovered and prevented during early design stages.



www.manaraa.com

734 M. Hölzl et al.

Tools. Essentially, the whole range of SENSORIA modeling and analysis methods can
be gainfully employed to model and analyze the trusted subsystem. In particular, λreq

can often be used to validate the contracts of the trusted subsystems, and Lysa [3],
the corresponding LysaTool [26,4] and CryptoKlaim [17] can be employed to estab-
lish the security of the protocols between clients and the trusted service as well as
inside the trust boundary. Qualitative analysis of arbitrary properties including security
is also supported by the SENSORIA model checkers WS-Engineer [9], CMC and UMC
[21], and sCOWS [20]. Finally, the SRMC/PEPA tool [23] covers the performance side
of the analysis with steady-state analysis of the underlying Markov chain of SRMC
descriptions.

Examples. Examples for trusted subsystems can be found in Erl [8]. Qualitative anal-
ysis including verification of security properties is discussed in Chapter 4-2 (An Ab-
stract, On-The-Fly Framework for the Verification of Service Oriented Systems), and
Chapter 4-3 (Tools and Verification). See Chapter 4-1 (Analysing the Protocol Stack
for Services) for an example of applying the LysaTool. Quantitative, and in particular
performance analysis is discussed in Chapter 5-5 (Quantitative Analysis of Services).

Related Patterns. Since the Trusted Subsystem pattern identifies services which are
particularly worthwhile targets for the SENSORIA tools and methods, it is related to
most of the other patterns presented in this section: Service Modeling of the trusted
subsystem can enable the use of other patterns, such as Extract Formal Models, Analyze
with Formal Methods, or Generate Implementation.

4 Related Work

The idea of using patterns to describe common problems in software design and de-
velopment was popularized by the so-called “Gang of Four” book [10]. Since its pub-
lication a wide range of patterns and pattern languages for many areas of software
development has been published, see e.g. the Pattern Languages of Programs (PLoP)
conferences and the associated Pattern Languages of Program Design volumes, or the
LNCS Transactions on Pattern Languages of Programming.

The area of patterns for SOA has recently gained a lot of attention, and several col-
lections of design patterns for SOA have been published or announced [8,19]. The ar-
ticle [7] provides a short introduction. However, these patterns address more general
problems of SOA, while our patterns are focused on the formally supported techniques
provided by SENSORIA. Therefore, our patterns can serve as an extension of, rather
than as a replacement for, other pattern catalogs.

5 Conclusions and Further Work

In this chapter, we have presented some results of the IST-FET EU project SENSORIA

in the form of a pattern language. The patterns address a broad range of issues, such
as modeling, specification, analysis, verification, orchestration, and deployment of ser-
vices. As a final treat, the relationships between the patterns introduced in this chapter
are shown in Fig. 1.



www.manaraa.com

SENSORIA Patterns 735

Service Modeling

Extract Service Model

Extract Formal Model

Analyze with Formal Methods

Generate Implementation

Concurrent Contracts

Trusted Subsystem

modeled with

modeled with

reuse existing code

implement usingenable analysis with

use for should precede

Fig. 1. SENSORIA pattern relationships

We are currently working on systematizing and extending the collection of patterns
in these areas, and we will also be developing patterns for areas which are not currently
addressed, e.g., business process analysis and modeling.

This pattern catalog is a useful guide to the research results of the SENSORIA project:
as already mentioned in the introduction, we are investigating a broad range of subjects
and without some guidance it may not be easy for software developers to find the ap-
propriate tools or techniques.

References

1. Alpert, S., Brown, K., Woolf, B.: The Design Patterns Smalltalk Companion. Addison-
Wesley Professional, Reading (1998)

2. ATX Technologies. Modernizing Software and Increasing Business Values,
http://www.atxtechnologies.co.uk/

3. Bodei, C., Degano, P., Gao, H., Nielson, H.: Detecting Replay Attacks by Freshness Anno-
tations. In: Proceedings of WITS 2007, Informatics and Mathematical Modelling, Technical
University, Dipartimento di Informatica (April 2007)

4. Buchholtz, M., Nielson, H. R.: LySaTool,
http://www.imm.dtu.dk/English/Research/LanguageBased_
Technology/Software/LySaTool/

5. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern Oriented Software Architecture On Pat-
terns and Pattern Languages, vol. 5. Wiley, Chichester (2007)

http://www.atxtechnologies.co.uk/
http://www.imm.dtu.dk/English/Research/LanguageBased_Technology/Software/LySaTool/
http://www.imm.dtu.dk/English/Research/LanguageBased_Technology/Software/LySaTool/


www.manaraa.com

736 M. Hölzl et al.

6. Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic Process Algebras. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Hei-
delberg (2007)

7. Erl, T.: Introducing soa design patterns. SOA World Magazine 8(6) (June 2008)
8. Erl, T.: SOA Design Patterns. Prentice Hall/Pearson PTR, London (2008)
9. Foster, H., Uchitel, S., Kramer, J., Magee, J.: WS-Engineer: A Tool for Model-Based Verifi-

cation of Web Service Compositions and Choreography. In: IEEE International Conference
on Software Engineering (ICSE 2006), Shanghai, China (May 2006)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of reusable
object-oriented software. Addison-Wesley Co., Inc., Boston (1995)

11. Hillston, J.: Fluid Flow Approximation of PEPA models. In: Proc. 2nd Int. Conf. Quantitative
Evaluation of Systems (QEST 2005). IEEE, Los Alamitos (2005)

12. Knapp, A.: A formal approach to object-oriented software engineering. Softwaretechnik-
Trends 21(3) (2001)

13. Lapadula, A., Pugliese, R., Tiezzi, F.: A Calculus for Orchestration of Web Services. In:
Nicola, R.D. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

14. Mayer, P., Schroeder, A., Koch, N.: A Model-Driven Approach to Service Orchestration.
In: Proceedings of the IEEE International Conference on Services Computing (SCC 2008).
IEEE, Los Alamitos (2008)

15. Meszaros, G., Doble, J.: Metapatterns: A pattern language for pattern writing (1996)
16. Mukhija, A., Dingwall-Smith, A., Rosenblum, D.: QoS-Aware Service Composition in Dino.

In: Proceedings of the 5th European Conference on Web Services (ECOWS 2007), Halle,
Germany. IEEE Computer Society Press, Los Alamitos (2007)

17. Nielsen, C., Nielson, F., Nielson, H.: CryptoKlaim. Work in progress (2006)
18. OMG. Service Oriented Architecture Modelling Language Beta 1,

http://www.soaml.org
19. Rotem-Gal-Oz, A.: SOA Patterns. Manning (2009) (to appear)
20. Schivo, S.: sCOWS Model Checker,

http://sites.google.com/site/sschivo/scows-model-checker
21. ter Beek, M.H., Mazzanti, F., Gnesi, S.: Cmc-umc: a framework for the verification of ab-

stract service-oriented properties. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 2111–2117.
ACM, New York (2009)

22. Tiezzi, F.: Venus: A Verification ENvironment for UML models of Services,
http://rap.dsi.unifi.it/cows/

23. Tribastone, M.: The PEPA Plug-in Project. In: Fourth International Conference on the Quan-
titative Evaluation of Systems, UK, pp. 53–54. IEEE Computer Society Press, Los Alamitos
(2007)

24. VIATRA2 Project. VIATRA2 (VIsual Automated model TRAnsformations),
http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/
subprojects/VIATRA2/index.html

25. Wirsing, M., Hölzl, M.M., Acciai, L., Banti, F., Clark, A., Fantechi, A., Gilmore, S., Gnesi,
S., Gönczy, L., Koch, N., Lapadula, A., Mayer, P., Mazzanti, F., Pugliese, R., Schroeder, A.,
Tiezzi, F., Tribastone, M., Varró, D.: SENSORIA Patterns: Augmenting Service Engineering
with Formal Analysis, Transformation and Dynamicity. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2008. Communications in Computer and Information Science, vol. 17, pp. 170–190.
Springer, Heidelberg (2008)

26. Yüksel, E., Nielson, H., Nielsen, C., Örencik, M.: A Secure Simplification of the PKMv2
Protocol in IEEE 802.16e-2005. In: FCS-ARSPA 2007 Informal Proceedings (2007)

http://www.soaml.org
http://sites.google.com/site/sschivo/scows-model-checker
http://rap.dsi.unifi.it/cows/
http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/subprojects/VIATRA2/index.html
http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/subprojects/VIATRA2/index.html


www.manaraa.com

Author Index

Abreu, João 61
Acciai, Lucia 214

Bartoletti, Massimo 232, 408
Bergmann, Gábor 561
Bocchi, Laura 61
Bodei, Chiara 214
Boreale, Michele 214, 282
Boronat, Artur 561
Bravetti, Mario 282
Bruni, Roberto 133, 214, 349
Buscemi, Maria Grazia 262

Caires, Lúıs 153, 408
Cappello, Igor 522
Ciancia, Vincenzo 326
Clark, Allan 467, 506, 522
Corradini, Andrea 349

Degano, Pierpaolo 232
De Nicola, Rocco 153, 447
Duguid, Adam 506

Elgner, Jannis 26, 640

Ferrari, Gian Luigi 232, 326
Ferreira, Carla 302
Fiadeiro, José 61
Foster, Howard 35, 133, 428, 585

Gadducci, Fabio 349
Gao, Han 369
Gilmore, Stephen 467, 486, 506, 522
Gnesi, Stefania 26, 390, 640, 698
Gönczy, László 35, 541
Guanciale, Roberto 326

Heckel, Reiko 561, 604
Hegedüs, Ábel 541
Hölzl, Matthias 1, 719

Koch, Nora 1, 26, 35, 640, 719

Lanese, Ivan 189, 302, 408
Lapadula, Alessandro 678
Latella, Diego 447, 522

Lluch Lafuente, Alberto 133, 349
Lopes, Antónia 61
Loreti, Michele 447, 522, 678

Massink, Mieke 447
Matos, Carlos 604
Mayer, Philip 1, 26, 35, 622, 640, 719
Mazzanti, Franco 390, 408
Montanari, Ugo 15, 133, 262, 349
Montangero, Carlo 35, 115
Mukhija, Arun 428, 585

Nielson, Flemming 369
Nielson, Hanne Riis 369

Palasciano, Claudio 678
Pugliese, Rosario 153, 698

Quaglia, Paola 522

Ráth, István 561, 622
Ravara, Antonio 189, 302
Reiff-Marganiec, Stephan 115
Rosenblum, David S. 428, 585

Sangiorgi, Davide 408
Schivo, Stefano 522
Semini, Laura 115
Strollo, Daniele 326

ter Beek, Maurice H. 655, 678
Tiezzi, Francesco 698
Torrini, Paolo 561
Tribastone, Mirco 486
Tuosto, Emilio 133, 326

Uchitel, Sebastian 428, 585

Varró, Dániel 35, 541, 561
Vasconcelos, Vasco T. 153
Vieira, Hugo Torres 189, 214, 302, 408

Wirsing, Martin 1, 719

Zavattaro, Gianluigi 153, 302
Zunino, Roberto 232, 408


	Title Page
	Preface
	Table of Contents
	Intro
	Sensoria – Software Engineering for Service-Oriented Overlay Computers
	Introduction
	Sensoria – Well-Founded SOC Development
	Part I: Linguistic Primitives for Modeling and Programming SOA Systems
	Modeling in Service-Oriented Architectures
	Calculi for Service-Oriented Computing
	Negotiations, Planning, and Reconfiguration

	Part II: Formal Analysis of Service-Oriented Systems
	Qualitative Analysis Techniques for Service-Oriented Computing
	Quantitative Analysis Techniques for Service-Oriented Computing

	Part III: Model-Driven Development, Tools, and Validation
	Model-Driven Development and Reverse-Engineering for Service-Oriented Systems
	Case Studies and Patterns

	Conclusion

	A Unifying Formal Basis for the Sensoria Approach: A White Paper
	Introduction
	The Sensoria Approach
	The Formal Basis
	Labelled Transition Systems and Their Properties
	Design Algebras
	Process Description Calculi
	Process Combination
	Graphs and Diagrams
	Graph-Based Calculi
	Calculi with Names
	Probabilistic and Quantitative LTS
	Probabilistic Calculi
	Everything Together

	References

	Introduction to the Sensoria Case Studies
	Introduction
	Finance Case Study
	Automotive Case Study
	Telecommunication Case Study
	The eUniversity Case Study
	Conclusion
	References


	Modelling in Service-Oriented Architectures
	UML Extensions for Service-Oriented Systems
	Introduction
	Case Study
	Modeling Structural Aspects of SOAs
	Service Orchestrations
	Metamodel
	Example
	Model-Driven Development Support

	Non-functional Properties of Services
	Metamodel
	Examples
	Model-Driven Development Support

	Business Policies Support
	Metamodel
	Examples

	Service Modes for Adaptive Service Brokering
	Metamodel
	Examples

	Service Deployment
	Metamodel
	Examples

	Related Work
	Conclusions
	References

	The Sensoria Reference Modelling Language
	Introduction
	Engineering Software for Service-Overlay Computers 
	From Use-Case Diagrams to SRML Modules 
	Use-Case Diagrams for Service-Oriented Modelling
	Deriving the Structure of SRML Modules

	The Coordination Model
	Conversational Interactions
	Deriving Interactions from Message Sequence Diagrams
	A Formal Model

	The Modelling Primitives of SRML
	Behaviour Specification Languages
	Configuration Policies
	Module Declaration

	The Configuration-Management Model
	Layered State Configurations of Global Computers
	Business Activities and Configurations
	Run-Time Discovery and Binding

	Checking the Correctness of Service Modules
	The UCTL Semantics of Business Protocols 
	From SRML Modules to UML State Machines
	Model-Checking Service Modules at Work

	Analysing Timing Properties of Complex Services
	Timing Issues in SRML Models
	Quantitative Analysis of Timing Properties

	Related Approaches
	Concluding Remarks
	References

	Model-Driven Development of Adaptable Service-Oriented Business Processes
	Introduction
	The Modelling Concepts
	Model Specification
	Case Study: Loan Approval
	Policies

	Design and Deployment
	Workflow Design
	Service Design
	Deployment

	Run–Time Environment
	Barbed Model Driven Development
	Related Work
	Conclusions and Future Work
	References

	A Formal Support to Business and Architectural Design for Service-Oriented Systems
	Introduction
	Rationale behind Architectural Design Rewriting
	Design Foundations
	System Configurations
	Architectural Designs
	Architectural Styles
	Design Algebra
	Design Reconfiguration

	Formal Support to Business and Architectural Design
	UML4SOA Reconfiguration Profile
	SRML
	Software Modes

	Conclusion
	References


	Calculi for Service-Oriented Computing
	Core Calculi for Service-Oriented Computing
	Introduction
	Session-Based Core Calculi
	CaSPiS: A Dataflow Service Centered Calculus
	SSCC: Stream-Based Service-Centered Calculus
	CC: A Conversation-Oriented Service Centered Calculus

	Correlation-Based Core Calculi
	COWS: Calculus for Orchestration ofWeb Services
	SOCK: Service-Oriented Computing Kernel

	Conclusion
	References

	Behavioral Theory for Session-Oriented Calculi
	Introduction
	Behavioral Theory for SSCC
	From Binary to Multiparty Sessions
	Dynamic Conversations
	Behavioral Semantics for COWS
	Conclusion
	References

	Static Analysis Techniques for Session-Oriented Calculi
	Introduction
	A Type System for Client Progress in CaSPiS
	Language Fragment
	Proving the Client Progress Property
	Client Progress in the Credit Request Scenario

	From Discovering Type Errors to Preventing Business Logic Flaws
	Language Fragment
	The Control Flow Analysis
	Control Flow Analysis of the Scenario

	Conversation Types
	AnalyzingMultiparty Protocols with Conversation Types
	Proving Progress of Conversations
	Typing the Credit Request Scenario

	Conclusion
	References

	Call-by-Contract for Service Discovery, Orchestration and Recovery
	Introduction
	Service Interfaces and Contracts
	Planning Service Composition
	Contributions
	Our Work within the Context

	A Taxonomy of Behavioral Aspects in Web Services
	A Call-by-Contract Design Methodology for Services
	A Car Repair Scenario

	A Core Calculus for Services
	Services
	Networks

	Static Semantics
	History Expressions
	Validity
	A Type and Effect System for Services
	Type Safety

	Planning
	Recovery
	Conclusions
	References


	Negotiations, Planning, and Reconfiguration
	CC-Pi: A Constraint Language for Service Negotiation and Composition
	Introduction
	Named Constraints
	C-semirings
	Named C-semirings

	The cc-pi Calculus
	Syntax
	Operational Semantics

	A Telecommunication Case Study
	The Prioritised cc-pi Calculus
	A Finance Case Study
	Conclusions and Related Work
	References

	Advanced Mechanisms for Service Composition, Query and Discovery
	Introduction
	Contract as Abstraction
	The Asynchronous Pi-Calculus
	$$-Abstractions of Processes
	ccs- Types
	An Example
	Extensions

	Contract-Based Service Composition
	Behavioural Contracts
	An Example of Service Language
	Composing Services via Their Contract
	Subcontract Relation
	Subcontract Relation Characterization

	Conclusion
	References

	Advanced Mechanisms for Service Combination and Transactions
	Introduction
	Content of the Chapter
	Overview of Process Calculi Approaches

	Basic Mechanisms
	Exception Handling
	Compensation Handling

	Exploiting the Mechanisms in SOC
	Static Compensation Policies
	Dynamic Compensation Policies

	Models of Compensations
	Encoding BPEL Scopes in COWS
	SAGAs in SOCK
	Analysis of Compensations in the Conversation Calculus

	Conclusion
	References

	Model-Driven Development of Long Running Transactions
	Introduction
	Beyond Message Passing Coordination for Services
	The Signal Calculus
	Signal Core Language

	Experimenting Long Running Transactions
	A Graphical Notation for LRTs
	From the Graphical Notation to SC (informally)

	A Case Study: The Car Repair Scenario
	Scl Model Transformation

	Scl Model Refactoring
	Refactoring Transactional Components
	Refactoring Parallel Composition

	Concluding Remarks
	References

	Hierarchical Models for Service-Oriented Systems
	Introduction
	The Syntax of Hierarchical Graphs
	The Models of Hierarchical Graphs
	Top-View Model
	Side-View Model

	Applications to Service-Oriented Systems
	Encoding Methodology
	Transaction Workflows
	Service Sessions

	Conclusion
	References


	Qualitative Analysis Techniques for Service-Oriented Computing
	Analysing Protocol Stacks for Services
	Introduction
	Abstract Level 
	Protocol Stack Plug-ins
	Concrete Level 
	A Service-Oriented Example 
	Static Analysis 
	Outline of the LySa Analysis
	Properties of the Analysis
	Modelling the Attacker
	Example Revisited

	Conclusion
	References

	An Abstract, on the Fly Framework for the Verification of Service-Oriented Systems
	Introduction
	Abstraction Mechanisms
	The Logic SocL
	Preliminary Definitions
	SocL Syntax and Semantics
	A Few Patterns of Service Properties

	The On-the-Fly Verification Approach
	Conclusions
	References

	Tools and Verification
	Introduction
	CMC-UMC Verification of Service-Oriented Models
	Model-Checking Service Conversations with ChorSLMC
	The LocUsT Tool
	Conclusion
	References

	Specification and Analysis of Dynamically-Reconfigurable Service Architectures
	Introduction
	Background and Related Work
	Software Architecture Modes
	Service Modeling and Composition

	Case Study
	Service Modes
	Overview
	Specification

	Formal Models
	Architecture Models
	Behaviour Models
	Combined Models

	Service Mode Analysis
	Modes Tool Suite
	Modes Model Parser
	Modes Model Analyser
	Broker Extract Process
	Modes Browser
	Dino Service Broker Runtime Artifacts
	Limitations

	Conclusions and Future Work
	References


	Quantitative Analysis Techniques for Service-Oriented Computing
	SoSL: A Service-Oriented Stochastic Logic
	Introduction
	Preliminaries
	Paths and Probability Measures

	MarCaSPiS: Markovian CaSPiS
	Syntax and Stochastic Semantics of MarCaSPiS

	SoSL: Service-Oriented Stochastic Logic
	Syntax
	Semantics
	Model Checking SoSL

	Conclusions and Related Work
	References

	Evaluating Service Level Agreements Using Observational Probes
	Introduction
	PEPA

	Model Specification
	Measurement Specification
	SLA Analysis
	Sensitivity Analysis

	Conclusions
	References

	Scaling Performance Analysis Using Fluid-Flow Approximation
	Introduction
	Overview of PEPA
	Language Operators
	Markovian Semantics
	Markovian Aggregation Techniques
	Fluid-Flow Approximation

	e-University Case Study
	Model

	Model Evaluation
	Metrics
	Markovian Analysis
	Fluid-Flow Analysis

	Conclusion
	References

	Passage-End Analysis for Analysing Robot Movement
	Introduction
	Stochastic Probes
	Probe Specification Language
	Local Probes

	Average Response-Time Analysis
	Passage-Time Quantile Analysis
	Passage-End Calculations
	Case Study: Robot Bowling
	Design of the Robot
	Scoring and the Competition Rules
	The PEPA Model
	Results

	Related Work
	Conclusions
	References

	Quantitative Analysis of Services
	Introduction
	Analysis in MarCaSPiS
	System Performance
	Supervisor and ClerkWorkload
	System Reactivity

	Analysis in sCOWS
	sCOWS Specification of the Scenario
	ProbabilisticModel Checking in sCOWS
	Approximate Model Checking in sCOWS
	Comparison between the CTMC- and the Simulation-Based Approaches

	Analysis in PEPA
	Concluding Remarks
	References


	Model-Driven Development and Reverse-Engineering for Service-Oriented Systems
	Methodologies for Model-Driven Development and Deployment: An Overview
	Introduction
	Overview on Model-Driven Methodologies
	The Sensoria Service Engineering Approach
	Contributions of Sensoria

	From BPEL to SAL and Back: an End-to-End Example on Model-Driven Analysis
	Practical Design-Time Verification of Business Processes
	Methodological Overview
	Challenges in Model-Driven Analysis
	Implementation
	Overview of Integrated Toolchain

	Related Work
	Conclusions
	References

	Advances in Model Transformations by Graph Transformation: Specification, Execution and Analysis
	Introduction
	Live and Incremental Model Transformations
	Demonstrating Example
	Incremental Pattern Matching
	Live Transformations Driven by Incremental Pattern Matching
	Related Work

	Model Transformation by Example
	Motivation
	Overview of Model Transformation by Example
	Prototype Tool Support
	Related Work

	Stochastic Simulation
	Simulating Stochastic Graph Transformations
	Case Study: A P2P Network Model

	Analysis and Verification of Graph-Based Model Transformations
	Specification: Modelling a Distributed MUTEX Algorithm
	Execution
	Related Work

	Conclusion
	References

	Runtime Support for Dynamic and Adaptive Service Composition
	Introduction
	Overview of the Dino Approach
	Design of the Dino Runtime Infrastructure
	Specification of Service Requirements and Capabilities
	Service Discovery and Selection
	Service Delivery and Monitoring
	Service Recomposition

	Implementation of the Dino Runtime Infrastructure
	Related Work
	Conclusion
	References

	Legacy Transformations for Extracting Service Components
	Introduction
	Challenges of SOA to Reengineering
	The Separation of Business from Presentation Logic
	The Loosely Coupled Relationship between Services
	The Coarse-Grained Nature of Services

	General Methodology of Architectural Migration
	Code Annotation
	Reverse Engineering
	Redesign
	Forward Engineering

	Technological Dimension
	Code Annotation
	Reverse Engineering
	Redesign
	Forward Engineering

	Functional Dimension
	Code Annotation
	Redesign

	Prototype
	Code Annotation
	Reverse Engineering
	Redesign
	Forward Engineering
	Application to Case Study

	Related Work
	Conclusion
	References

	The Sensoria Development Environment
	Introduction
	High-Level Overview
	Design and Implementation
	SDE Core and UI
	Composing Tools
	Extending the Platform

	Integrated Tools
	Modeling
	Transformation and Deployment
	Analysis
	Deployment and Runtime

	Tool Applications
	Checking and Deploying Dervice Orchestrations
	Qualitative and Quantitative Analysis
	Modes-Based Dynamic Runtime Discovery

	Conclusion
	References


	Case Studies and Patterns
	Specification and Implementation of Demonstrators for the Case Studies
	Introduction
	Finance Case Study: Credit Request Scenario
	Automotive Case Study: On Road Assistance
	eUniversity Case Study: Student Application
	Conclusions
	References

	Sensoria Results Applied to the Case Studies
	Linguistic Primitives
	Architectural Level
	Programming Level

	Qualitative and Quantitative Analysis
	Qualitative Analysis
	Quantitative Analysis

	Deployment and Development
	Deployment and Reengineering
	Model-Driven Development

	Concluding Overview
	References

	Analysing Robot Movement Using the Sensoria Methods
	Introduction to the Bowling Robot Case Study
	Context Description
	Case Study Description
	Use of Sensoria Tools and Results
	Qualitative Analysis, Error Identification (UML4SOA Model)
	Qualitative Analysis, System Properties Verification (UMC/UCTL Model)
	Quantitative Analysis, Non-functional Properties (PEPA Model)
	Qualitative/Quantitative Analysis, Functional and Non-functional Properties (MarCaSPiS Model)

	Conclusions and Lessons Learned

	The Sensoria Approach Applied to the Finance Case Study
	Introduction
	A COWS Specification of the Finance Case Study
	A Logical Methodology for Checking Functional Properties
	A Type System for Checking Confidentiality Properties
	Automated Verification of UML4SOA Models of Services
	Concluding Remarks
	References

	SENSORIA Patterns
	Introduction
	Overview of Sensoria Patterns
	The Sensoria Pattern Language

	Sensoria Development Patterns
	Service Modeling
	Extract Formal Models
	Analyze with Formal Methods
	Generate Implementation
	Extract Service Model

	Enhancing SOA Patterns
	Concurrent Contracts
	Trusted Subsystem

	Related Work
	Conclusions and Further Work
	References


	Author Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




